首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cattle disk membrane was solubilized in 2% deoxycholate in 0.05 m Tris-HCl buffer at pH 8.0. The sedimentation coefficient of rhodopsin in this solvent was 4.4 S. A sedimentation equilibrium study in H2O-D2O solvent showed that rhodopsin was mainly associated with deoxycholate and probably free of phospholipid when the deoxycholate concentration was higher than 0.8%. Bleaching of rhodopsin resulted in aggregation of the protein. Reduction of the deoxycholate concentration by dialysis promoted protein-phospholipid interaction in such a way that when the deoxycholate concentration was 0.2%, most of the rhodopsin present in the initial solution formed a soluble protein-phospholipid-deoxycholate complex with a molecular weight of 86,000. The complex, we believe, contains one molecule of rhodopsin, 50 to 55 molecules of phospholipid, and 20 to 25 molecules of deoxycholate.After dialysis against 0.05 m phosphate buffer at pH 6.5 that contained 20 mm MgCl2 all the material was incorporated into vesicular membranes of diameters from 20 to 500 nm. Such results signify the dominance of rhodopsin-phospholipid interaction over either inter-rhodopsin or inter-phospholipid interactions in the initial decrease of deoxycholate concentration. The protein-phospholipid membrane was then formed by the two-dimensional aggregation of a rhodopsin-phospholipid complex. The presence of at least a part of the sugar moiety of rhodopsin on the outer surface of the vesicles was shown by using ferritin-labeled concanavalin A.  相似文献   

2.
Plasma membrane vesicles obtained by density gradient centrifugation of bovine adrenal medullary homogenates were analyzed by electron microscopic methods, including negative staining, ultrathin sections and freeze-fracture replicas. Rapid freezing showed the intramembrane structure of plasma membrane vesicles to be distinct from that of other organelle membranes, such as chromaffin granules. Cytochemical demonstration of acetylcholinesterase (EC 3.1.1.7) activity on most membrane profiles confirmed that plasma membrane vesicles are derived predominantly from plasma membranes. About half of the plasma membrane vesicles were smaller than 0.15 micron and almost none larger than 0.55 micron. Practically all were composed of single shells. Most vesicles were impermeable to cytochemical markers of the size of Ruthenium red (Mr 800) and none were permeable to markers larger than 40 kDa. Surface charge probes, concanavalin A binding and endogenous actin decoration with heavy meromyosin indicated that the major fraction of plasma membrane vesicles is oriented right-side-out. A minor population with opposite orientation could also be detected. Isotonic ionic media caused vesicle aggregation in suspensions of plasma membrane vesicles and chromaffin granules. Freeze-fracturing always revealed clusters of membrane-intercalated particles at the sites of contact between aggregated membranes.  相似文献   

3.
Freeze-fracture electron microscopy was used to follow morphological changes induced by Naja mossambica mossambica venom V4II cardiotoxin in rod outer segment membrane preparations. The extent of the morphological changes depended on the purity of the cardiotoxin. Pure cardiotoxin had no detectable effect upon the preparation, but, when contaminated with venom phospholipase A2, let to a rapid disintegration of the membrane vesicles. With trace amounts (up to about 0.5% of the cardiotoxin) of phospholipase A2, the membrane vesicles disintegrated into smooth lamellae and particles in solution. These two components were separated by centrifugation. The pellet, which showed the presence of smooth lamellae and aggregated particles, was composed of unbleached rhodopsin, initial membrane lipids, lysolipids and cardiotoxin. The supernatant, which showed only the presence of dispersed particles, was composed of unbleached rhodopsin, lysolipids and cardiotoxin. With cardiotoxin containing larger amounts of phospholipase A2 (more than 0.5% of the cardiotoxin), membrane vesicles were disintegrated into large aggregates of amorphous material, composed of bleached rhodopsin, initial membrane lipids, lysolipids and cardiotoxin. These results confirm our previous observation on the release of integral membrane proteins from membrane vesicles by the action of cardiotoxin containing traces of phospholipase A2 (Gulik-Krzywicki, T., Balerna, M., Vincent, J.P. and Lazdunski, M. (1981) Biochim. Biophys. Acta 643, 101–114) and suggest its possible use for isolation and purification of integral membrane proteins.  相似文献   

