首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
The N-ethylmaleimide-Sensitive Factor (NSF) was one of the initial members of the ATPases Associated with various cellular Activities Plus (AAA(+)) family. In this review, we discuss what is known about the mechanism of NSF action and how that relates to the mechanisms of other AAA(+) proteins. Like other family members, NSF binds to a protein complex (i.e., SNAP-SNARE complex) and utilizes ATP hydrolysis to affect the conformations of that complex. SNAP-SNARE complex disassembly is essential for SNARE recycling and sustained membrane trafficking. NSF is a homo-hexamer; each protomer is composed of an N-terminal domain, NSF-N, and two adjacent AAA-domains, NSF-D1 and NSF-D2. Mutagenesis analysis has established specific roles for many of the structural elements of NSF-D1, the catalytic ATPase domain, and NSF-N, the SNAP-SNARE binding domain. Hydrodynamic analysis of NSF, labeled with (Ni(2+)-NTA)(2)-Cy3, detected conformational differences in NSF, in which the ATP-bound conformation appears more compact than the ADP-bound form. This indicates that NSF undergoes significant conformational changes as it progresses through its ATP-hydrolysis cycle. Incorporating these data, we propose a sequential mechanism by which NSF uses NSF-N and NSF-D1 to disassemble SNAP-SNARE complexes. We also illustrate how analytical centrifugation might be used to study other AAA(+) proteins.  相似文献   

4.
A protein quality control system, consisting of molecular chaperones and proteases, controls the folding status of proteins and prevents the aggregation of misfolded proteins by either refolding or degrading aggregation-prone species. During severe stress conditions this protection system can be overwhelmed by high substrate load, resulting in the formation of protein aggregates. In such emergency situations, Hsp104/ClpB becomes a key player for cell survival, as it has the extraordinary capacity to rescue proteins from an aggregated state in cooperation with an Hsp70 chaperone system. The ring-forming Hsp104/ClpB chaperone belongs to the AAA+ protein superfamily, which in general drives the assembly and disassembly of protein complexes by ATP-dependent remodelling of protein substrates. A disaggregation activity was also recently attributed to other eubacterial AAA+ proteins, while such an activity has not yet been identified in mammalian cells. In this review, we report on new insights into the mechanism of protein disaggregation by AAA+ proteins, suggesting that these chaperones act as molecular crowbars or ratchets.  相似文献   

5.
ClpX mediates ATP-dependent denaturation of specific target proteins and disassembly of protein complexes. Like other AAA + family members, ClpX contains an alphabeta ATPase domain and an alpha-helical C-terminal domain. ClpX proteins with mutations in the C-terminal domain were constructed and screened for disassembly activity in vivo. Seven mutant enzymes with defective phenotypes were purified and characterized. Three of these proteins (L381K, D382K and Y385A) had low activity in disassembly or unfolding assays in vitro. In contrast to wild-type ClpX, substrate binding to these mutants inhibited ATP hydrolysis instead of increasing it. These mutants appear to be defective in a reaction step that engages bound substrate proteins and is required both for enhancement of ATP hydrolysis and for unfolding/disassembly. Some of these side chains form part of the interface between the C-terminal domain of one ClpX subunit and the ATPase domain of an adjacent subunit in the hexamer and appear to be required for communication between adjacent nucleotide binding sites.  相似文献   

6.
The AAA+ family of proteins play fundamental roles in all three kingdoms of life. It is thought that they act as molecular chaperones in aiding the assembly or disassembly of proteins or protein complexes. Recent structural studies on a number of AAA+ family proteins have revealed that they share similar structural elements. These structures provide a possible link between nucleotide binding/hydrolysis and the conformational changes which are then amplified to generate mechanical forces for their specific functions. However, from these individual studies it is far from clear whether AAA+ proteins in general share properties in terms of nucleotide induced conformational changes. In this study, we analyze sequence conservation within the AAA+ family and identify two subfamilies, each with a distinct conserved linker sequence that may transfer conformational changes upon ATP binding/release to movements between subdomains and attached domains. To investigate the relation of these linker sequences to conformational changes, molecular dynamics (MD) simulations on X-ray structures of AAA+ proteins from each subfamily have been performed. These simulations show differences in both the N-linker peptide, subdomain motion, and cooperativity between elements of quaternary structure. Extrapolation of subdomain movements from one MD simulation enables us to produce a structure in close agreement with cryo-EM experiments.  相似文献   

