首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adhesive interactions of cells with laminins are mediated by integrins and non-integrin-type receptors such as alpha-dystroglycan and syndecans. Laminins bind to these receptors at the C-terminal globular domain of their alpha chains, but the regions recognized by these receptors have not been mapped precisely. In this study, we sought to locate the binding sites of laminin-10 (alpha5beta1gamma1) for alpha(3)beta(1) and alpha(6)beta(1) integrins and alpha-dystroglycan through the production of a series of recombinant laminin-10 proteins with deletions of the LG (laminin G-like) modules within the globular domain. We found that deletion of the LG4-5 modules did not compromise the binding of laminin-10 to alpha(3)beta(1) and alpha(6)beta(1) integrins but completely abrogated its binding to alpha-dystroglycan. Further deletion up to the LG3 module resulted in loss of its binding to the integrins, underlining the importance of LG3 for integrin binding by laminin-10. When expressed individually as fusion proteins with glutathione S-transferase or the N-terminal 70-kDa region of fibronectin, only LG4 was capable of binding to alpha-dystroglycan, whereas neither LG3 nor any of the other LG modules retained the ability to bind to the integrins. Site-directed mutagenesis of the LG3 and LG4 modules indicated that Asp-3198 in the LG3 module is involved in the integrin binding by laminin-10, whereas multiple basic amino acid residues in the putative loop regions are involved synergistically in the alpha-dystroglycan binding by the LG4 module.  相似文献   

2.
Human laminin-5 fragments, comprising the heterotrimeric C-terminal part of the coiled-coil (CC) domain and the globular (G) domain with defined numbers of LG subdomains, were produced recombinantly. The alpha3' chain with all five LG subdomains was processed proteolytically in a manner similar to the wild-type alpha3 chain. Conditions were established under which the proteolytic cleavage was either inhibited in cell culture or was brought to completion in vitro. The shorter chains of the laminin-5CCG molecule, beta3'and gamma2', produced in a bacterial expression system associated into heterodimers, which then combined spontaneously with the alpha3' chains in vitro to form heterotrimeric laminin-5CCG molecules. Only heterotrimeric laminin-5CCG with at least subdomains LG1-3, but not the single chains, supported binding of soluble alpha3beta1 integrin, proving the coiled-coil domain of laminin-5 to be essential for its interaction with alpha3beta1 integrin. The N-glycosylation sites in wild-type alpha3 chain were mapped by mass spectrometry. Their location in a structural model of the LG domain suggested that large regions on both faces of the LG1 and LG2 domains are inaccessible by other proteins. However, neither heterotrimerization nor alpha3beta1 integrin binding was affected by the loss of N-linked glycoconjugates. After the proteolytic cleavage between the subdomains LG3 and LG4, the LG4-5 tandem domain dissociated from the rest of the G domain. Further, the laminin-5CCG molecule with the alpha3'LG1-3 chain showed an increased binding affinity for alpha3beta1 integrin, indicating that proteolytic processing of laminin-5 influences its interaction with alpha3beta1 integrin.  相似文献   

3.
The laminin alpha1 chain is a subunit of laminin-1, a heterotrimeric basement membrane protein. The LG4-5 module at the C terminus of laminin alpha1 contains major binding sites for heparin, sulfatide, and alpha-dystroglycan and plays a critical role in early embryonic development. We previously identified active synthetic peptides AG73 and EF-1 from the sequence of laminin alpha1 LG4 for binding to syndecan and integrin alpha2beta1, respectively. However, their activity and functional relationship within the laminin-1 and LG4 as well as the functional relation between these sites and alpha-dystroglycan binding sites in LG4 are not clear. To address these questions, we created mutant recombinant LG4 proteins containing alanine substitutions within the AG73 (M1), EF-1 (M2, M3), and alpha-dystroglycan binding sites (M4, M5) and analyzed their activities. We found that recombinant proteins rec-M1 and rec-M5, containing mutations within M1 and M5, respectively, did not bind heparin or lymphoid cell lines expressing syndecans. These results suggest that LG4 binds to heparin and syndecans through M1 and M5. Rec-M1 and rec-M5 reduced fibroblast attachment, whereas mutant rec-M2 and rec-M3 retained cell attachment activity but did not promote cell spreading. Fibroblast attachment to rec-LG4 was inhibited by heparin but not by integrin antibodies. Spreading of fibroblasts on rec-LG4 was inhibited by anti-integrin alpha2 and beta1 but not by anti-integrin alpha1 and alpha6. These results suggest that the M1 and M5 sites are necessary for cell attachment on LG4 through syndecans and that the EF-1 site is for cell spreading activity through integrin alpha2beta1. In contrast, laminin-1-mediated fibroblast attachment and spreading were not inhibited by heparin or anti-integrin alpha2. Our findings indicate that LG4 has a unique function distinct from laminin-1 and suggest that laminin alpha1 LG4-5 may also be produced by a proteolytic cleavage in certain tissues where it exerts its activity.  相似文献   

