首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
In this paper we derive spatially explicit equations to describe a stochastic invasion process. Parents are assumed to produce a random number of offspring which then disperse according to a spatial redistribution kernel. Equations for population moments, such as expected density and covariance averaged over an ensemble of identical stochastic processes, take the form of deterministic integro-difference equations. These equations describe the spatial spread of population moments as the invasion progresses. We use the second order moments to analyse two basic properties of the invasion. The first property is permanence of form in the correlation structure of the wave. Analysis of the asymptotic form of the invasion wave shows that either (i) the covariance in the leading edge of the wave of invasion asymptotically achieves a permanence of form with a characteristic structure described by an unchanging spatial correlation function, or (ii) the leading edge of the wave has no asymptotic permanence of form with the length scales of spatial correlations continually increasing over time. Which of these two outcomes pertains is governed by a single statistic, φ which depends upon the shape of the dispersal kernel and the net reproductive number. The second property of the invasion is its patchy structure. Patchiness, defined in terms of spatial correlations on separate short (within patch) and long (between patch) spatial scales, is linked to the dispersal kernel. Analysis shows how a leptokurtic dispersal kernel gives rise to patchiness in spread of a population. Received: 11 August 1997 / Revised version: 22 September 1998 / Published online: 4 October 2000  相似文献   

2.
We consider the impact of increased stochastic fluctuations on the expected density of an unstructured population evolving according to a regular diffusion process subject to a concave expected growth rate. By relying on the flow nature of the solutions of stochastic differential equations and Girsanovs theorem, we demonstrate that typically increased volatility decreases the expected future population density. As a consequence, we are able to characterize the sensitivity of the expected population density with respect to changes in the diffusion coefficient measuring the size of the stochastic fluctuations. We provide both qualitative and quantitative information about the consequences of a mis-specified volatility structure and, especially, of a deterministic approximation to stochastic population growth. We also consider the effect of uncertainty in the initial density and demonstrate that the sign of the relationship between the expected population density and initial uncertainty is unambiguosly negative. Received: 15 February 1999 / Revised version: 29 September 1999 / Published online: 5 May 2000  相似文献   

3.
In this paper, we consider a model of kleptoparasitism amongst a small group of individuals, where the state of the population is described by the distribution of its individuals over three specific types of behaviour (handling, searching for or fighting over, food). The model used is based upon earlier work which considered an equivalent deterministic model relating to large, effectively infinite, populations. We find explicit equations for the probability of the population being in each state. For any reasonably sized population, the number of possible states, and hence the number of equations, is large. These equations are used to find a set of equations for the means, variances, covariances and higher moments for the number of individuals performing each type of behaviour. Given the fixed population size, there are five moments of order one or two (two means, two variances and a covariance). A normal approximation is used to find a set of equations for these five principal moments. The results of our model are then analysed numerically, with the exact solutions, the normal approximation and the deterministic infinite population model compared. It is found that the original deterministic models approximate the stochastic model well in most situations, but that the normal approximations are better, proving to be good approximations to the exact distribution, which can greatly reduce computing time.  相似文献   

4.
It is well-known that highly pathogenic avian influenza (HPAI) strains can arise from low pathogenic strains (LPAI) during epidemics in poultry farms. Despite this, the possibility that partial cross-immunity triggered by previous exposure to LPAI viruses may reduce the pathogenicity of HPAI and thus enhance its persistence has been generally overlooked in both empirical and theoretical work on avian influenza. We propose a simple mathematical model to investigate the interacting dynamics of HPAI and LPAI strains of avian influenza in small-scale poultry farms. Through the analysis of a deterministic ordinary differential equations model, we show that: (1) for a wide range of realistic model parameters, the reduction in pathogenicity yielded by previous LPAI infection might allow an HPAI strain that would not be able to persist in a host population when alone (ℜ0 < 1) to invade and co-exist in the host population along with the LPAI strain and (2) the coexistence between the HPAI and LPAI strains may be characterized by multiyear periodicity. Because simulations showed that troughs between epidemics can be deep, with only a fraction of existing flocks infected by the HPAI strain, we also ran an individual-based stochastic version of the dynamical model to analyze the potential for natural fade-out of the HPAI strain. The analysis of the stochastic model confirms the prediction that previous exposure to a LPAI strain can significantly increase the duration of the epidemics by an HPAI strain before it fades from the population.  相似文献   