4.
An electrically active event that has been observed in native rod outer segment disk membranes can be reconstituted into membrane vesicles containing purified rhodopsin and defined phospholipids. The magnitude of this charge-transfer event, as estimated using spin-labeled derivatives of hydrophobic ions, is a function of the phospholipid composition. In reconstituted membranes containing rhodopsin and egg phosphatidylcholine, the charge transferred during this event is approximately 10% that measured in the native system. The addition of 20 mol% egg phosphatidylethanolamine, phosphatidic acid or brain phosphatidylserine returns the magnitude of the charge transfer to within 60 to 100% of the native activity. The response seen in the reconstituted membrane system is consistent with a previously proposed interfacial charge-transfer mechanism.  相似文献   

5.
The effect of phospholipid bilayer acyl chain packing free volume on the equilibrium concentration of the form of photolyzed rhodopsin which initiates visual signal transduction, metarhodopsin II (meta II), is examined in reconstituted systems formed from the saturated phospholipid dimyristoylphosphatidylcholine (DMPC) and in the polyunsaturated phospholipid sn-1-palmitoyl-sn-2-arachidonoylphosphatidylcholine (PAPC) with and without 30 mol% cholesterol. The extent of meta II formation is determined from both flash photolysis measurements and rapidly acquired absorbance spectra. Equilibrium and dynamic properties of the lipid bilayer are characterized by the dynamic fluorescence properties of 1,6-diphenyl-1,3,5-hexatriene (DPH). DPH orientational properties are characterized by fv, a parameter which reflects the volume available for probe reorientation in the bilayer, relative to that available in an unhindered, isotropic environment [Straume, M., & Litman, B. J. (1987) Biochemistry 26, 5121-5126]. The metarhodopsin I in equilibrium with meta II equilibrium constant, Keq has a linear relationship with fv for rhodopsin in PAPC vesicles with and without cholesterol as well as for rhodopsin in DMPC vesicles, and these two correlation lines have different slopes. The correlations between Keq and fv in PAPC and DMPC systems are compared with a similar correlation in the native rod outer segment disk membrane and one reported previously in an egg phosphatidylcholine (egg PC) system [Mitchell, D. C., Straume, M., Miller, J. L., & Litman, B. J. (1990) Biochemistry 29, 9143-9149].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The photochemical intermediate metarhodopsin II (meta II; lambda max = 380 nm) is generally identified with rho*, the conformation of photolyzed rhodopsin which binds and activates the visual G-protein, Gt [Emeis, D., & Hoffman, K.P. (1981) FEBS Lett. 136, 201-207]. Purified bovine rhodopsin was incorporated into vesicles consisting of dimyristoylphosphatidylcholine (DMPC), and the rapid formation of a photochemical intermediate absorbing maximally at 380 nm was quantified via both flash photolysis and equilibrium spectral measurements. Kinetic and equilibrium spectral measurements performed above the Tm of DMPC showed that Gt, in the absence of GTP, enhances the production of the 380-nm-absorbing species while reducing the concentration of the 478-nm-absorbing species, metarhodopsin I (meta I), in a manner similar to that observed in the native rod outer segment disk membrane. This Gt-induced shift in the equilibrium concentration of photointermediates indicated that the species with an absorbance maximum at 380 nm was meta II. The presence of rho* in the DMPC bilayer was established via measurements of photolysis-induced exchange of tritiated GMPPNP, a nonhydrolyzable analogue of GTP, on Gt. Above Tm, the metarhodopsin equilibrium is strongly shifted toward meta I relative to the native rod outer segment disk membrane; however, at 37 degrees C, 40% of the photointermediates are in the form of meta II. The formation of meta II above Tm is slowed by a factor of ca. 2 relative to the disk membrane. Below Tm, the equilibrium is shifted still further toward meta I, and meta II forms ca. 7 times slower than in the disk membrane.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Intrinsic membrane proteins represent a large fraction of the proteins produced by living organisms and perform many crucial functions. Structural and functional characterization of membrane proteins generally requires that they be extracted from the native lipid bilayer and solubilized with a small synthetic amphiphile, for example, a detergent. We describe the development of a small molecule with a distinctive amphiphilic architecture, a "tripod amphiphile," that solubilizes both bacteriorhodopsin (BR) and bovine rhodopsin (Rho). The polar portion of this amphiphile contains an amide and an amine-oxide; small variations in this polar segment are found to have profound effects on protein solubilization properties. The optimal tripod amphiphile extracts both BR and Rho from the native membrane environments and maintains each protein in a monomeric native-like form for several weeks after delipidation. Tripod amphiphiles are designed to display greater conformational rigidity than conventional detergents, with the long-range goal of promoting membrane protein crystallization. The results reported here represent an important step toward that ultimate goal.  相似文献   