4.
The G domain of the laminin alpha chains consists of five homologous G modules (LG1-5) and has been implicated in various biological functions. In this study, we identified an active site for cell and heparin binding within the laminin alpha5 G domain using recombinant proteins and synthetic peptides. Recombinant LG4, LG5, and LG4-5 modules were generated using a mammalian expression system. The LG4 and LG4-5 modules were highly active for cell binding, whereas the LG5 module alone showed only weak binding. Heparin inhibited cell binding to the LG4-5 module, whereas no inhibition was observed with EDTA or antibodies against the integrin beta(1) subunit. These results suggest that the LG4-5 module interacts with a cell surface receptor containing heparan sulfate but not with integrins. Solid-phase assays and surface plasmon resonance measurements demonstrated strong binding of the LG4 and LG4-5 modules to heparin with K(D) values in the nanomolar range, whereas a 16-fold lower value was determined for the LG5 module. Treatment with glycosidases demonstrated that N-linked carbohydrates on the LG5 module are complex-type oligosaccharides. The LG4-5 module, devoid of N-linked carbohydrates, exhibited similar binding kinetics toward heparin. Furthermore, cell binding was unaffected by removal of N-linked glycosylation. To localize active sites on the LG4 module, various synthetic peptides were used to compete with binding of the tandem module to heparin and cells. Peptide F4 (AGQWHRVSVRWG) inhibited binding, whereas a scrambled peptide of F4 failed to compete binding. Alanine replacements demonstrated that one arginine residue within F4 was important for cell and heparin binding. Our results suggest a critical role of the LG4 module for heparan sulfate-containing receptor binding within the laminin alpha5 chain.  相似文献   

5.
The interactions of cells with basement membranes are primarily mediated via the engagement of laminins by a group of integrin family proteins, including integrins alpha3beta1, alpha6beta1, alpha7beta1 and alpha6beta4. To explore the ligand-binding specificities of these laminin-binding integrins, we produced these integrins, including two alpha7beta1 splice variants (alpha7X1beta1 and alpha7X2beta1), as soluble recombinant proteins and determined their binding specificities and affinities toward a panel of purified laminin isoforms containing distinct alpha chains. Among the five laminin-binding integrins investigated, alpha3beta1 and alpha6beta4 exhibited a clear specificity for laminin-332 (alpha3beta3gamma2) and laminin-511 (alpha5beta1gamma1)/521 (alpha5beta2gamma1), while integrin alpha6beta1 showed a broad specificity, binding to all laminin isoforms with a preference for laminin-111 (alpha1beta1gamma1), laminin-332 and laminin-511/521. The two alpha7beta1 variants were distinct from alpha3beta1, alpha6beta1 and alpha6beta4 in that they did not bind to laminin-332. alpha7X1beta1 bound to all laminins, except laminin-332, with a preference for laminin-211 (alpha2beta1gamma1)/221 (alpha2beta2gamma1) and laminin-511/521, while alpha7X2beta1 bound preferentially to laminin-111 and laminin-211/221. Laminin-511/521 was the most preferred ligand for all the laminin-binding integrins, except for alpha7X2beta1, whereas laminin-411 was the poorest ligand, capable of binding to alpha6beta1 and alpha7X1beta1 with only modest binding affinities. These comprehensive analyses of the interactions between laminin-binding integrins and a panel of laminins clearly demonstrate that the isoforms of both integrins and laminins differ in their binding specificities and affinities, and provide a molecular basis for better understanding of the adhesive interactions of cells with basement membranes of defined laminin compositions.  相似文献   

