首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A UV-induced sulphite-requiring mutant (sD50) consistently shows mitotic linkage to groups I and VIII in haploids from heterozygous mapping diploids. This linkage was found to be due to a reciprocal translocation T2(I;VIII) which could not be separated from the sulphite requirement in about 100 tested progeny from heterozygous crosses, and both may well have been induced by the same mutational event. T2(I;VIII) is the first case of a reciprocal translocation in Aspergillus which showed meiotic linkages between markers of different linkage groups, and, in addition, involved chromosome arms containing markers suitable for complete mapping by the technique of mitotic recombination in homozygous translocation diploids.-Using various selective markers, haploid segregants and diploid crossovers of all possible types were isolated from homozygous translocation diploids. (1) Haploid segregants showed new linkage relationships in T/T diploids: all available markers of VIII now segregated as a group with the majority of the markers of I, except for the markers of the left tip of I. These formed a separate linkage group and are presumably translocated to VIII. (2) Diploid mitotic crossovers confirmed this information and showed that the orientation of the translocated segments was unchanged. These findings conclusively demonstrate that T2(I;VIII) is a reciprocal translocation due to an exchange of the left tip of group I with the long right arm of group VIII.-Since the position of the break on VIIIR was found to be at sD50 this marker could be used to map the break on IL by meiotic recombination in heterozygous crosses. In addition, such crosses showed reduced recombination around the breaks, so that it was possible to sequence markers which normally are barely linked.  相似文献   

2.
Khush GS  Singh RJ  Sur SC  Librojo AL 《Genetics》1984,107(1):141-163
Twelve primary trisomics of Oryza sativa L. were isolated from the progenies of spontaneous triploids and were transferred by backcrossing to the genetic background of IR36, a widely grown high yielding rice variety. Eleven trisomics can be identified morphologically from one another and from diploids. However, triplo 11 is difficult to distinguish from diploid sibs.—The extra chromosome of each trisomic was identified cytologically at pachytene stage of meiosis, and the chromosomes were numbered according to their length at this stage. The major distinguishing features of each pachytene chromosome were redescribed.—The female transmission rates varied from 15.5% for triplo 1, the longest chromosome, to 43.9% for triplo 12, the shortest chromosome. Seven of the 12 primary trisomics transmitted the extra chromosome through the male. The low level of chromosomal imbalance tolerated by rice and other evidence are interpreted to indicate that this species is a basic diploid.—Genetic segregation for 22 marker genes in the trisomic progenies was studied. Of a possible 264 combinations, involving 22 genes and 12 trisomics, 120 were examined. Marker genes for each of the 12 chromosomes were identified. The results helped establish associations between linkage groups and cytologically identifiable chromosomes of rice for the first time. Relationships between various systems of numbering chromosomes, trisomics, linkage groups and marker genes are described, and a revised linkage map of rice is presented.  相似文献   

3.
Williams KL  Robson GE  Welker DL 《Genetics》1980,95(2):289-304
The first aneuploid strains of Dictyostelium discoideum have been unambiguously characterized, using cytological and genetic analysis. Three independently isolated, but genetically similar, fragment chromosomes have been observed in segregants from diploids formed between haploid strains derived from the NC4 and V12 isolates of D. discoideum. Once generated, the fragment chromosomes, all of which have V12-derived centromeres, can be maintained in a NC4 genetic background. Genetic evidence is consistent with the view that all three fragment chromosomes studied encompass the region from the centromere to the whiA locus of linkage group II and terminate in the interval between whiA and acrA. From cytological studies, one of the fragment chromosomes consists of approximately half of linkage group II.—We observed no deleterious effect on viability or asexual fruiting-body formation in either haploid or diploid strains carrying an additional incomplete chromosome and hence are disomic or trisomic, respectively, for part of linkage group II. The incomplete chromosome is lost at a frequency of 2 to 3% from disomic and trisomic strains, but surprisingly this loss is not increased in the presence of the haploidizing agent, benlate. A new locus (clyA), whose phenotype is altered colony morphology, is assigned to the region of linkage group II encompassed by the fragment chromosome.  相似文献   