7.
Escherichia coli ClpA, an Hsp100/Clp chaperone and an integral component of the ATP-dependent ClpAP protease, participates in regulatory protein degradation and the dissolution and degradation of protein aggregates. The crystal structure of the ClpA subunit reveals an N-terminal domain with pseudo-twofold symmetry and two AAA(+) modules (D1 and D2) each consisting of a large and a small sub-domain with ADP bound in the sub-domain junction. The N-terminal domain interacts with the D1 domain in a manner similar to adaptor-binding domains of other AAA(+) proteins. D1 and D2 are connected head-to-tail consistent with a cooperative and vectorial translocation of protein substrates. In a planar hexamer model of ClpA, built by assembling ClpA D1 and D2 into homohexameric rings of known structures of AAA(+) modules, the differences in D1-D1 and D2-D2 interfaces correlate with their respective contributions to hexamer stability and ATPase activity.  相似文献   

8.
In mammalian cells, flat Golgi cisternae closely arrange together to form stacks. During mitosis, the stacked structure undergoes a continuous fragmentation process. The generated mitotic Golgi fragments are distributed into the daughter cells, where they are reassembled into new Golgi stacks. In this study, an in vitro assay has been developed using purified proteins and Golgi membranes to reconstitute the Golgi disassembly and reassembly processes. This technique provides a useful tool to delineate the mechanisms underlying the morphological change. There are two processes during Golgi disassembly: unstacking and vesiculation. Unstacking is mediated by two mitotic kinases, cdc2 and plk, which phosphorylate the Golgi stacking protein GRASP65 and thus disrupt the oligomer of this protein. Vesiculation is mediated by the COPI budding machinery ARF1 and the coatomer complex. When treated with a combination of purified kinases, ARF1 and coatomer, the Golgi membranes were completely fragmented into vesicles. After mitosis, there are also two processes in Golgi reassembly: formation of single cisternae by membrane fusion, and restacking. Cisternal membrane fusion requires two AAA ATPases, p97 and NSF (N-ethylmaleimide-sensitive fusion protein), each of which functions together with specific adaptor proteins. Restacking of the newly formed Golgi cisternae requires dephosphorylation of Golgi stacking proteins by the protein phosphatase PP2A. This systematic study revealed the minimal machinery that controls the mitotic Golgi disassembly and reassembly processes.  相似文献   

9.
Two membrane-bound ATP-dependent AAA proteases conduct protein quality surveillance in the inner membrane of mitochondria and control crucial steps during mitochondrial biogenesis. AAA domains of proteolytic subunits are critical for the recognition of non-native membrane proteins which are extracted from the membrane bilayer for proteolysis. Here, we have analysed the role of the conserved loop motif YVG, which has been localized to the central pore in other hexameric AAA(+) ring complexes, for the degradation of membrane proteins by the i-AAA protease Yme1. Proteolytic activity was found to depend on the presence of hydrophobic amino acid residues at position 354 within the pore loop of Yme1. Mutations affected proteolysis in a substrate-specific manner: whereas the degradation of misfolded membrane proteins was impaired at a post-binding step, folded substrate proteins did not interact with mutant Yme1. This reflects most likely deficiencies in the ATP-dependent unfolding of substrate proteins, since we observed similar effects for ATPase-deficient Yme1 mutants. Our findings therefore suggest an essential function of the central pore loop for the ATP-dependent translocation of membrane proteins into a proteolytic cavity formed by AAA proteases.  相似文献   

