首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endosulfan has been listed as a persistent organic pollutant, and is frequently found in agricultural environments during monitoring processes owing to its heavy use and persistent characteristics. This study was conducted to understand the effects of endosulfan on the development of zebrafish (Danio rerio) embryos by exposing them to a specific range of endosulfan concentrations. Exposing zebrafish embryos to endosulfan for 96 h yielded no acute toxicity until the concentration reached 1500 μg L?1, whereas malformed zebrafish larvae developed severely curved spines and shortened tails. About 50% of zebrafish larvae were malformed when exposed to 600 μg L?1 of endosulfan. Comparative gene expression using real-time quantitative polymerase chain reaction was assessed using endosulfan-exposed zebrafish embryos. CYP1A and CYP3A were significantly enhanced in response to endosulfan treatment. Two genes, acacb and fasn, encoding acetyl-CoA carboxylase b and fatty acid synthase proteins, respectively, were also up-regulated after treating zebrafish embryos with endosulfan. These genes are also involved in fatty acid biosynthesis. The genes encoding vitellogenin and Hsp70 increased in a concentration-dependent manner in embryos. Finally, biochemical studies showed that acetylcholinesterase activity was reduced, whereas glutathione S-transferase and carboxylesterase activities were enhanced in zebrafish embryos after endosulfan treatment. These biochemical and molecular biological differences might be used for tools to determine contamination of endosulfan in the aquatic environment.  相似文献   

2.
3.
4.
5.
6.
Vertebrate evolution has been largely driven by the duplication of genes that allow for the acquisition of new functions. The ATP-binding cassette (ABC) proteins constitute a large and functionally diverse family of membrane transporters. The members of this multigene family are found in all cellular organisms, most often engaged in the translocation of a wide variety of substrates across lipid membranes. Because of the diverse function of these genes, their large size, and the large number of orthologs, ABC genes represent an excellent tool to study gene family evolution. We have identified ABC proteins from the sea squirt (Ciona intestinalis), zebrafish (Danio rerio), and chicken (Gallus gallus) and, using phylogenetic analysis, identified those genes with a one-to-one orthologous relationship to human ABC proteins. All ABC protein subfamilies found in Ciona and zebrafish correspond to the human subfamilies, with the exception of a single ABCH subfamily gene found only in zebrafish. Multiple gene duplication and deletion events were identified in different lineages, indicating an ongoing process of gene evolution. As many ABC genes are involved in human genetic diseases, and important drug transport phenotypes, the understanding of ABC gene evolution is important to the development of animal models and functional studies.  相似文献   

7.
8.
The homeobox gene Hb9 is expressed selectively by motor neurons (MNs) in the developing CNS. Previous studies have identified a 9-kb 5' fragment of the mouse Hb9 gene that is sufficient to direct gene expression to spinal MNs in vivo. Here, we sought to identify more discrete MN-specifying elements, using homology searches between genomic sequences of evolutionarily distant species. Based on homology screening of the mouse and human Hb9 promoters, we identified a 3.6-kb Hb9 enhancer that proved sufficient to drive MN-specific lacZ expression. We then compared mouse, human, and pufferfish (Fugu rubripes) genomic sequences, and identified a conserved 438-bp sequence, consisting of noncontiguous 313-bp and 125-bp fragments, residing within the 3.6-kb Hb9 enhancer. The zebrafish (Danio rerio) Hb9 genomic region was then found to have two identical copies of the 125-bp sequence, but no counterpart for the 313-bp sequence. Transgenic analysis showed that the 125-bp alone was both necessary and sufficient to direct spinal MN-specific lacZ expression, whereas the 313-bp sequence had no such enhancer activity. Moreover, the 125-bp Hb9 enhancer was found to harbor two Hox/Pbx consensus-binding sequences, mutations of which completely disrupted thoracolumbar Hb9 expression. These data suggest that Hox/Pbx plays a critical role in the segmental specification of spinal MNs. Together, these results indicate that the molecular pathways regulating Hb9 expression are evolutionarily conserved, and that MN-specific gene expression may be directed and achieved using a small 125-bp 5' enhancer.  相似文献   

9.
10.
Neuropeptide Y (NPY) and peptide YY (PYY) are related 36-amino acid peptides. NPY is widely distributed in the nervous system and has several physiological roles. PYY serves as an intestinal hormone as well as a neuropeptide. We report here cloning of the npy and pyy genes in zebrafish (Danio rerio). NPY differs at only one to four amino acid positions from NPY in other jawed vertebrates. Zebrafish PYY differs at three positions from PYY from other fishes and at 10 positions from mammals. In situ hybridization showed that neurons containing NPY mRNA have a widespread distribution in the brain, particularly in the telencephalon, optic tectum, and rhombencephalon. PYY mRNA was found mainly in brainstem neurons, as reported previously for vertebrates as divergent as the rat and the lamprey, suggesting an essential role for PYY in these neurons. PYY mRNA was observed also in the telencephalon. These results were confirmed by immunocytochemistry. As in the human, the npy gene is located adjacent to homeobox (hox) gene cluster A (copy a in zebrafish), whereas the pyy gene is located close to hoxBa. This suggests that npy and pyy arose from a common ancestral gene in a chromosomal duplication event that also involved the hox gene clusters. As zebrafish has seven hox clusters, it is possible that additional NPY family genes exist or have existed. Also, the NPY receptor system seems to be more complex in zebrafish than in mammals, with at least two receptor genes without known mammalian orthologues.  相似文献   

