首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Cbl family of proteins negatively regulate signaling from tyrosine kinase-coupled receptors. Among the three members of this family, only c-Cbl and Cbl-b are expressed in hemopoietic cells. To examine the role of c-Cbl and Cbl-b in Fc epsilon RI signaling, mast cell cultures from wild-type, c-Cbl(-/-), and Cbl-b(-/-) mice were generated. Cell growth rates and cell surface expression of Fc epsilon RI were similar in the different cell populations. Compared with control cells, Cbl-b inactivation resulted in increases in Fc epsilon RI-induced Ca(2+) response and histamine release. Fc epsilon RI-induced tyrosine phosphorylation of total cellular proteins, Syk, and phospholipase C-gamma was also enhanced by Cbl-b deficiency, whereas receptor-initiated phosphorylation of Vav, JNK, and p38 kinases was not changed in these cells. In contrast to Cbl-b, c-Cbl deficiency had no detectable effect on Fc epsilon RI-induced histamine release or on the phosphorylation of total cellular proteins or Syk. The absence of c-Cbl increased the phosphorylation of ERK after receptor stimulation, but resulted in slightly reduced p38 phosphorylation and Ca(2+) response. These results suggest that Cbl-b and c-Cbl have divergent effects on Fc epsilon RI signal transduction and that Cbl-b, but not c-Cbl, functions as a negative regulator of Fc epsilon RI-induced degranulation.  相似文献   

2.
Mast cell degranulation following Fc epsilon RI aggregation is generally believed to be dependent on phosphatidylinositide 3-kinase (PI 3-kinase)-mediated phospholipase C (PLC)gamma activation. Here we report evidence that the PLC gamma 1-dependent pathway of Fc epsilon RI-mediated activation of mast cells is independent of PI 3-kinase activation. In primary cultures of human mast cells, Fc epsilon RI aggregation induced a rapid translocation and phosphorylation of PLC gamma 1, and subsequent inositol trisphosphate (IP3) production, which preceded PI 3-kinase-related signals. In addition, although PI 3-kinase-mediated responses were completely inhibited by wortmannin, even at high concentrations, this PI 3-kinase inhibitor had no effect on parameters of Fc epsilon RI-mediated PLC gamma activation, and had little effect on the initial increase in intracellular calcium levels that correlated with PLC gamma activation. Wortmannin, however, did produce a partial (approximately 50%) concentration-dependent inhibition of Fc epsilon RI-mediated degranulation in human mast cells and a partial inhibition of the later calcium response at higher concentrations. Further studies, conducted in mast cells derived from the bone marrow of mice deficient in the p85 alpha and p85 beta subunits of PI 3-kinase, also revealed no defects in Fc epsilon RI-mediated PLC gamma 1 activation. These data are consistent with the conclusion that the PLC gamma-dependent component of Fc epsilon RI-mediated calcium flux leading to degranulation of mast cells is independent of PI 3-kinase. However, PI 3-kinase may contribute to the later phase of Fc epsilon RI-mediated degranulation in human mast cells.  相似文献   

3.
The protein tyrosine kinase Syk plays an essential role in Fc epsilon RI-mediated histamine release in mast cells by regulating the phosphorylation of other proteins. We investigated the functional role of a putative Syk phosphorylation site, Tyr317. This tyrosine in the linker region of Syk is a possible site for binding by the negative regulator Cbl. Syk with Tyr317 mutated to Phe (Y317F) was expressed in a Syk-negative variant of the RBL-2H3 mast cells. Compared with cells expressing wild-type Syk, expression of the Y317F mutant resulted in an increase in the Fc epsilon RI-mediated tyrosine phosphorylation of phospholipase C-gamma and a dramatic enhancement of histamine release. The in vivo Fc epsilon RI-induced tyrosine phosphorylation of wild-type Syk and that of the Y317F mutant were similar. Although the Fc epsilon RI-induced tyrosine phosphorylation of total cellular proteins was enhanced in the cells expressing the Y317F Syk, the phosphorylation of some other molecules, including the receptor subunits, Vav and mitogen-activated protein kinase, was not increased. The Fc epsilon RI-induced phosphorylation of Cbl was downstream of Syk kinase activity and was unchanged by expression of the Y317F mutation. These data indicate that Tyr317 in the linker region of Syk functions to negatively regulate the signals leading to degranulation.  相似文献   