6.
Laminin alpha3 chain, a functionally key subunit of laminin-5, contains a large globular module (G module) which consists of a tandem repeat of five homologous LG modules (LG1-5). We previously demonstrated that the LG4 module of laminin alpha3 chain (alpha3 LG4) induces a matrix metalloproteinase-1 (MMP-1) expression through the interaction with syndecans leading to MAPK activation/IL-1beta expression signaling loop (Utani et al., J. Biol. Chem. 278, 34483-34490, 2003). Here, we show that a recombinant alpha3 LG4 and synthetic peptides containing syndecan binding motif induced a cell motility and a MMP-9 expression in ketarinocytes. The synthetic peptide (A3G756)-induced cell migration and MMP-9 upregulation were inhibited by each application of a heparin and an IL-1 receptor antagonist (IL-1RA), suggesting the involvement of syndecans and IL-1beta autocrine. Furthermore, the A3G756-induced cell motility was inhibited by an MMP-9 inhibitor and a neutralizing antibody of MMP-9, indicating induced cell motility was dependent on an MMP-9 activity. Taken these together, laminin-5 alpha3 LG4 module may play an important role in re-epithelialization at tissue remodeling.  相似文献   

7.
The alpha2-laminin subunit contributes to basement membrane functions in muscle, nerve, and other tissues, and mutations in its gene are causes of congenital muscular dystrophy. The alpha2 G-domain modules, mutated in several of these disorders, are thought to mediate different cellular interactions. To analyze these contributions, we expressed recombinant laminin-2 (alpha(2)beta(1)gamma(1)) with LG4-5, LG1-3, and LG1-5 modular deletions. Wild-type and LG4-5 deleted-laminins were isolated from medium intact and cleaved within LG3 by a furin-like convertase. Myoblasts adhered predominantly through LG1-3 while alpha-dystroglycan bound to both LG1-3 and LG4-5. Recombinant laminin stimulated acetylcholine receptor (AChR) clustering; however, clustering was induced only by the proteolytic processed form, even in the absence of LG4-5. Furthermore, clustering required alpha(6)beta(1) integrin and alpha-dystroglycan binding activities available on LG1-3, acting in concert with laminin polymerization. The ability of the modified laminins to mediate basement membrane assembly was also evaluated in embryoid bodies where it was found that both LG1-3 and LG4-5, but not processing, were required. In conclusion, there is a division of labor among LG-modules in which (i) LG4-5 is required for basement membrane assembly but not for AChR clustering, and (ii) laminin-induced AChR clustering requires furin cleavage of LG3 as well as alpha-dystroglycan and alpha(6)beta(1) integrin binding.  相似文献   

8.
Laminins are a family of extracellular matrix glycoproteins involved in cell adhesion and migration. A major obstacle to understanding their structure-function relationships is the lack of small laminin domains capable of replicating integrin-binding, cell-adhesive, and migratory functions of the intact molecule. Here, we show that the recombinant LG3 (rLG3) module (26 kDa) of laminin-5 (Ln-5) alpha(3) chain replicated key Ln-5 activities. rLG3 but not rLG1 or rLG2 supported cell adhesion and migration of at least two distinct cell lines, in an integrin alpha(3)beta(1)-dependent manner. Cell adhesion to rLG3 was regulated by divalent cations and accompanied by cell spreading and tyrosine phosphorylation of FAK focal adhesion kinase. The integrin binding activity of rLG3 was confirmed by rLG3 affinity chromatography of detergent cell lysates, which resulted in specific purification of integrin alpha(3)beta(1). To our knowledge, this is the first report directly demonstrating that a recombinant laminin LG module is an active domain capable of supporting integrin-dependent cell adhesion and migration.  相似文献   