10.
11.
The PAR proteins are required for polarity and asymmetric localization of cell fate determinants in C. elegans embryos. In addition, several of the PAR proteins are conserved and localized asymmetrically in polarized cells in Drosophila, Xenopus and mammals. We have previously shown that ooc-5 and ooc-3 mutations result in defects in spindle orientation and polarity in early C. elegans embryos. In particular, mutations in these genes affect the re-establishment of PAR protein asymmetry in the P(1) cell of two-cell embryos. We now report that ooc-5 encodes a putative ATPase of the Clp/Hsp100 and AAA superfamilies of proteins, with highest sequence similarity to Torsin proteins; the gene for human Torsin A is mutated in individuals with early-onset torsion dystonia, a neuromuscular disease. Although Clp/Hsp100 and AAA family proteins have roles in diverse cellular activities, many are involved in the assembly or disassembly of proteins or protein complexes; thus, OOC-5 may function as a chaperone. OOC-5 protein co-localizes with a marker of the endoplasmic reticulum in all blastomeres of the early C. elegans embryo, in a pattern indistinguishable from that of OOC-3 protein. Furthermore, OOC-5 localization depends on the normal function of the ooc-3 gene. These results suggest that OOC-3 and OOC-5 function in the secretion of proteins required for the localization of PAR proteins in the P(1) cell, and may have implications for the study of torsion dystonia.  相似文献   

12.
ClpB is a member of the bacterial protein-disaggregating chaperone machinery and belongs to the AAA(+) superfamily of ATPases associated with various cellular activities. The mechanism of ClpB-assisted reactivation of strongly aggregated proteins is unknown and the oligomeric state of ClpB has been under discussion. Sedimentation equilibrium and sedimentation velocity show that, under physiological ionic strength in the absence of nucleotides, ClpB from Escherichia coli undergoes reversible self-association that involves protein concentration-dependent populations of monomers, heptamers, and intermediate-size oligomers. Under low ionic strength conditions, a heptamer becomes the predominant form of ClpB. In contrast, ATP gamma S, a nonhydrolyzable ATP analog, as well as ADP stabilize hexameric ClpB. Consistently, electron microscopy reveals that ring-type oligomers of ClpB in the absence of nucleotides are larger than those in the presence of ATP gamma S. Thus, the binding of nucleotides without hydrolysis of ATP produces a significant change in the self-association equilibria of ClpB: from reactions supporting formation of a heptamer to those supporting a hexamer. Our results show how ClpB and possibly other related AAA(+) proteins can translate nucleotide binding into a major structural transformation and help explain why previously published electron micrographs of some AAA(+) ATPases detected both six- and sevenfold particle symmetry.  相似文献   

13.
In Escherichia coli, the activity of ATP-bound DnaA protein in initiating chromosomal replication is negatively controlled in a replication-coordinated manner. The RIDA (regulatory inactivation of DnaA) system promotes DnaA-ATP hydrolysis to produce the inactivated form DnaA-ADP in a manner depending on the Hda protein and the DNA-loaded form of the beta-sliding clamp, a subunit of the replicase holoenzyme. A highly functional form of Hda was purified and shown to form a homodimer in solution, and two Hda dimers were found to associate with a single clamp molecule. Purified mutant Hda proteins were used in a staged in vitro RIDA system followed by a pull-down assay to show that Hda-clamp binding is a prerequisite for DnaA-ATP hydrolysis and that binding is mediated by an Hda N-terminal motif. Arg(168) in the AAA(+) Box VII motif of Hda plays a role in stable homodimer formation and in DnaA-ATP hydrolysis, but not in clamp binding. Furthermore, the DnaA N-terminal domain is required for the functional interaction of DnaA with the Hda-clamp complex. Single cells contain approximately 50 Hda dimers, consistent with the results of in vitro experiments. These findings and the features of AAA(+) proteins, including DnaA, suggest the following model. DnaA-ATP is hydrolyzed at a binding interface between the AAA(+) domains of DnaA and Hda; the DnaA N-terminal domain supports this interaction; and the interaction of DnaA-ATP with the Hda-clamp complex occurs in a catalytic mode.  相似文献   