4.
Antigen-mediated aggregation of the high-affinity receptor for immunoglobulin E, Fc epsilon RI, results in the activation of multiple signaling pathways, leading to the release of mediators of the allergic response. One of the earliest responses to receptor stimulation is the tyrosine phosphorylation of the beta and gamma subunits of Fc epsilon RI and the association of the tyrosine kinase Syk with the phosphorylated receptor. This association is mediated by the SH2 domains of Syk and is believed to be critical for activating signaling pathways resulting in mediator release. To examine the importance of the interaction of Syk with Fc epsilon RI in signaling events following receptor activation, we introduced a protein containing the SH2 domains of Syk into streptolysin O-permeabilized RBL-2H3 cells. The Syk SH2 domains completely inhibited degranulation and leukotriene production following receptor aggregation, and they blocked the increase in protein tyrosine phosphorylation observed after receptor activation. Inhibition was specific for Fc epsilon RI-mediated signaling, since degranulation of cells activated by alternative stimuli was not blocked by the Syk SH2 domains. A protein containing a point mutation in the carboxy-terminal SH2 domain which abolishes phosphotyrosine binding was not inhibitory. In addition, inhibition of degranulation was reversed by pretreatment of the SH2 domains with a tyrosine phosphorylated peptide corresponding to the tyrosine-based activation motif found in the gamma subunit of Fc epsilon RI, the nonphosphorylated peptide had no effect. The association of Syk with the tyrosine-phosphorylated gamma subunit of the activated receptor was blocked by the Syk SH2 domains, and deregulation in cells activated by clustering of Syk directly without Fc epsilon RI aggregation was not affected by the Syk SH2 domains. These results demonstrate that the association of Syk with the activated Fc epsilon RI is critical for both early and late events following receptor activation and confirm the key role Syk plays in signaling through the high-affinity IgE receptor.  相似文献   

5.
The adapter SLP-76 plays an essential role in Fc epsilon RI signaling, since SLP-76(-/-) bone marrow-derived mast cells (BMMC) fail to degranulate and release interleukin-6 (IL-6) following Fc epsilon RI ligation. To define the role of SLP-76 domains and motifs in Fc epsilon RI signaling, SLP-76(-/-) BMMC were retrovirally transduced with SLP-76 and SLP-76 mutants. The SLP-76 N-terminal and Gads binding domains, but not the SH2 domain, were critical for Fc epsilon RI-mediated degranulation and IL-6 secretion, whereas all three domains are essential for T-cell proliferation following T-cell receptor (TCR) ligation. Unexpectedly, the three tyrosine residues in SLP-76 critical for TCR signaling, Y112, Y128, and Y145, were not essential for IL-6 secretion, but were required for degranulation and mitogen-activated protein kinase activation. Furthermore, a Y112/128F SLP-76 mutant, but not a Y145F mutant, strongly reconstituted mast cell degranulation, suggesting a critical role for Y145 in Fc epsilon RI-mediated exocytosis. These results point to important differences in the function of SLP-76 between T cells and mast cells.  相似文献   

6.
The gamma subunit of the high affinity IgE receptor, Fc epsilon RI, is a member of a family of proteins which form disulfide-linked dimers. This family also includes the zeta- and eta-chains of the T cell receptor. Engagement of Fc epsilon RI activates src-related protein tyrosine kinases in basophils and mast cells. However, the role of individual subunits of Fc epsilon RI in this activation is still not known. In an effort to determine the function of Fc epsilon RI-gamma, we used chimeric proteins containing the extracellular and transmembrane domains of the alpha chain of the human interleukin 2 receptor (Tac) and the cytoplasmic domains of either T cell receptor-zeta or Fc epsilon RI-gamma. We show that while cross-linking of the Tac chimeras in the rat basophilic leukemia cell line RBL-2H3 resulted in the tyrosine phosphorylation of a subset of proteins and a portion of the degranulation normally observed after Fc epsilon RI-mediated stimulation, no detectable activation of p56lyn or pp60c-src was observed. In contrast, an apparent transient deactivation of these two kinases was observed after Tac chimera cross-linking. These observations suggest that Fc epsilon RI-gamma is responsible for some, but not all, of the signaling that occurs after engagement of its receptor, and that other receptor subunits may also play important roles in this signaling process.  相似文献   