8.
Injection of DNA into liposomes by bacteriophage lambda   总被引:4,自引:0,他引:4  
Small unilamellar vesicles (75-100 nm diameter) and large liposomes (greater than 1 micron in diameter) were prepared containing the lamB protein, an outer membrane protein of Escherichia coli and Shigella which serves as the receptor for bacteriophage lambda. Bacteriophage were observed to bind to these liposomes and vesicles by their tails and in most cases the heads of the bound bacteriophage appeared empty or partially empty of DNA. The lambda DNA was usually only partially ejected from the bacteriophage head when small unilamellar liposomes were used, presumably because the vesicles are too small to contain all the DNA. The partially ejected DNA was not susceptible to DNase unless the vesicle bilayer was first disrupted suggesting that DNA injection of phage DNA into the vesicle had occurred. After disruption of these vesicles on electron microscope grids, the bacteriophage are seen to have partially empty heads and a small mass of DNA associated with their tails. Using larger liposomes prepared by the fusion of lamB bearing vesicles with polyethylene glycol and n-hexyl bromide, the heads of most of the bound bacteriophage appeared to be completely empty of DNA. Disruption of these preparations on electron microscope grids revealed circular arrays of empty-headed bacteriophage surrounding DNA which had apparently been contained within the intact liposomes. These results indicate that high molecular weight DNA can be entrapped within liposomes with high efficiency by ejection from bacteriophage lambda. The possible use of these DNA-containing liposomes to facilitate gene transfer in eukaryotic cells is discussed.  相似文献   

9.
The solubilization of cholesteryl oleate in sonicated phosphatidylcholine vesicles containing between 0 and 50 mol% cholesterol was studied by 13C-NMR using isotopically enriched [carbonyl-13C]cholesteryl oleate. The carbonyl-13C chemical shift from cholesteryl oleate in the phospholipid/cholesterol bilayer was significantly downfield from that for cholesteryl oleate in an oil phase and the peak area, relative to that of the phospholipid carbonyl, was used to determine bilayer solubility of the ester. The solubility (with respect to phospholipid) in the phospholipid bilayer without cholesterol (2.9 mol%) was only moderately reduced (to 2.3 mol%) at cholesterol levels up to 33 mol% but showed a more marked reduction to 1.4 mol% at 40 mol% cholesterol or 1.2 mol% at 50 mol% cholesterol. Since the vesicles containing 50 mol% cholesterol were larger (520 +/- 152 A diameter) than those with no cholesterol (291 +/- 97 A diameter), we measured the solubility of cholesteryl oleate in large vesicles with no cholesterol, prepared by extrusion through polycarbonate membrane filters, and found it similar to that in small, sonicated vesicles with no cholesterol. Therefore, the larger size of vesicles was not the factor responsible for the decreased cholesteryl oleate solubility at high cholesterol contents. A more direct effect of cholesterol is envisioned where the ester becomes displaced to deeper regions of the bilayer.  相似文献   