9.
Using a recombinant mini-laminin-332, we showed that truncation of the three C-terminal amino acids of the gamma 2 chain, but not of the C-terminal amino acid of the beta 3 chain, completely abolished alpha 3 beta 1 integrin binding and its cellular functions, such as attachment and spreading. However, a synthetic peptide mimicking the gamma 2 chain C-terminus did not interfere with alpha 3 beta 1 integrin binding or cell adhesion and spreading on laminin-332 as measured by protein interaction assays and electric cell-substrate impedance sensing. Nor was the soluble peptide able to restore the loss of integrin-mediated cell adhesiveness to mini-laminin-332 after deletion of the gamma 2 chain C-terminus. These findings spoke against the hypothesis that the gamma 2 chain C-terminus of laminin-332 is a part of the alpha 3 beta 1 integrin interaction site. In addition, structural studies with electron microscopy showed that truncation of the gamma 2 chain C-terminus opened up the compact supradomain structure of LG1-3 domains. Thus, by inducing or stabilizing an integrin binding-competent conformation or array of the LG1-3 domains, the gamma 2 chain C-terminus plays an indirect but essential role in laminin-332 recognition by alpha 3 beta 1 integrin and, hence, its cellular functions.  相似文献   

10.
The C-terminal G domain of the mouse laminin alpha2 chain consists of five lamin-type G domain (LG) modules (alpha2LG1 to alpha2LG5) and was obtained as several recombinant fragments, corresponding to either individual modules or the tandem arrays alpha2LG1-3 and alpha2LG4-5. These fragments were compared with similar modules from the laminin alpha1 chain and from the C-terminal region of perlecan (PGV) in several binding studies. Major heparin-binding sites were located on the two tandem fragments and the individual alpha2LG1, alpha2LG3 and alpha2LG5 modules. The binding epitope on alpha2LG5 could be localized to a cluster of lysines by site-directed mutagenesis. In the alpha1 chain, however, strong heparin binding was found on alpha1LG4 and not on alpha1LG5. Binding to sulfatides correlated to heparin binding in most but not all cases. Fragments alpha2LG1-3 and alpha2LG4-5 also bound to fibulin-1, fibulin-2 and nidogen-2 with Kd = 13-150 nM. Both tandem fragments, but not the individual modules, bound strongly to alpha-dystroglycan and this interaction was abolished by EDTA but not by high concentrations of heparin and NaCl. The binding of perlecan fragment PGV to alpha-dystroglycan was even stronger and was also not sensitive to heparin. This demonstrated similar binding repertoires for the LG modules of three basement membrane proteins involved in cell-matrix interactions and supramolecular assembly.  相似文献   

11.
Laminins are the major cell-adhesive proteins in the basement membrane, consisting of three subunits termed alpha, beta, and gamma. The putative binding site for integrins has been mapped to the G domain of the alpha chain, although trimerization with beta and gamma chains is necessary for the G domain to exert its integrin binding activity. The mechanism underlying the requirement of beta and gamma chains in integrin binding by laminins remains poorly understood. Here, we show that the C-terminal region of the gamma chain is involved in modulation of the integrin binding activity of laminins. We found that deletion of the C-terminal three but not two amino acids within the gamma1 chain completely abrogated the integrin binding activity of laminin-511. Furthermore, substitution of Gln for Glu-1607, the amino acid residue at the third position from the C terminus of the gamma1 chain, also abolished the integrin binding activity, underscoring the role of Glu-1607 in integrin binding by the laminin. We also found that the conserved Glu residue of the gamma2 chain is necessary for integrin binding by laminin-332, suggesting that the same mechanism operates in the modulation of the integrin binding activity of laminins containing either gamma1 or gamma2 chains. However, the peptide segment modeled after the C-terminal region of gamma1 chain was incapable of either binding to integrin or inhibiting integrin binding by laminin-511, making it unlikely that the Glu residue is directly recognized by integrin. These results, together, indicate a novel mechanism operating in ligand recognition by laminin binding integrins.  相似文献   