7.
Degranulation of mast cells and basophils during the allergic response is initiated by Ag-induced cross-linking of cell surface IgE-Fc epsilon RI receptor complexes. To investigate how separation distances between cross-linked receptors affect the competency of signal transduction, we synthesized and characterized bivalent dinitrophenyl (DNP)-modified dsDNA oligomers with rigid spacing lengths of approximately 40-100 A. All of these bivalent ligands effectively bind and cross-link anti-DNP IgE with similar affinities in the nanomolar range. The 13-mer (dsDNA length of 44 A), 15-mer (51 A), and flexible 30-mer ligands stimulate similar amounts of cellular degranulation, about one-third of that with multivalent Ag, whereas the 20-mer (68 A) ligand is less effective and the rigid 30-mer (102 A) ligand is ineffective. Surprisingly, all stimulate tyrosine phosphorylation of Fc epsilon RI beta, Syk, and linker for activation of T cells to similar extents as multivalent Ag at optimal ligand concentrations. The magnitudes of Ca(2+) responses stimulated by these bivalent DNP-dsDNA ligands are small, implicating activation of Ca(2+) mobilization by stimulated tyrosine phosphorylation as a limiting process. The results indicate that structural constraints on cross-linked IgE-Fc epsilon RI complexes imposed by these rigid DNP-dsDNA ligands prevent robust activation of signaling immediately downstream of early tyrosine phosphorylation events. To account for these results, we propose that activation of a key downstream target is limited by the spacing between cross-linked, phosphorylated receptors and their associated components.  相似文献   

8.
9.
High affinity IgE receptor (Fc epsilon RI) signaling after contact with antigen occurs in response to receptor clustering. This paper describes methodology, based on vaccinia virus driven protein expression, for probing signaling pathways and its application to Fc epsilon RI interactions with the lyn and syk tyrosine kinases. Reconstitution of the complete tetrameric Fc epsilon RI receptor, lyn and syk in a non-hematopoietic 'null' cell line is sufficient to reconstruct clustering-controlled receptor tyrosine phosphorylation and activation of syk, without apparent requirement for hematopoietic specific phosphatases. The src family kinase lyn phosphorylates Fc epsilon RI in response to receptor clustering, resulting in syk binding to the phosphorylated Fc epsilon RI. Lyn also participates in the tyrosine phosphorylation and activation of syk in a manner which is dependent on phosphorylated Fc epsilon RI. Using overexpression of active and dominant negative syk proteins in a mast cell line which naturally expresses Fc epsilon RI, we corroborate syk's role downstream of receptor phosphorylation, and demonstrate that syk SH2 domains protect receptor ITAMs from ongoing dephosphorylation. Based on these results, we propose that receptor clustering controls lyn-mediated Fc epsilon RI tyrosine phosphorylation by shifting a balance between phosphorylation and dephosphorylation towards accumulation of tyrosine phosphorylated Fc epsilon RI. Fc epsilon RI tyrosine phosphorylation functions to bring syk into a microenvironment where it becomes tyrosine phosphorylated and activated, thereby allowing clustering to indirectly control syk activity.  相似文献   

10.
The linker region of Syk and ZAP70 tyrosine kinases plays an important role in regulating their function. There are three conserved tyrosines in this linker region; Tyr317 of Syk and its equivalent residue in ZAP70 were previously shown to negatively regulate the function of Syk and ZAP70. Here we studied the roles of the other two tyrosines, Tyr342 and Tyr346 of Syk, in Fc epsilon RI-mediated signaling. Antigen stimulation resulted in Tyr342 phosphorylation in mast cells. Syk with Y342F mutation failed to reconstitute Fc epsilon RI-initiated histamine release. In the Syk Y342F-expressing cells there was dramatically impaired receptor-induced phosphorylation of multiple signaling molecules, including LAT, SLP-76, phospholipase C-gamma2, but not Vav. Compared to wild-type Syk, Y342F Syk had decreased binding to phosphorylated immunoreceptor tyrosine-based activation motifs and reduced kinase activity. Surprisingly, mutation of Tyr346 had much less effect on Fc epsilon RI-dependent mast cell degranulation. An anti-Syk-phospho-346 tyrosine antibody indicated that antigen stimulation induced only a very minor increase in the phosphorylation of this tyrosine. Therefore, Tyr342, but not Tyr346, is critical for regulating Syk in mast cells and the function of these tyrosines in immune receptor signaling appears to be different from what has been previously reported for the equivalent residues of ZAP70.  相似文献   