10.
N J Ryba  C E Dempsey  A Watts 《Biochemistry》1986,25(17):4818-4825
Rhodopsin, isolated from bovine retinal rod outer segment disk membranes, has been reconstituted into bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine which was deuterated in the terminal methyl groups of the choline polar head group. By use of a mixed detergent system of cholate and octyl glucoside to solubilize the phospholipid and rhodopsin, 15 membrane complexes of predetermined phospholipid to rhodopsin mole ratios of between 350:1 and 65:1 have been produced by exhaustive dialysis and studied by a variety of techniques. Electron micrographs of replicas from freeze-fractured membrane complexes showed that the majority of the lipid, for all rhodopsin:phospholipid ratios, was contained in large bilayer vesicles with diameters in excess of 400 nm. Complexes produced with rhodopsin from frozen retina produced an absorption maximum at 478 nm after photobleaching whereas rhodopsin from fresh retina could be bleached more completely to an absorption maximum at 380 nm. Deuterium nuclear magnetic resonance (NMR) spectra from the lipid head groups of bilayers above the gel to liquid-crystalline phase transition temperature were shown to be sensitive in a systematic way to the presence of rhodopsin which could be bleached to 380 nm. The measured quadrupole splittings, taken as the separation of the turning points of the recorded NMR spectra, decreased from a value of 1.28 kHz for protein-free bilayers to approximately 0.40 kHz for bilayers containing 65 molecules of phospholipid for each rhodopsin at 32 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Proteolysis of rhodopsin in disc membranes of right-side out orientation by thermolysin, papain and St. aureus V8 protease allowed to identify two highly exposed regions of polypeptide chain located on the cytoplasmic membrane surface: carboxyl terminal sequence 321-348 and the fragment 236-241. Incubation with chymotrypsin reveals the third site on the cytoplasmic surface, 146-147, accessible to proteolytic enzymes. Frozen-thawed membranes comprise a mixture of vesicles with normal and inverted orientation. Both thermolytic and chymotryptic digests of rhodopsin in these membranes contain the polypeptide which represents the amino terminal sequence lacking the first 30 amino acid residues. Thus at least 30 amino acids from the N-terminus must protrude into the intradiscal space. One additional site was located on the intradiscal surface: papain digests rhodopsin in the inverted membranes at the position 186-187. Localization of the proteolytic cleavage sites allowed to propose a model for rhodopsin topography in disc membrane: the polypeptide chain traverses the bilayer thickness seven times; each of seven transmembrane segments containing approximately 40 amino acid residues includes a sequence of approximately 30 hydrophobic amino acids; which are probably in close contact with hydrocarbon matrix of the membrane. Hydrophobic sequences are terminated with fragments containing clusters of hydrophilic amino acids, possibly interacting with lipid polar head groups and orienting each segment in the bilayer.  相似文献   

12.
Rod outer segment disk membranes are densely packed with rhodopsin. The recent notion of raft or microdomain structures in disk membranes suggests that the local density of rhodopsin in disk membranes could be much higher than the average density corresponding to the lipid/protein ratio. Little is known about the effect of high packing density of rhodopsin on the structure and function of rhodopsin and lipid membranes. Here we examined the role of rhodopsin packing density on membrane dynamic properties, membrane acyl chain packing, and the structural stability and function of rhodopsin using a combination of biophysical and biochemical techniques. We reconstituted rhodopsin into large unilamellar vesicles consisting of polyunsaturated 18:0,22:6n3PC, which approximates the polyunsaturated nature of phospholipids in disk membranes, with rhodopsin/lipid ratios ranging from 1:422 to 1:40. Our results showed that increased rhodopsin packing density led to reduced membrane dynamics revealed by the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene, increased phospholipid acyl chain packing, and reduced rhodopsin activation, yet it had minimal impact on the structural stability of rhodopsin. These observations imply that densely packed rhodopsin may impede the diffusion and conformational changes of rhodopsin, which could reduce the speed of visual transduction.  相似文献   

13.
Single shelled lecithin vesicles of uniform size (diameter = 300 A) are prepared without sonication by solubilizing unsonicated lecithin dispersions with sodium cholate and removing the detergent from the mixed lecithin - cholate micelles by gel filtration on Sephadex G-50. A homogeneous population of pure lecithin single-bilayer vesicles free of multilamellar structures is obtained. The vesicle diameter is somewhat larger than the average diameter of sonicated vesicles. The curvature of the bilayer seems to be sufficiently large to allow for similar packing densities (areas/molecule) on the outer and inner layer of the bilayer. The morphology and some physico-chemical properties of these vesicles are described and compared with those of sonicated vesicles.  相似文献   

14.
Hen oviduct signal peptidase is an integral membrane protein   总被引:11,自引:0,他引:11  
Membrane preparations from rough endoplasmic reticulum of hen oviduct resemble those of dog pancreas in their capacity to translocate nascent secretory proteins into membrane vesicles present during cell-free protein synthesis. As with the dog membranes, the precursor form of human placental lactogen is transported into the vesicles and processed to the native secretory form by an associated "signal peptidase." The oviduct microsomal membranes glycosylate nascent ovomucoid and ovalbumin in vitro. Attempts to extract the signal peptidase from these membrane vesicles revealed that it is one of the least easily solubilized proteins. A protocol for enrichment of signal peptidase was developed that took advantage of its tight association with these vesicles. These studies indicate that the enzyme has the characteristics of an integral membrane protein which remains active in membrane vesicles even after extraction with low concentrations of detergent that do not dissolve the lipid bilayer or after disruption of membrane vesicles in ice-cold 0.1 M Na2CO3, pH 11.5 (Fujiki, Y., Hubbard, A. L., Fowler, S., and Lazarow, P.B. (1982) J. Cell Biol. 93, 97-102), which releases the majority of membrane-associated proteins. Solubilization requires concentrations of nondenaturing detergents that totally dissolve the lipid bilayer. The detergent-solubilized enzyme retains the activity and the characteristic specificity of the membrane-bound form.  相似文献   