14.
We report here the crystal structure of an SF3 DNA helicase, Rep40, from adeno-associated virus 2 (AAV2). We show that AAV2 Rep40 is structurally more similar to the AAA(+) class of cellular proteins than to DNA helicases from other superfamilies. The structure delineates the expected Walker A and B motifs, but also reveals an unexpected "arginine finger" that directly implies the requirement of Rep40 oligomerization for ATP hydrolysis and helicase activity. Further, the Rep40 AAA(+) domain is novel in that it is unimodular as opposed to bimodular. Altogether, the structural connection to AAA(+) proteins defines the general architecture of SF3 DNA helicases, a family that includes simian virus 40 (SV40) T antigen, as well as provides a conceptual framework for understanding the role of Rep proteins during AAV DNA replication, packaging, and site-specific integration.  相似文献   

15.
JH Liao  CI Kuo  YY Huang  YC Lin  YC Lin  CY Yang  WL Wu  WH Chang  YC Liaw  LH Lin  CI Chang  SH Wu 《PloS one》2012,7(7):e40226
Lon proteases are a family of ATP-dependent proteases involved in protein quality control, with a unique proteolytic domain and an AAA(+) (ATPases associated with various cellular activities) module accommodated within a single polypeptide chain. They were classified into two types as either the ubiquitous soluble LonA or membrane-inserted archaeal LonB. In addition to the energy-dependent forms, a number of medically and ecologically important groups of bacteria encode a third type of Lon-like proteins in which the conserved proteolytic domain is fused to a large N-terminal fragment lacking canonical AAA(+) motifs. Here we showed that these Lon-like proteases formed a clade distinct from LonA and LonB. Characterization of one such Lon-like protease from Meiothermus taiwanensis indicated that it formed a hexameric assembly with a hollow chamber similar to LonA/B. The enzyme was devoid of ATPase activity but retained an ability to bind symmetrically six nucleotides per hexamer; accordingly, structure-based alignment suggested possible existence of a non-functional AAA-like domain. The enzyme degraded unstructured or unfolded protein and peptide substrates, but not well-folded proteins, in ATP-independent manner. These results highlight a new type of Lon proteases that may be involved in breakdown of excessive damage or unfolded proteins during stress conditions without consumption of energy.  相似文献   

16.
HSP100 proteins are molecular chaperones that belong to the broader family of AAA+ proteins (ATPases associated with a variety of cellular activities) known to promote protein unfolding, disassembly of protein complexes and translocation of proteins across membranes. The ClpC form of HSP100 is an essential, highly conserved, constitutively expressed protein in cyanobacteria and plant chloroplasts, and yet little is known regarding its specific activity as a molecular chaperone. To address this point, ClpC from the cyanobacterium Synechococcus elongatus (SyClpC) was purified using an Escherichia coli-based overexpression system. Recombinant SyClpC showed basal ATPase activity, similar to that of other types of HSP100 protein in non-photosynthetic organisms but different to ClpC in Bacillus subtilis. SyClpC also displayed distinct intrinsic chaperone activity in vitro, first by preventing aggregation of unfolded polypeptides and second by resolubilizing and refolding aggregated proteins into their native structures. The refolding activity of SyClpC was enhanced 3-fold in the presence of the B. subtilis ClpC adaptor protein MecA. Overall, the distinctive ClpC protein in photosynthetic organisms indeed functions as an independent molecular chaperone, and it is so far unique among HSP100 proteins in having both "holding" and disaggregase chaperone activities without the need of other chaperones or adaptor proteins.  相似文献   