4.
A New Mapping Method Employing a Meiotic Rec- Mutant of Yeast   总被引:30,自引:16,他引:30       下载免费PDF全文
A rapid new mapping method has been developed for localizing a dominant or recessive mutation to a particular chromosome of yeast. The procedure utilizes the ability of strains homozygous for the spo11-1 mutation to undergo chromosome segregation without appreciable recombination during sporulation. The level of sporulation in spo11-1/spo11-1 diploids is reduced and asci are often immature or abnormal in appearance; spore viability is less than 1%. The first step of the mapping procedure is the construction of a haploid spo11-1 strain carrying a recessive drug-resistance marker and the unmapped mutation(s). This strain is crossed to a set of three spo11-1 mapping tester strains containing, among them, a recessive marker on each chromosome. The resulting spo11-1/spo11-1 diploids are sporulated and plated on drug-containing medium. Viable meiotic products that express the drug-resistance marker due to chromosome haploidization are selectively recovered. These meiotic products are haploid for most, but generally not all, chromosomes. The level of disomy for individual chromosomes averages 19%. Each of the recessive chromosomal markers is expressed in approximately a third of the drug-resistant segregants. Ninety-eight percent of these segregants show no evidence of intergenic recombination. Thus, two markers located on the same chromosome, but on different homologs, are virtually never expressed in the same drug-resistant clone. The utility of this mapping procedure is demonstrated by confirming the chromosomal location of seven known markers, as well as by the assignment of a previously unmapped mutation, spo12-1, to chromosome VIII. In addition, the analysis of the products of spo11-1 meiosis indicates that several markers previously assigned to either chromosome XIV or chromosome XVII are actually on the same chromosome.  相似文献   

5.
Reed B. Wickner 《Genetics》1976,82(2):273-285
Mutants of the killer plasmid of Saccharomyecs cerevisiae have been isolated that depend upon chromosomal diploidy for the expression of plasmid functions and for replication or maintenance of the plasmid itself. These mutants are not defective in any chromosomal gene needed for expression or replication of the killer plasmid.—Haploids carrying these mutant plasmids (called d for diploid-dependent) are either unable to kill or unable to resist being killed or both and show frequent loss of the plasmid. The wild-type phenotype (K+R+) is restored by mating the d plasmid-carrying strain with either (a) a wild-type sensitive strain which apparently has no killer plasmid; (b) a strain which has been cured of the killer plasmid by growth at elevated temperature; (c) a strain which has been cured of the plasmid by growth in the presence of cycloheximide; (d) a strain which has lost the plasmid because it carries a mutation in a chromosomal mak gene; or (e) a strain of the opposite mating type which carries the same d plasmid and has the same defective phenotype, indicating that the restoration of the normal phenotype is not due to recombination between plasmid genomes or complementation of plasmid or chromosomal genes.—Sporulation of the phenotypically K+R+ diploids formed in matings between d and wild-type nonkiller strains yields tetrads, all four of whose haploid spores are defective for killing or resistance or maintenance of the plasmid or a combination of these. Every defective phenotype may be found among the segregants of a single diploid clone carrying a d plasmid. These defective segregants resume the normal killer phenotype in the diploids formed when a second round of mating is performed, and the segregants from a second round of meiosis and sporulation are again defective.  相似文献   

6.
The killer character of yeast is determined by a 1.4 x 106 molecular weight double-stranded RNA plasmid and at least 12 chromosomal genes. Wild-type strains of yeast that carry this plasmid (killers) secrete a toxin which is lethal only to strains not carrying this plasmid (sensitives). ——— We have isolated 28 independent recessive chromosomal mutants of a killer strain that have lost the ability to secrete an active toxin but remain resistant to the effects of the toxin and continue to carry the complete cytoplasmic killer genome. These mutants define two complementation groups, kex1 and kex2. Kex1 is located on chromosome VII between ade5 and lys5. Kex2 is located on chromosome XIV, but it does not show meiotic linkage to any gene previously located on this chromosome. ——— When the killer plasmid of kex1 or kex2 strains is eliminated by curing with heat or cycloheximide, the strains become sensitive to killing. The mutant phenotype reappears among the meiotic segregants in a cross with a normal killer. Thus, the kex phenotype does not require an alteration of the killer plasmid. ——— Kex1 and kex2 strains each contain near-normal levels of the 1.4 x 106 molecular weight double-stranded RNA, whose presence is correlated with the presence of the killer genome.  相似文献   