15.
Lind J  Gräslund A  Mäler L 《Biochemistry》2006,45(51):15931-15940
The dynorphins are primarily endogenous ligands to the kappa-opioid receptor, but a variety of non-opioid effects have also been observed, including direct effects on membranes. The peptides are rich in Arg residues, a characteristic feature of the cell-penetrating peptides. In this investigation, we have examined the interaction of the two peptides dynorphin A and dynorphin B with model membranes. A variety of NMR methods, as well as CD and fluorescence spectroscopy, have been used to characterize the structure of the two peptides and, more importantly, the position of the peptides in phospholipid bicelles. Both peptides interact to a large extent with both zwitterionic and partly negatively charged bicelles but are only marginally structured in either solvent. Dynorphin A was found to insert its N-terminus into the bilayer of the bicelle, while dynorphin B was found to reside on the surface of the bilayer. Despite the high degree of similarity in the sequence of the two peptides, it has previously been observed that dynorphin A has membrane perturbing effects and causes leakage of calcein from large unilamellar phospholipid vesicles while dynorphin B has no such effects. Our results provide a possible explanation for the difference in membrane perturbation.  相似文献   

16.
Rhodopsin is an important example of a G protein-coupled receptor (GPCR) in which 11-cis-retinal is the ligand and acts as an inverse agonist. Photolysis of rhodopsin leads to formation of the activated meta II state from its precursor meta I. Various mechanisms have been proposed to explain how the membrane composition affects the meta I-meta II conformational equilibrium in the visual process. For rod disk membranes and recombinant membranes containing rhodopsin, the lipid properties have been discussed in terms of elastic deformation of the bilayer. Here we have investigated the relation of nonlamellar-forming lipids, such as dioleoylphosphatidylethanolamine (DOPE), together with dioleoylphosphatidylcholine (DOPC), to the photochemistry of membrane-bound rhodopsin. We conducted flash photolysis experiments for bovine rhodopsin recombined with DOPE/DOPC mixtures (0:100 to 75:25) as a function of pH to explore the dependence of the photochemical activity on the monolayer curvature free energy of the membrane. It is well-known that DOPC forms bilayers, whereas DOPE has a propensity to adopt the nonlamellar, reverse hexagonal (H(II)) phase. In the case of neutral DOPE/DOPC recombinants, calculations of the membrane surface pH confirmed that an increase in DOPE favored the meta II state. Moreover, doubling the PE headgroup content versus the native rod membranes substituted for the polyunsaturated, docosahexaenoic acyl chains (22:6 omega 3), suggesting rhodopsin function is associated with a balance of forces within the bilayer. The data are interpreted by applying a flexible surface model, in which the meta II state is stabilized by lipids tending to form the H(II) phase, with a negative spontaneous curvature. A simple theory, based on principles of surface chemistry, for coupling the energetics of membrane proteins to material properties of the bilayer lipids is described. For rhodopsin, the free energy balance of the receptor and the lipids is altered by photoisomerization of retinal and involves curvature stress/strain of the membrane (frustration). A new biophysical principle is introduced: matching of the spontaneous curvature of the lipid bilayer to the mean curvature of the lipid/water interface adjacent to the protein, which balances the lipid/protein solvation energy. In this manner, the thermodynamic driving force for the meta I-meta II conformational change of rhodopsin is tightly controlled by mixtures of nonlamellar-forming lipids having distinctive material properties.  相似文献   