12.
Glioma cell infiltration of brain tissue often occurs along the basement membrane (BM) of blood vessels. In the present study we have investigated the role of laminins, major structural components of BMs and strong promoters of cell migration. Immunohistochemical studies of glioma tumor tissue demonstrated expression of alpha2-, alpha3-, alpha4- and alpha5-, but not alpha1-, laminins by the tumor vasculature. In functional assays, alpha3 (Lm-332/laminin-5)- and alpha5 (Lm-511/laminin-10)-laminins strongly promoted migration of all glioma cell lines tested. alpha1-Laminin (Lm-111/laminin-1) displayed lower activity, whereas alpha2 (Lm-211/laminin-2)- and alpha4 (Lm-411/laminin-8)-laminins were practically inactive. Global integrin phenotyping identified alpha3beta1 as the most abundant integrin in all the glioma cell lines, and this laminin-binding integrin exclusively or largely mediate the cell migration. Moreover, pretreatment of U251 glioma cells with blocking antibodies to alpha3beta1 integrin followed by intracerebral injection into nude mice inhibited invasion of the tumor cells into the brain tissue. The cell lines secreted Lm-211, Lm-411 and Lm-511, at different ratios. The results indicate that glioma cells secrete alpha2-, alpha4- and alpha5-laminins and that alpha3- and alpha5-laminins, found in brain vasculature, selectively promote glioma cell migration. They identify alpha3beta1 as the predominant integrin and laminin receptor in glioma cells, and as a brain invasion-mediating integrin.  相似文献   

13.
Angiogenesis is important for wound healing, tumor growth, and metastasis. The laminin alpha4 chain, a component of laminin-8 and -9, is expressed in endothelial cell basement membranes. It mediates endothelial cell adhesion by binding with its receptors such as alphavbeta3 integrin and participates in new blood vessel formation. In this study, we found the recombinant laminin alpha4LG modules (rLG1-3, rLG1, and rLG2) mediate HUVECs adhesion. The attachment of HUVECs to the rLG2 was specifically inhibited by a function-blocking monoclonal antibody LM609 specific for alphavbeta3 integrin. Using deletion mutants of the alpha4LG2 revealed the HUVECs-adhesion site is located in amino acids 1121-1139. A synthetic G(1121-1139) peptide could be attached by HUVECs at same efficiency with the rLG2 and promoted angiogenesis in CAM. In conclusion, we have identified a new alphavbeta3 integrin-interacting peptide within laminin alpha4 G domain. This suggests that G(1121-1139) peptide-containing proteins may perform their biological functions by interacting with alphavbeta3 integrin.  相似文献   

14.
The C-terminal perlecan domain V of about 90 kDa consists of laminin-type G domain modules (LG) (25 kDa) and epidermal growth factor-like modules (EG) (4 kDa) in the tandem arrangement LG1-EG1-EG2-LG2-EG3-EG4-LG3. Several shorter fragments have been prepared by recombinant production in mammalian cells and used to map the single glycosaminoglycan (GAG) substitution site and the binding of several carbohydrate and protein ligands. This identified a Ser3511 residue located in a short link region between EG4 and LG3 as being involved in GAG attachment. Electron microscopy provided evidence that the same substitution exists in tissue forms of perlecan. Heparan sulphate attached to this site was shown to bind to the alpha1LG4 module of laminin-1, indicating a role in basement membrane assembly and cell-matrix interactions. This site is also close to an Asn-Asp bond which is readily cleaved by an endogenous protease that depends on the presence of Asp and the LG2 module. A weak heparin binding site was shown to include the EG2 module, which contains five basic residues. Binding to sulphatides and the alpha-dystroglycan receptor was much stronger and required at least two LG modules. However, single LG modules appear to be sufficient for the interaction with the laminin-nidogen complex, while EG3-4 and some flanking regions are apparently involved in fibulin-2 binding. These observations indicate that a complex modular structure is required for domain V in order to provide a rich repertoire of potential biological functions.  相似文献   