7.
The yeast Torulaspora delbrueckii, which propagates as a haploid, was made into a diploid by treatment with dimethyl sulfoxide (DMSO) on the regeneration of protoplasts. The diploid state was stably inherited; the cell volume was three times that of the parent strain and the cellular DNA content was two times that of the parental strain. No essential difference was found between diploids induced by DMSO and those formed through intraspecific protoplast fusion. The diploid strains sporulated fairly well, with their cells converting directly into asci. Random spore analysis revealed that diploids induced through protoplast fusion gave rise to auxotrophic segregants (haploids) with the parental genetic marker or to segregants formed by recombination, while diploids induced by DMSO from a doubly auxotrophic parent gave rise to no recombinant, indicating that it was chromosomally homoallelic in nature. The magnesium level in the protoplast regeneration medium was found to be an important factor for inducing diploid formation. At 0.2 mM magnesium diploids appeared even in the absence of DMSO, while at 2 mM magnesium diploids never appeared unless DMSO was added to the regeneration medium. Evidence is provided that the diploids induced by DMSO or a low magnesium level are due to direct diploidization but not protoplast fusion. UV light irradiation of intact cells (without protoplasts), 10% of which survived, also produced diploids among this surviving population. From these results we conclude that the perturbation of protoplast regeneration or of cell division by the treatments mentioned above somehow induced direct diploidization of T. delbrueckii.  相似文献   

8.
Fu TK  Sears ER 《Genetics》1973,75(2):231-246
Telocentrics for the β arm of chromosome 4A and the long arm of 6B were used as cytological markers for the determination of chiasma frequency. In concomitant studies of recombination, terminal segments of rye and T. umbellulatum chromatin carrying Hp (Hairy peduncle) and Lr9 (Leaf-rust resistance), respectively, marked 4A and 6B. Two temperatures, 21° and 32°, were used for both the 4A and 6B experiments.—Only one chiasma was observed in each heteromorphic bivalent. Because there was a substantial reduction in pairing between diakinesis and metaphase I, all determinations of chiasma frequency were made at diakinesis. In the 21° experiments, agreement was good between genetic recombination and cytological prediction on the basis of the partial chiasmatypy hypothesis that each chiasma represents a crossover. At 32° both chiasma frequency and crossing over, but particularly the latter, were strongly reduced. The fewer crossovers than expected are explained in part by stickiness of chromosomes at the high temperature, sometimes resulting in adjacent chromosomes being wrongly scored as having a chiasma, and in part by premetaphase disjunction of some recombined bivalents and subsequent independent behavior of the two resulting univalents.—Male transmission of the 4A telocentric from the heteromorphic bivalent was unusually high: 51% at 21° and 31% at 32°.  相似文献   

9.
During the process of sporulation, a/α diploids degrade about 50% of their vegetative proteins. This degradation is not sporulation specific, for asporogenous diploids of a/a mating type degrade their vegetative proteins in a fashion similar to that of their a/α counterparts. Diploids lacking carboxypeptidase Y activity, prc1/prc1, show about 80% of wild-type levels of protein degradation, but are unimpaired in the production of normal asci. Diploids lacking proteinase B activity, prb1/prb1, show about 50% of wild-type levels of protein degradation. The effect on degradation of the proteinase B deficiency is epistatic to the degradation deficit attributable to the carboxypeptidase Y deficiency. The prb1 homozygotes undergo meiosis and produce spores, but the asci and, possibly, the spores are abnormal. Diploids homozygous for the pleiotropic pep4–3 mutation show only 30% of the wild-type levels of degradation when exposed to a sporulation regimen, and do not undergo meiosis or sporulation. Neither proteinase B nor carboxypeptidase Y is necessary for germination of spores.——Approximately half of the colonies arising from a/a or α/α diploids exposed to the sporulation regiment that express an initially heterozygous drug-resistance marker (can1) appear to arise from mating-type switches followed by meiosis and sporulation.  相似文献   

10.
A forced heterocaryon was established between two auxotrophic conidial color mutants of Metarhizium anisopliae. From the heterocaryon, a prototrophic somatic diploid was selected which, in turn, yielded somatic segregants. The virulence of the original mutants, the somatic diploid, and the somatic segregants was evaluated on three species of mosquitoes as well as on Ostrinia nubilalis larvae. The virulence of the somatic diploid was comparable to that of the wild-type parental strain while the auxotrophic somatic segregants exhibited virulence approximately equal to that of the auxotrophic components of the heterocaryon. Putative somatic diploids were obtained between morphological mutants of the two species varieties (M. anisopliae var. minor and var. major). The presumptive diploids were avirulent for the insect species to which the parental strains exhibited virulence.  相似文献   