5.
We live in a time where climate models predict future increases in environmental variability and biological invasions are becoming increasingly frequent. A key to developing effective responses to biological invasions in increasingly variable environments will be estimates of their rates of spatial spread and the associated uncertainty of these estimates. Using stochastic, stage-structured, integrodifference equation models, we show analytically that invasion speeds are asymptotically normally distributed with a variance that decreases in time. We apply our methods to a simple juvenile–adult model with stochastic variation in reproduction and an illustrative example with published data for the perennial herb, Calathea ovandensis. These examples buttressed by additional analysis reveal that increased variability in vital rates simultaneously slow down invasions yet generate greater uncertainty about rates of spatial spread. Moreover, while temporal autocorrelations in vital rates inflate variability in invasion speeds, the effect of these autocorrelations on the average invasion speed can be positive or negative depending on life history traits and how well vital rates “remember” the past.  相似文献   

6.
Empirical evidence shows that childhood diseases persist in large communities whereas in smaller communities the epidemic goes extinct (and is later reintroduced by immigration). The present paper treats a stochastic model describing the spread of an infectious disease giving life-long immunity, in a community where individuals die and new individuals are born. The time to extinction of the disease starting in quasi-stationarity (conditional on non-extinction) is exponentially distributed. As the population size grows the epidemic process converges to a diffusion process. Properties of the limiting diffusion are used to obtain an approximate expression for τ, the mean-parameter in the exponential distribution of the time to extinction for the finite population. The expression is used to study how τ depends on the community size but also on certain properties of the disease/community: the basic reproduction number and the means and variances of the latency period, infectious period and life-length. Effects of introducing a vaccination program are also discussed as is the notion of the critical community size, defined as the size which distinguishes between the two qualitatively different behaviours. Received: 14 February 2000 / Revised version: 5 June 2000 / Published online: 24 November 2000  相似文献   

7.
Understanding under what conditions interacting populations, whether they be plants, animals, or viral particles, coexist is a question of theoretical and practical importance in population biology. Both biotic interactions and environmental fluctuations are key factors that can facilitate or disrupt coexistence. To better understand this interplay between these deterministic and stochastic forces, we develop a mathematical theory extending the nonlinear theory of permanence for deterministic systems to stochastic difference and differential equations. Our condition for coexistence requires that there is a fixed set of weights associated with the interacting populations and this weighted combination of populations’ invasion rates is positive for any (ergodic) stationary distribution associated with a subcollection of populations. Here, an invasion rate corresponds to an average per-capita growth rate along a stationary distribution. When this condition holds and there is sufficient noise in the system, we show that the populations approach a unique positive stationary distribution. Moreover, we show that our coexistence criterion is robust to small perturbations of the model functions. Using this theory, we illustrate that (i) environmental noise enhances or inhibits coexistence in communities with rock-paper-scissor dynamics depending on correlations between interspecific demographic rates, (ii) stochastic variation in mortality rates has no effect on the coexistence criteria for discrete-time Lotka–Volterra communities, and (iii) random forcing can promote genetic diversity in the presence of exploitative interactions.
One day is fine, the next is black.—The Clash  相似文献   

8.
The dynamics of interacting ecological populations results from the interplay between various deterministic and stochastic factors and this is particularly the case for the phenomenon of biological invasion. Whereas the spread of invasive species via propagation of a population front was shown to appear as a result of deterministic processes, the spread via formation, interaction and movement of separate patches has been recently attributed to the influence of environmental stochasticity. An appropriate understanding of the comparative importance of deterministic and stochastic mechanisms is still lacking, however. In this paper, we show that the patchy invasion appears to be possible also in a fully deterministic predator–prey model as a result of the Allee effect.  相似文献   