11.
Addiction is a complex maladaptive behavior involving alterations in several neurotransmitter networks. In mammals, psychostimulants trigger elevated extracellular levels of dopamine, which can be modulated by central cholinergic transmission. Which elements of the cholinergic system might be targeted for drug addiction therapies remains unknown. The rewarding properties of drugs of abuse are central for the development of addictive behavior and are most commonly measured by means of the conditioned place preference (CPP) paradigm. We demonstrate here that adult zebrafish show robust CPP induced by the psychostimulant D-amphetamine. We further show that this behavior is dramatically reduced upon genetic impairment of acetylcholinesterase (AChE) function in ache/+ mutants, without involvement of concomitant defects in exploratory activity, learning, and visual performance. Our observations demonstrate that the cholinergic system modulates drug-induced reward in zebrafish, and identify genetically AChE as a promising target for systemic therapies against addiction to psychostimulants. More generally, they validate the zebrafish model to study the effect of developmental mutations on the molecular neurobiology of addiction in vertebrates.  相似文献   

12.
13.
There are approximately 25 000 species in the division Teleostei and most are believed to have arisen during a relatively short period of time ca. 200 Myr ago. The discovery of 'extra' Hox gene clusters in zebrafish (Danio rerio), medaka (Oryzias latipes), and pufferfish (Fugu rubripes), has led to the hypothesis that genome duplication provided the genetic raw material necessary for the teleost radiation. We identified 27 groups of orthologous genes which included one gene from man, mouse and chicken, one or two genes from tetraploid Xenopus and two genes from zebrafish. A genome duplication in the ancestor of teleost fishes is the most parsimonious explanation for the observations that for 15 of these genes, the two zebrafish orthologues are sister sequences in phylogenies that otherwise match the expected organismal tree, the zebrafish gene pairs appear to have been formed at approximately the same time, and are unlinked. Phylogenies of nine genes differ a little from the tree predicted by the fish-specific genome duplication hypothesis: one tree shows a sister sequence relationship for the zebrafish genes but differs slightly from the expected organismal tree and in eight trees, one zebrafish gene is the sister sequence to a clade which includes the second zebrafish gene and orthologues from Xenopus, chicken, mouse and man. For these nine gene trees, deviations from the predictions of the fish-specific genome duplication hypothesis are poorly supported. The two zebrafish orthologues for each of the three remaining genes are tightly linked and are, therefore, unlikely to have been formed during a genome duplication event. We estimated that the unlinked duplicated zebrafish genes are between 300 and 450 Myr. Thus, genome duplication could have provided the genetic raw material for teleost radiation. Alternatively, the loss of different duplicates in different populations (i.e. 'divergent resolution') may have promoted speciation in ancient teleost populations.  相似文献   

14.
We measured the distribution of molecular forms of acetylcholinesterase (AChE) in muscles of a song bird, the zebra finch, and found a pattern similar to those reported in other vertebrates. As in other species, the most rapidly sedimenting form of the enzyme decreases to barely detectable levels following denervation. In the muscles of the syrinx, castration causes a large decrease in AChE activity, but has little or no effect on the relative abundance of AChE forms. This suggests that the number of AChE catalytic sites is changing without affecting the distribution of catalytic sites among the molecular forms. This is in marked contrast with the effect of denervation in the syrinx, which causes changes in the distribution of activity, as well as in total activity.  相似文献   

15.
16.
17.
At present, the zebrafish Danio rerio is the only vertebrate species for which a large-scale mutagenesis effort to identify developmental genes has been reported. Several laboratories are now intensely pursuing the molecular characterization of the genes affected by these mutations. One important criterion for the identity of the mutated gene is the rescue of the mutant phenotype by a wild-type (wt) copy of the gene. Until recently, most rescue attempts were carried out by injecting wt messenger RNA (mRNA) into fertilized eggs. A report by Yan and collaborators shows the partial rescue of floatinghead mutants by injection of genomic fragments cloned in either bacterial artificial chromosomes or bacteriophage lambda vectors. Combined with other ongoing efforts to characterize the zebrafish genome, this approach of mutant rescue opens interesting avenues for a systematic functional analysis of vertebrate genes.  相似文献   

18.
19.
Sequencing of zebrafish (Danio rerio) bacterial artificial chromosome and P1 artificial chromosome genomic clone fragments and of cDNA clones has led to the identification of five new loci coding for beta subunits of proteasomes (PSMB). Together with the four genes identified previously, nine PSMB genes have now been defined in the zebrafish. Six of the nine genes reside in the zebrafish MHC (Mhc) class I region, four of them reside in a single cluster closely associated with TAP2 on a 26-kb long genomic fragment, and two reside at some distance from the fragment. In addition to homologues of the human genes PSMB5 through PSMB9, two new genes, PSMB11 and PSMB12, have been found for which there are no known corresponding genes in humans. The new genes reside in the PSMB cluster in the Mhc. Homology and promoter region analysis suggest that the Mhc-associated genes might be inducible by IFN-gamma. The zebrafish class I region contains representatives of three phylogenetically distinguishable groups of PSMB genes, X, Y, and Z. It is proposed that these genes were present in the ancestral PSMB region before Mhc class I genes became associated with it.  相似文献   

20.
Despite diverging ~365 million years ago, tetrapod limbs and pectoral fins express similar genes that could be regulated by shared regulatory elements. In this study, we set out to analyze the ability of enhancers to maintain tissue specificity in these two divergent structures. We tested 22 human sequences that were previously reported as mouse limb enhancers for their enhancer activity in zebrafish (Danio rerio). Using a zebrafish enhancer assay, we found that 10/22 (45 %) were positive for pectoral fin activity. Analysis of the various criteria that correlated with positive fin activity found that both spatial limb activity and evolutionary conservation are not good predictors of fin enhancer activity. These results suggest that zebrafish enhancer assays may be limited in detecting human limb enhancers, and this limitation does not improve by the use of limb spatial expression or evolutionary conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号