11.
David D. Perkins 《Genetics》1975,80(1):87-105
Heterokaryon (vegetative) incompatibility, governing the fusion of somatic hyphal filaments to form stable heterokaryons, is of interest because of its widespread occurrence in fungi and its bearing on cellular recognition. Conventional investigations of the genetic basis of heterokaryon incompatibility in N. crassa are difficult because in commonly used stocks differences are present at several het loci, all with similar incompatibility phenotypes. This difficulty is overcome by using duplications (partial diploids) that are unlikely to contain more than one het locus. A phenotypically expressed incompatibility reaction occurs when unlike het alleles are present within the same somatic nucleus, and this parallels the heterokaryon incompatibility reaction that occurs when unlike alleles in different haploid nuclei are introduced into the same somatic hypha by mycelial fusion.—Nontandem duplications were used to confirm that the incompatibility reactions in heterokaryons and in duplications are alternate expressions of the same genes. This was demonstrated for three loci which had previously been established by conventional heterokaryon tests—het-e, het-c and mt. These were each obtained in duplications as recombinant meiotic segregants from crosses heterozygous for duplication-generating chromosome rearrangements. The particular method of producing the duplications is irrelevant so long as the incompatibility alleles are heterozygous.—The duplication technique has made it possible to determine easily the het-e and het-c genotypes of numerous laboratory and wild strains of unknown constitution. In laboratory strains both loci are represented simply by two alleles. Analysis of het-c is more complicated in some wild strains, where differences have been demonstrated at one or more additional het loci within the duplication used and multiple allelism is also possible.—The results show that the duplication method can be used to identify and map additional vegetative incompatibility loci, without the necessity of heterokaryon tests.  相似文献   

12.
Meiotic pairing in homothallic S. cerevisiae was studied by tetrad analysis, using strains that were trisomic or tetrasomic for chromosome I. The disomic segregants of these strains produce tetrasomic spore colonies that can be distinguished by their phenotype. Results indicated the existence of preferential pairing and nonrandom assortment of chromosomes at meiosis I. The frequency of crossing over is apparently normal in at least some regions when non-preferred pairing occurs.  相似文献   

13.
In rye (Secale cereale L. cv. "Ailés") the progeny of a cross between a structural heterozygote for a reciprocal translocation (involving the 1R chromosome) and a homozygote for the standard chromosome arrangement were analyzed for the electrophoretic patterns of eight different leaf isozymes and also for their meiotic configuration at metaphase I.——The Got-3 and Mdh-2b loci are linked to each other and also to the reciprocal translocation. The Mdh-2b locus is located in the interstitial segment of the 3Rq chromosome arm, with an estimated distance of 8 cM to the breakpoint. Therefore, the reciprocal translocation involves the 1R and 3R chromosomes.——Also, the Mdh-1 and 6-Pgd-2 loci are linked (16 ± 3 cM) and have been located on the 2Rq arm. Finally, the Per-3 and Per-4 loci are located on the 2Rp chromosome arm at an estimated distance of 26 ± 4 cM.  相似文献   

14.
Clegg MT  Kidwell JF  Horch CR 《Genetics》1980,94(1):217-234
The dynamic behavior of four-locus gametic frequency distributions was studied in five replicate cage populations of Drosophila melanogaster for up to 50 generations. The joint frequency distributions were resolved into gene frequencies and various disequilibrium measures. In addition, F statistics for marginal single-locus genotypic frequency distributions were followed through time. The gene frequency, disequilibrium and F statistics were obtained for four chromosome 3 enzyme marker loci [isocitrate dehydrogenase (3–27.1), esterase-6 (3–36.8), phosphoglucomutase (3–43.4) and esterase-C (3–49.0)]. The initial structure of the experimental populations featured random mating proportions, and two complementary gametic types with respect to the marker loci, thus assuring complete pairwise linkage disequilibrium among the markers.——The experimental results indicate: (1) the between-replicate variance in gene frequency varied substantially among loci, with isocitrate dehydrogenase showing the greatest between-replicate variance, and esterase-C the least. (2) The F statistics initially were strongly negative but decayed to the neighborhood of zero for all marker loci except esterase-C. The rate at which the F statistics approached zero varied among the marker loci, indicating substantial differences in the distribution of selective effects along the chromosome. The centromeric region, marked by esterase-C, shows the strongest selective effects. (3) The rate of decay of linkage disequilibrium was much faster than expected for pairs of neutral loci, averaging 1.82 times the neutral rate over all replicates and pairs of loci. This acceleration, which was observed for all six pairwise combinations of loci, was interpreted as resulting from the interaction between selection and recombination. Our experimental results are consistent with many investigations of linkage disequilibrium in natural populations of Drosophila melanogaster that show little or no disequilibrium among enzyme loci. (4) A fortuitous contamination of two cages revealed an apparent regulatory interaction between the migrant and nonmigrant chromosomes at the esterase-C locus. The migrant chromosomes were very rapidly absorbed into the recipient populations, despite this interaction. This result suggests that the dynamics of migration in populations may be phenomenologically richer than anticipated by simple theory.  相似文献   