15.
Laminin-5, consisting of the alpha 3, beta 3, and gamma 2 chains, is localized in the skin basement membrane and supports the structural stability of the epidermo-dermal linkage and regulates various cellular functions. The alpha chains of laminins have been shown to have various biological activities. In this study, we identified a sequence of the alpha 3 chain C-terminal globular domain (LG1-LG5 modules) required for both heparin binding and cell adhesion using recombinant proteins and synthetic peptides. We found that the LG3 and LG4 modules have activity for heparin binding and that LG4 has activity for cell adhesion. Studies with synthetic peptides delineated the A3G75aR sequence (NSFMALYLSKGR, residues 1412--1423) within LG4 as a major site for both heparin and cell binding. Substitution mutations in LG4 and A3G75aR identified the Lys and Arg of the A3G75aR sequence as critical for these activities. Cell adhesion to LG4 and A3G75aR was inhibited by heparitinase I treatment of cells, suggesting that cell binding to the A3G75aR site was mediated by cell surface heparan sulfate proteoglycans. We showed by affinity chromatography that syndecan-2 from fibroblasts bound to LG4. Solid-phase assays confirmed that syndecan-2 interacted with the A3G75aR peptide sequence. Stably transfected 293T cells with expression vectors for syndecan-2 and -4, but not glypican-1, specifically adhered to LG4 and A3G75aR. These results indicate that the A3G75aR sequence within the laminin alpha 3 LG4 module is responsible for cell adhesion and suggest that syndecan-2 and -4 mediate this activity.  相似文献   

16.
The laminin-type globular (LG) domains of laminin alpha chains have been implicated in various cellular interactions that are mediated through receptors such as integrins, alpha-dystroglycan, syndecans, and the Lutheran blood group glycoprotein (Lu). Lu, an Ig superfamily transmembrane receptor specific for laminin alpha5, is also known as basal cell adhesion molecule (B-CAM). Although Lu/B-CAM binds to the LG domain of laminin alpha5, the binding site has not been precisely defined. To better delineate this binding site, we produced a series of recombinant laminin trimers containing modified alpha chains, such that all or part of alpha5LG was replaced with analogous segments of human laminin alpha1LG. In solid phase binding assays using a soluble Lu (Lu-Fc) composed of the Lu extracellular domain and human IgG1 Fc, we found that Lu bound to Mr5G3, a recombinant laminin containing alpha5 domains LN through LG3 fused to human laminin alpha1LG4-5. However, Lu/B-CAM did not bind other recombinant laminins containing alpha5LG3 unless alpha5LG1-2 was also present. A recombinant alpha5LG1-3 tandem lacking the laminin coiled coil (LCC) domain did not reproduce the activity of Lu/B-CAM binding. Therefore, proper structure of the alpha5LG1-3 tandem with the LCC domain was essential for the binding of Lu/B-CAM to laminin alpha5. Our results also suggest that the binding site for Lu/B-CAM on laminin alpha5 may overlap with that of integrins alpha3beta1 and alpha6beta1.  相似文献   

17.
The 395-residue proteolytic fragment E3, which comprises the two most C-terminal LG modules of the mouse laminin alpha1 chain, was previously shown to contain major binding sites for heparin, alpha-dystroglycan and sulfatides. The same fragment (alpha1LG4-5) and its individual alpha1LG4 and alpha1LG5 modules have now been obtained by recombinant production in mammalian cells. These fragments were apparently folded into a native form, as shown by circular dichroism, electron microscopy and immunological assays. Fragment alpha1LG4-5 bound about five- to tenfold better to heparin, alpha-dystroglycan and sulfatides than E3. These binding activities could be exclusively localized to the alpha1LG4 module. Side-chain modifications and proteolysis demonstrated that Lys and Arg residues in the C-terminal region of alpha1LG4 are essential for heparin binding. This was confirmed by 14 single to triple point mutations, which identified three non-contiguous basic regions (positions 2766-2770, 2791-2793, 2819-2820) as contributing to both heparin and sulfatide binding. Two of these regions were also recognized by monoclonal antibodies which have previously been shown to inhibit heparin binding. The same three regions and a few additional basic residues also make major contributions to the binding of the cellular receptor alpha-dystroglycan, indicating a larger binding epitope. The data are also consistent with previous findings that heparin competes for alpha-dystroglycan binding.  相似文献   