17.
The higher-order structure of G protein-coupled receptors (GPCRs) in membranes may involve dimerization and formation of even larger oligomeric complexes. Here, we have investigated the organization of the prototypical GPCR rhodopsin in its native membrane by electron and atomic force microscopy (AFM). Disc membranes from mice were isolated and observed by AFM at room temperature. In all experimental conditions, rhodopsin forms structural dimers organized in paracrystalline arrays. A semi-empirical molecular model for the rhodopsin paracrystal is presented validating our previously reported results. Finally, we compare our model with other currently available models describing the supramolecular structure of GPCRs in the membrane.  相似文献   

18.
The fusion of sea urchin egg secretory vesicles to planar phospholipid bilayer membranes was studied by differential interference contrast (DIC) and fluorescent microscopy, in combination with electrical recordings of membrane conductance. A strong binding of vesicles to protein-free planar membranes was observed in the absence of calcium. Calcium-induced fusion of vesicles was detected using two independent assays: loss of the contents of individual vesicles visible by DIC microscopy: and vesicle content discharge across the planar membrane detected by an increase in the fluorescence of a dye. In both cases, no increase in the membrane conductance was observed unless vesicles were incubated with either Amphotericin B or digitonin prior to applying them to the planar membrane, an indication that native vesicles are devoid of open channels. Pre-incubation of vesicles with n-ethylmaleimide (NEM) abolished calcium-induced fusion. Fusion was also detected when vesicles were osmotically swollen to the point of lysis. In contrast, no fusion of vesicles to planar bilayers was seen when vesicles on plasma membrane (native cortices) were applied to a phospholipid membrane, despite good binding of vesicles to the planar membrane and fusion of vesicles to plasma membrane. It is suggested that cortical vesicles (CVs) have sufficient calcium-sensitive proteins for fusion to lipid membranes, but in native cortices granular fusion sites are oriented toward the plasma membrane. Removal of vesicles from the plasma membrane may allow fusion sites on vesicles access to new membranes.  相似文献   

19.
The fusion of sea urchin egg secretory vesicles to planar phospholipid bilayer membranes was studied by differential interference contrast (DIC) and fluorescent microscopy, in combination with electrical recordings of membrane conductance. A strong binding of vesicles to protein-free planar membranes was observed in the absence of calcium. Calciuminduced fusion of vesicles was detected using two independent assays: loss of the contents of individual vesicles visible by DIC microscopy; and vesicle content discharge across the planar membrane detected by an increase in the fluorescence of a dye. In both cases, no increase in the membrane conductance was observed unless vesicles were incubated with either Amphotericin B or digitonin prior to applying them to the planar membrane, an indication that native vesicles are devoid of open channels. Pre-incubation of vesicles with n-ethylmaleimide (NEM) abolished calcium-induced fusion. Fusion was also detected when vesicles were osmotically swollen to the point of lysis. In contrast, no fusion of vesicles to planar bilayers was seen when vesicles on plasma membrane (native cortices) were applied to a phospholipid membrane, despite good binding of vesicles to the planar membrane and fusion of vesicles to plasma membrane. It is suggested that cortical vesicles (CVs) have sufficient calcium-sensitive proteins for fusion to lipid membranes, but in native cortices granular fusion sites are oriented toward the plasma membrane. Removal of vesicles from the plasma membrane may allow fusion sites on vesicles access to new membranes.  相似文献   

20.
Effect of bilayer membrane curvature of substrate phosphatidylcholine and inhibitor phosphatidylserine on the activity of phosphatidylcholine exchange protein has been studied by measuring transfer of spin-labeled phosphatidylcholine between vesicles, vesicles and liposomes, and between liposomes. The transfer rate between vesicles was more than 100 times larger than that between vesicles and liposomes. The transfer rate between liposomes was still smaller than that between vesicles and liposomes and nearly the same as that in the absence of exchange protein. The markedly enhanced exchange with vesicles was ascribed to the asymmetric packing of phospholipid molecules in the outer layer of the highly curved bilayer membrane. The inhibitory effect of phosphatidylserine was also greatly dependent on the membrane curvature. The vesicles with diameter of 17 nm showed more than 20 times larger inhibitory activity than those with diameter of 22 nm. The inhibitory effect of liposomes was very small. The size dependence was ascribed to stronger binding of the exchange protein to membranes with higher curvatures. The protein-mediated transfer from vesicles to spiculated erythrocyte ghosts was about four times faster than that to cup-shaped ghosts. This was ascribed to enhanced transfer to the highly curved spiculated membrane sites rather than greater mobility of phosphatidylcholine in the spiculated ghost membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号