15.
A system for genetic analysis in the cellular slime mold P. violaceum has been developed. Two growth-temperature-sensitive mutants were isolated in a haploid strain and used to select rare diploid heterozygotes arising by spontaneous fusion of the haploid cells. A recessive mutations to cycloheximide resistance in one strain enables selection of segregants, which often appear to be aneuploid.—Aggregation-defective (ag- ) mutants having a wide range of phenotypes were isolated in both temperature-sensitive strains after nitrosoguanidine treatment, and complementation tests were performed between pairs of these mutants. Of 380 diploids isolated, 32 showed defective aggregation and were considered to contain 2 noncomplementing ag- mutations. Among noncomplementing mutants interallelic complementation is common. Noncomplementing mutants fall into 4 complementation groups, and those within each complementation group are phenotypically similar. Statistical analysis of the results suggests that the number of complementation units involved in aggregation is about 50.  相似文献   

16.
Several helicases function during repair of double-strand breaks and handling of blocked or stalled replication forks to promote pathways that prevent formation of crossovers. Among these are the Bloom syndrome helicase BLM and the Fanconi anemia group M (FANCM) helicase. To better understand functions of these helicases, we compared phenotypes of Drosophila melanogaster Blm and Fancm mutants. As previously reported for BLM, FANCM has roles in responding to several types of DNA damage in preventing mitotic and meiotic crossovers and in promoting the synthesis-dependent strand annealing pathway for repair of a double-strand gap. In most assays, the phenotype of Fancm mutants is less severe than that of Blm mutants, and the phenotype of Blm Fancm double mutants is more severe than either single mutant, indicating both overlapping and unique functions. It is thought that mitotic crossovers arise when structure-selective nucleases cleave DNA intermediates that would normally be unwound or disassembled by these helicases. When BLM is absent, three nucleases believed to function as Holliday junction resolvases—MUS81-MMS4, MUS312-SLX1, and GEN—become essential. In contrast, no single resolvase is essential in mutants lacking FANCM, although simultaneous loss of GEN and either of the others is lethal in Fancm mutants. Since Fancm mutants can tolerate loss of a single resolvase, we were able to show that spontaneous mitotic crossovers that occur when FANCM is missing are dependent on MUS312 and either MUS81 or SLX1.  相似文献   

17.
Clara S. Moore 《Mammalian genome》2006,17(10):1005-1012
The Ts65Dn mouse is a well-studied model for Down syndrome (DS). The presence of the translocation chromosome T1716 (referred to as T65Dn) produces a trisomic dosage imbalance for over 100 genes on the distal region of mouse Chromosome 16. This dosage imbalance, with more than half of the orthologs of human Chromosome 21 (Hsa21), causes several phenotypes in the trisomic mice that are reminiscent of DS. Careful examination of neonates in a newly established Ts65Dn colony indicated high rates of postnatal lethality. Although the transmission rate for the T65Dn chromosome has been previously reported as 20%–40%, genotyping of all progeny indicates transmission at birth is near the 50% expected with Mendelian transmission and survival. Remarkably, in litters with maternal care that allowed survival of some pups, postnatal lethality occurred primarily in pups that inherited the T65Dn marker chromosome. This selective loss within 48 h of birth reduced the transmission of the marker chromosome from 49% at birth to 34% at weaning. Gross morphologic examination revealed cardiovascular anomalies, i.e., right aortic arch accompanied by septal defects, in 8.3% of the trisomic newborn cadavers examined. This is an intriguing finding because the orthologs of the DiGeorge region of HSA22, which are posited to contribute to the aortic arch abnormalities seen in trisomy 16 mice, are not triplicated in Ts65Dn mice. These new observations suggest that the Ts65Dn mouse models DS not only in its previously described phenotypes but also with elevated postnatal lethality and congenital heart malformations that may contribute to mortality.  相似文献   