11.
S Hemmerich  D Sijpkens  I Pecht 《Biochemistry》1991,30(6):1523-1532
Type I Fc epsilon receptor (Fc epsilon RI) mediated Ca2+ uptake and secretion of rat serosal mast cells have been shown to be inhibited by disodium 1,3-bis [(2'-carboxylatochromon-5'-yl) oxy]-2-hydroxypropane (disodium cromoglycate, DSCG), which is widely employed in the treatment of allergic asthma [Foreman et al. (1977) Br. J. Pharmacol. 59, 473P-474P; Cox (1967) Nature (London) 216, 1328-1329]. This drug was also found to modify the protein phosphorylation pattern of these mast cells. [Theoharides et al. (1980) Science 207, 80-82]. We have isolated by affinity chromatography on a water-insoluble cromoglycate-carrying matrix a cytosolic enzyme recently identified as a nucleoside 5'-diphosphate kinase. In order to examine a possible intracellular activity of the drug, a cell-permeant cromoglycate derivative, 1,3-bis [[2'-[[(acetoxymethyl)oxy]carbonyl]chromon-5'- yl]oxy]-2-hydroxypropane [bis(acetoxymethyl) cromoglycate, CG/AM], has been synthesized, and its uptake and effect on the Fc epsilon RI-mediated exocytosis of mast cells was investigated. A tritium-labeled CG/AM derivative, used as radioactive tracer, was found to permeate mucosal mast cells of the rat line RBL-2H3 and accumulate intracellularly up to 40-fold its extracellular concentration following hydrolysis by cytoplasmic hydrolases. A CG/AM dose dependent inhibition of the Fc epsilon RI-induced mediator secretion was observed in RBL-2H3 cells loaded with this compound (I50 approximately 40 microM extracellular CG/AM). A similar dose-dependent inhibition was observed for both the Fc epsilon RI-mediated transient rise in the concentration of cytosolic free Ca2+ ions [( Ca2+]i) and the net Ca2+ influx, as monitored by the fluorescent indicator Quin2 and the radioactive tracer 45Ca2+, respectively. These results clearly show that cell-permeant cromoglycate inhibits the Fc epsilon RI-mediated Ca2+ influx into the cell and further underscore the dominant role of this process in the coupling of stimulus to secretion in RBL cells. Furthermore, with the identification of nucleoside 5'-diphosphate kinase as a potential intracellular target for CG activity, distinct mechanisms of action may be inferred for cell-permeant and nonpermeant forms of CG.  相似文献   

12.
Human mast cells and basophils that express the high-affinity immunoglobulin E (IgE) receptor, Fc epsilon receptor 1 (Fc epsilon RI), have key roles in allergic diseases. Fc epsilon RI cross-linking stimulates the release of allergic mediators. Mast cells and basophils co-express Fc gamma RIIb, a low affinity receptor containing an immunoreceptor tyrosine-based inhibitory motif and whose co-aggregation with Fc epsilon RI can block Fc epsilon RI-mediated reactivity. Here we designed, expressed and tested the human basophil and mast-cell inhibitory function of a novel chimeric fusion protein, whose structure is gamma Hinge-CH gamma 2-CH gamma 3-15aa linker-CH epsilon 2-CH epsilon 3-CH epsilon 4. This Fc gamma Fc epsilon fusion protein was expressed as the predicted 140-kappa D dimer that reacted with anti-human epsilon- and gamma-chain specific antibodies. Fc gamma Fc epsilon bound to both human Fc epsilon RI and Fc gamma RII. It also showed dose- and time-dependent inhibition of antigen-driven IgE-mediated histamine release from fresh human basophils sensitized with IgE directed against NIP (4-hydroxy-3-iodo-5-nitrophenylacetyl). This was associated with altered Syk signaling. The fusion protein also showed increased inhibition of human anti-NP (4-hydroxy-3-nitrophenylacetyl) and anti-dansyl IgE-mediated passive cutaneous anaphylaxis in transgenic mice expressing human Fc epsilon RI alpha. Our results show that this chimeric protein is able to form complexes with both Fc epsilon RI and Fc gamma RII, and inhibit mast-cell and basophil function. This approach, using a Fc gamma Fc epsilon fusion protein to co-aggregate Fc epsilon RI with a receptor containing an immunoreceptor tyrosine-based inhibition motif, has therapeutic potential in IgE- and Fc epsilon RI-mediated diseases.  相似文献   