17.
CD8+ T cells are responsible for killing cells of the body that have become infected or oncogenically transformed. In order to do so, effector CD8+ T cells must recognize their cognate antigenic peptide bound to a MHC class I molecule that has been directly presented by the target cell. Due to the rapid nature of antigen presentation, it is believed that antigenic peptides are derived from a subset of newly synthesized proteins which are degraded almost immediately following synthesis and termed Defective Ribosomal Products or DRiPs. We have recently reported on a bioassay which can distinguish antigen presentation of DRiP substrates from other forms of rapidly degraded proteins and found that poly-ubiquitin chain disassembly may be necessary for efficient DRiP presentation. The AAA ATPase p97 protein is necessary for efficient cross-presentation of antigens on MHC class I molecules and plays an important role in extracting mis-folded proteins from the endoplasmic reticulum. Here, we find that genetic ablation or chemical inhibition of p97 does not diminish DRiP antigen presentation to any great extent nor does it alter the levels of MHC class I molecules on the cell surface, despite our observations that p97 inhibition increased the levels of poly-ubiquitinated proteins in the cell. These data demonstrate that inhibiting poly-ubiquitin chain disassembly alone is insufficient to abolish DRiP presentation.  相似文献   

18.
The AAA(+)-ATPases are a family of molecular motors which have been seconded into a plethora of cellular tasks. One subset, the Hsp100 molecular chaperones, are general protein remodellers that help to maintain the integrity of the cellular proteome by means of protein destruction or resurrection. In this review we focus on one family of Hsp100s, the homologous ClpB and Hsp104 molecular chaperones that convey thermotolerance by resolubilising and rescuing proteins from aggregates. We explore how the nucleotide binding and hydrolysis properties at the twelve nucleotide-binding domains of these hexameric rings are coupled to protein disaggregation, highlighting similarities and differences between ClpB and Hsp104.  相似文献   

19.
The AAA+ATPase p97/VCP, helped by adaptor proteins, exerts its essential role in cellular events such as endoplasmic reticulum-associated protein degradation or the reassembly of Golgi, ER and the nuclear envelope after mitosis. Here, we report the three-dimensional cryo-electron microscopy structures at approximately 20 Angstroms resolution in two nucleotide states of the endogenous hexameric p97 in complex with a recombinant p47 trimer, one of the major p97 adaptor proteins involved in membrane fusion. Depending on the nucleotide state, we observe the p47 trimer to be in two distinct arrangements on top of the p97 hexamer. By combining the EM data with NMR and other biophysical measurements, we propose a model of ATP-dependent p97(N) domain motions that lead to a rearrangement of p47 domains, which could result in the disassembly of target protein complexes.  相似文献   

20.
Ring-forming AAA(+) ATPases act in a plethora of cellular processes by remodeling macromolecules. The specificity of individual AAA(+) proteins is achieved by direct or adaptor-mediated association with substrates via distinct recognition domains. We investigated the molecular basis of substrate interaction for Vibrio cholerae ClpV, which disassembles tubular VipA/VipB complexes, an essential step of type VI protein secretion and bacterial virulence. We identified the ClpV recognition site within VipB, showed that productive ClpV-VipB interaction requires the oligomeric state of both proteins, solved the crystal structure of a ClpV N-domain-VipB peptide complex, and verified the interaction surface by mutant analysis. Our results show that the substrate is bound to a hydrophobic groove, which is formed by the addition of a single α-helix to the core N-domain. This helix is absent from homologous N-domains, explaining the unique substrate specificity of ClpV. A limited interaction surface between both proteins accounts for the dramatic increase in binding affinity upon ATP-driven ClpV hexamerization and VipA/VipB tubule assembly by coupling multiple weak interactions. This principle ensures ClpV selectivity toward the VipA/VipB macromolecular complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号