18.
Suppressors of ICR-induced mutations that exhibit behavior similar to bacterial frameshift suppressors have been identified in the yeast Saccharomyces cerevisiae. The yeast suppressors have been divided into two groups. One of these groups (Group II: SUF1, SUF3, SUF4, SUF5 and SUF6) appears to include a set of informational suppressors in which the vehicle of suppression is glycyl-tRNA. Some of the genetic properties of Group II suppressors are described in this communication.——Corevertants of the Group II frameshift mutations his4–519 and leu2–3 have been characterized to determine the spectrum of reversion events induced by the frameshift mutagen ICR-170. Seventythree ICR-induced corevertants were analyzed. With the exception of one corevertant, which carried an allele of SUF1, all carried alleles of SUF3 or SUF5. SUF1, SUF3, SUF4 and SUF6 were represented among spontaneous and UV-induced corevertants. In the course of these experiments one of the suppressors was mapped. SUF5, the probable structural gene for tRNAGLY1, is located between ade2 and ade9 on chromosome XV.——SUF1, SUF4 and SUF6 have novel properties and comprise a distinct subset of suppressors. Although these suppressors show no genetic linkage to each other, they share several common features including lethality in haploid pairwise combinations, reduced tRNAGLY3 isoacceptor activity and increased efficiency of suppression in strains carrying the cytoplasmically inherited [PSI] element. In addition, strains carrying SUF1, SUF4 or SUF6 are phenotypically unstable and give rise to mitotic Suf+ segregants at high frequency. These segregants invariably contain a linked, second-site mutation that maps in or adjacent to the suppressor gene itself. Strains carrying any of these suppressors also give rise to mitotic segregants that exhibit enhanced efficiency of suppression; mutations responsible for this phenotype map at two loci, upf1 and upf2. These genes show no genetic linkage to any of the Group II suppressors.——Methods that permit positive selection for mutants with decreased or enhanced efficiency of suppression have been devised in order to examine large numbers of variants. The importance of these interacting mutants is underscored by their potential utility in studying suppressor function at the molecular level.  相似文献   

19.
A numbers studies had been reported that the polymorphisms in the Interleukin 4 (IL-4) and Interleukin 13 (IL-13) genes were associated with susceptibility to asthma. However, the results were inconsistent and inconclusive. We carried out a meta-analysis of case–control genetic association studies to assess whether the combined data showed this association by using a genetic model-free approach. Thirty studies (total 12,781 asthma and 11,500 controls) for the IL-4 C-33T and C-589T, IL-13 C-1112T and G+2044A with asthma were included in the meta-analysis. The results indicated that there were an association between the IL-4 C-33T (P = 0.006) and C-589T (P = 0.04), IL-13 C-1112T (P = 0.002) and G+2044A (P = 0.04) and susceptibility to asthma. And the definition of asthma subgroup meta-analysis demonstrates that the IL-4 C-33T is not associated with nonatopic or atopic, and IL-4 C-589T and IL-13 C-1112T polymorphisms are not associated with atopic. In the ethnicity subgroup meta-analysis, the IL-4 ?589T (P = 0.003) and the IL-13 ?1112T (P < 0.00001) alleles are associated with asthma among Caucasian, but not on the IL-13 +2044A allele. In conclusion, IL-4 C-33T and C-589T, IL-13 C-1112T and G+2044A could be proposed as asthma susceptible SNPs. Further investigation in larger studies and meta-analysis is required.  相似文献   

20.
Ghidoni A 《Genetics》1975,81(2):253-262
The effect of an additional chromosome 6 upon recombination in chromosome 9 was investigated in maize. Trisomic 6 plants and their disomic sibs, heterozygous for three loci of chromosome 9 (yg, sh and wx), were testcrossed, and recombination in the regions yg–sh and sh–wx was analyzed. Single exchanges in the sh–wx region and double exchanges were more frequent in trisomics, particularly in female flowers.——In reciprocal testcrosses, higher male crossover rates were found for the sh–wx region, and the difference was enhanced in trisomic 6 plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号