13.
The low-affinity receptor for IgG, Fc gamma RIIB, is expressed widely in the immune system and functions to attenuate Ag-induced immune responses. In mast cells, coaggregation of Fc gamma RIIB with the high-affinity IgE receptor, Fc epsilon RI, leads to inhibition of Ag-induced degranulation and cytokine production. Fc gamma RIIB inhibitory activity requires a conserved motif within the Fc gamma RIIB cytoplasmic domain termed the immunoreceptor tyrosine-based inhibition motif. When coaggregated with an activating receptor (e.g., Fc epsilon RI, B cell Ag receptor), Fc gamma RIIB is rapidly phosphorylated on tyrosine and recruits the SH2 domain-containing inositol 5-phosphatase (SHIP). However, the mechanisms by which SHIP mediates Fc gamma RIIB inhibitory function in mast cells remain poorly defined. In this report we demonstrate that Fc gamma RIIB coaggregation with Fc epsilon RI stimulates enhanced SHIP tyrosine phosphorylation and association with Shc and p62(dok). Concurrently, enhanced p62(dok) tyrosine phosphorylation and association with RasGAP are observed, suggesting that SHIP may mediate Fc gamma RIIB inhibitory function in mast cells via recruitment of p62(dok) and RasGAP. Supporting this hypothesis, recruitment of p62(dok) to Fc epsilon RI is sufficient to inhibit Fc epsilon RI-induced calcium mobilization and extracellular signal-regulated kinase 1/2 activation. Interestingly, both the amino-terminal pleckstrin homology and phosphotyrosine binding domains and the carboxyl-terminal proline/tyrosine-rich region of p62(dok) can mediate inhibition, suggesting activation of parallel downstream signaling pathways that converge at extracellular signal-regulated kinase 1/2 activation. Finally, studies using gene-ablated mice indicate that p62(dok) is dispensable for Fc gamma RIIB inhibitory signaling in mast cells. Taken together, these data suggest a role for p62(dok) as a mediator of Fc gamma RIIB inhibition of Fc epsilon RI signal transduction in mast cells.  相似文献   

14.
Viktor Bugajev 《FEBS letters》2010,584(24):4949-4955
An interaction of multivalent antigen with its IgE bound to the high-affinity IgE receptor (FcεRI) on the surface of mast cells or basophils initiates a series of signaling events leading to degranulation and release of inflammatory mediators. Earlier studies showed that the first biochemically defined step in this signaling cascade is tyrosine phosphorylation of the FcεRI β subunit by Src family kinase Lyn. However, the processes affecting this step remained elusive. In this review we critically evaluate three current models (transphosphorylation, lipid raft, and our preferential protein tyrosine kinase-protein tyrosine phosphatase interplay model) substantiating three different mechanisms of FcεRI phosphorylation.  相似文献   

15.
16.
Fc(epsilon)RI-induced Ca2+ signaling in mast cells is initiated by activation of cytosolic tyrosine kinases. Here, in vitro phospholipase assays establish that the phosphatidylinositol 3-kinase (PI 3-kinase) lipid product, phosphatidylinositol 3,4,5-triphosphate, further stimulates phospholipase Cgamma2 that has been activated by conformational changes associated with tyrosine phosphorylation or low pH. A microinjection approach is used to directly assess the consequences of inhibiting class IA PI 3-kinases on Ca2+ responses after Fc(epsilon)RI cross-linking in RBL-2H3 cells. Injection of antibodies to the p110beta or p110delta catalytic isoforms of PI 3-kinase, but not antibodies to p110alpha, lengthens the lag time to release of Ca2+ stores and blunts the sustained phase of the calcium response. Ca2+ responses are also inhibited in cells microinjected with recombinant inositol polyphosphate 5-phosphatase I, which degrades inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), or heparin, a competitive inhibitor of the Ins(1,4,5)P3 receptor. This indicates a requirement for Ins(1,4,5)P3 to initiate and sustain Ca2+ responses even when PI 3-kinase is fully active. Antigen-induced cell ruffling, a calcium-independent event, is blocked by injection of p110beta and p110delta antibodies, but not by injection of 5-phosphatase I, heparin, or anti-p110alpha antibodies. These results suggest that the p110beta and p110delta isoforms of PI 3-kinase support Fc(epsilon)RI-induced calcium signaling by modulating Ins(1,4,5)P3 production, not by directly regulating the Ca2+ influx channel.  相似文献   