18.
Collagen receptor integrins alpha 1 beta 1 and alpha 2 beta 1 can selectively recognize different collagen subtypes. Here we show that their alpha I domains can discriminate between laminin isoforms as well: alpha 1I and alpha 2I recognized laminin-111, -211 and -511, whereas their binding to laminin-411 was negligible. Residue Arg-218 in alpha1 was found to be instrumental in high-avidity binding. The gain-of-function mutation E318W makes the alpha 2I domain to adopt the "open" high-affinity conformation, while the wild-type alpha 2I domain favors the "closed" low-affinity conformation. The E318W mutation markedly increased alpha 2I domain binding to the laminins (-111, -211 and -511), leading us to propose that the activation state of the alpha 2 beta 1 integrin defines its role as a laminin receptor. However, neither wild-type nor alpha 2IE318W domain could bind to laminin-411. alpha 2IE318W also bound tighter to all collagens than alpha 2I wild-type, but it showed reduced ability to discriminate between collagens I, IV and IX. The corresponding mutation, E317A, in the alpha 1I domain transformed the domain into a high-avidity binder of collagens I and IV. Thus, our results indicate that conformational activation of integrin alpha 1I and alpha 2I domains leads to high-avidity binding to otherwise disfavored collagen subtypes.  相似文献   

19.
The C-terminal G domains of laminin alpha chains have been implicated in various cellular and other interactions. The G domain of the alpha4 chain was now produced in transfected mammalian cells as two tandem arrays of LG modules, alpha4LG1-3 and alpha4LG4-5. The recombinant fragments were shown to fold into globular structures and could be distinguished by specific antibodies. Both fragments were able to bind to heparin, sulfatides, and the microfibrillar fibulin-1 and fibulin-2. They were, however, poor substrates for cell adhesion and had only a low affinity for the alpha-dystroglycan receptor when compared with the G domains of the laminin alpha1 and alpha2 chains. Yet antibodies to alpha4LG1-3 but not to alpha4LG4-5 clearly inhibited alpha(6)beta(1) integrin-mediated cell adhesion to laminin-8, indicating the participation of alpha4LG1-3 in a cell-adhesive structure of higher complexity. Proteolytic processing within a link region between the alpha4LG3 and alpha4LG4 modules was shown to occur during recombinant production and in endothelial and Schwann cell culture. Cleavage could be attributed to three different peptide bonds and is accompanied by the release of the alpha4LG4-5 segment. Immunohistology demonstrated abundant staining of alpha4LG1-3 in vessel walls, adipose, and perineural tissue. No significant staining was found for alpha4LG4-5, indicating their loss from tissues. Immunogold staining demonstrated an association of the alpha4 chain primarily with microfibrillar regions rather than with basement membranes, while laminin alpha2 chains appear primarily associated with various basement membranes.  相似文献   

20.
Laminins are major cell-adhesive proteins consisting of α, β, and γ chains, in which the three C-terminal globular domains of the α chain (LMα/LG1–3) and the C-terminal tail region of the γ1 chain (LMγ1-tail) are required for binding to integrin. Despite the recent progress on the role of LMγ1-tail in coordinating the metal ion-dependent adhesion site of the integrin β subunit, the mechanism by which LMα/LG1–3 interacts with integrin remains to be elucidated. We found that basic residues on the bottom face of LMα5/LG2 are required for binding laminin-511 to α6β1 integrin. Intermolecular cysteine scanning assays demonstrated that the basic residues in LMα5/LG2 were in contact with the acidic residues within the laminin-binding X1 region of the integrin α subunit in the laminin-integrin complex. These results indicate that LMα5/LG2 interacts directly with the integrin α subunit and comprises a bipartite integrin binding site of laminin-511 with the LMγ1-tail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号