17.
Tyrosine phosphorylation of several cellular proteins is one of the earliest signaling events induced by cross-linking of the high-affinity receptor for immunoglobulin E (Fc epsilon RI) on mast cells or basophils. Tyrosine kinases activated during this process include the Src family kinases, Lyn, c-Yes, and c-Src, and members of another subfamily, Syk and PTK72 (identical or highly related to Syk). Recently, some of us described two novel tyrosine kinases, Emb and Emt, whose expression was limited to subsets of hematopoietic cells, including mast cells. Emb turned out to be identical to Btk, a gene product defective in human X-linked agammaglobulinemia and in X-linked immunodeficient (xid) mice. Here we report that Fc epsilon RI cross-linking induced rapid phosphorylation on tyrosine, serine, and threonine residues and activation of Btk in mouse bone marrow-derived mast cells. A small fraction of Btk translocated from the cytosol to the membrane compartment following receptor cross-linking. Tyrosine phosphorylation of Btk was not induced by either a Ca2+ ionophore (A23187), phorbol 12-myristate 13-acetate, or a combination of the two reagents. Co-immunoprecipitation between Btk and receptor subunit beta or gamma was not detected. The data collectively suggest that Btk is not associated with Fc epsilon but that its activation takes place prior to protein kinase C activation and plays a novel role in the Fc epsilon RI signaling pathway.  相似文献   

18.
Using large clostridial cytotoxins as tools, the role of Rho GTPases in activation of RBL 2H3 hm1 cells was studied. Clostridium difficile toxin B, which glucosylates Rho, Rac, and Cdc42 and Clostridium sordellii lethal toxin, which glucosylates Rac and Cdc42 but not Rho, inhibited the release of hexosaminidase from RBL cells mediated by the high affinity antigen receptor (FcepsilonRI). Additionally, toxin B and lethal toxin inhibited the intracellular Ca(2+) mobilization induced by FcepsilonRI-stimulation and thapsigargin, mainly by reducing the influx of extracellular Ca(2+). In patch clamp recordings, toxin B and lethal toxin inhibited the calcium release-activated calcium current by about 45%. Calcium release-activated calcium current, the receptor-stimulated Ca(2+) influx, and secretion were inhibited neither by the Rho-ADP-ribosylating C3-fusion toxin C2IN-C3 nor by the actin-ADP-ribosylating Clostridium botulinum C2 toxin. The data indicate that Rac and Cdc42 but not Rho are not only involved in late exocytosis events but are also involved in Ca(2+) mobilization most likely by regulating the Ca(2+) influx through calcium release-activated calcium channels activated via FcepsilonRI receptor in RBL cells.  相似文献   

19.
We have investigated the role of protein tyrosine phosphorylation in transmembrane signaling via the IgG receptors Fc gamma RI and Fc gamma RII in the human monocytic cell line THP-1. Fc gamma RI and Fc gamma RII were selectively engaged using the anti-Fc gamma RI mAb 197 (IgG2a) and the anti-Fc gamma RII mAb IV.3 (IgG2b). Addition to cells of mAb 197, but not addition of IgG2a mAb of irrelevant specificity, resulted in the rapid induction of cytoplasmic protein tyrosine phosphorylation as assessed by antiphosphotyrosine immunoblotting. A similar pattern of tyrosine phosphorylation was induced by mAb IV.3, but not by control IgG2b mAb. The induction of tyrosine phosphorylation by anti-Fc gamma R mAb was not dependent on antibody Fc region-FcR interactions, because tyrosine phosphorylation was also induced by cross-linked anti-Fc gamma RI F(ab')2 fragments and by cross-linked anti-Fc gamma RII Fab fragments. To investigate the relationship of Fc gamma R-induced tyrosine phosphorylation and activation of phospholipase C, which is known to follow Fc gamma R engagement, we assessed the effect of the tyrosine kinase inhibitor herbimycin A on Fc gamma R-induced Ca2+ flux. Herbimycin A strongly inhibited cellular Ca2+ flux induced by mAb 197, but did not inhibit Ca2+ flux induced by aluminum fluoride, suggesting that tyrosine phosphorylation may be important in regulating Fc gamma R-mediated activation of phospholipase C. Consistent with this, mAb 197 induced rapid phosphorylation of the gamma-1 isoform of phospholipase C. Finally, herbimycin A strongly inhibited the induction of TNF-alpha mRNA accumulation by Fc gamma R cross-linking. These results suggest that protein tyrosine phosphorylation may play an important role in the activation of phospholipase C and in the induction of monokine gene expression that follows engagement of Fc gamma R in human monocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号