9.
This is a mathematical study of the interactions between non-linear feedback (density dependence) and uncorrelated random noise in the dynamics of unstructured populations. The stochastic non-linear dynamics are generally complex, even when the deterministic skeleton possesses a stable equilibrium. There are three critical factors of the stochastic non-linear dynamics; whether the intrinsic population growth rate (lambda) is smaller than, equal to, or greater than 1; the pattern of density dependence at very low and very high densities; and whether the noise distribution has exponential moments or not. If lambda < 1, the population process is generally transient with escape towards extinction. When lambda > or = 1, our quantitative analysis of stochastic non-linear dynamics focuses on characterizing the time spent by the population at very low density (rarity), or at high abundance (commonness), or in extreme states (rarity or commonness). When lambda >1 and density dependence is strong at high density, the population process is recurrent: any range of density is reached (almost surely) in finite time. The law of time to escape from extremes has a heavy, polynomial tail that we compute precisely, which contrasts with the thin tail of the laws of rarity and commonness. Thus, even when lambda is close to one, the population will persistently experience wide fluctuations between states of rarity and commonness. When lambda = 1 and density dependence is weak at low density, rarity follows a universal power law with exponent -3/2. We provide some mathematical support for the numerical conjecture [Ferriere, R., Cazelles, B., 1999. Universal power laws govern intermittent rarity in communities of interacting species. Ecology 80, 1505-1521.] that the -3/2 power law generally approximates the law of rarity of 'weakly invading' species with lambda values close to one. Some preliminary results for the dynamics of multispecific systems are presented.  相似文献   

10.
11.
In treating the Volterra-Verhulst prey-predator system with time dependent coefficients, we ask how far this deterministic system represents or approximates the dynamics of the population evolving in a realistic environment which is stochastic in nature. We consider a stochastic system withsmall Gaussian noise type fluctuations. It is shown that the higher moments of the deviation of the deterministic system from the stochastic approach zero as the strength δ of the perturbation decays to zero. For any δ>0 and allT>0, ε>0, the sample population paths that stay within ε distance from the deterministic path during [0,T] form a collection of positive probability. In comparing the stationary distributions of the two systems, we show that the weak limits of those of the stochastic system form a subset of those of the deterministic system. This is in analogy with a result of May connected with the stability of the two systems. Plant and rodent populations possess periodic parameters andexhibit periodic behaivor. We establish theoretically this periodicity under periodicity conditions on the coefficients and perturbing random forces. We also establish a central limit property for the prey-predator system.  相似文献   

12.
Deterministic extinction effect of parasites on host populations   总被引:2,自引:0,他引:2  
 Experimental studies have shown that parasites can reduce host density and even drive host population to extinction. Conventional mathematical models for parasite-host interactions, while can address the host density reduction scenario, fail to explain such deterministic extinction phenomena. In order to understand the parasite induced host extinction, Ebert et al. (2000) formulated a plausible but ad hoc epidemiological microparasite model and its stochastic variation. The deterministic model, resembles a simple SI type model, predicts the existence of a globally attractive positive steady state. Their simulation of the stochastic model indicates that extinction of host is a likely outcome in some parameter regions. A careful examination of their ad hoc model suggests an alternative and plausible model assumption. With this modification, we show that the revised parasite-host model can exhibit the observed parasite induced host extinction. This finding strengthens and complements that of Ebert et al. (2000), since all continuous models are likely break down when all population densities are small. This extinction dynamics resembles that of ratio-dependent predator-prey models. We report here a complete global study of the revised parasite-host model. Biological implications and limitations of our findings are also presented. Received: 30 October 2001 / Revised version: 11 February 2002 / Published online: 17 October 2002 Work is partially supported by NSF grant DMS-0077790 Mathematics Subject Classification (2000): 34C25, 34C35, 92D25. Keywords or phrases: Microparasite model – Ratio-dependent predator-prey model – Host extinction – Global stability – Biological control  相似文献   

13.
In this paper we prove a consistency theorem (law of large numbers) and a fluctuation theorem (central limit theorem) for structured population processes. The basic assumptions for these theorems are that the individuals have no statistically distinguishing features beyond their class and that the interaction between any two individuals is not too high. We apply these results to density dependent models of Leslie type and to a model for flour beetle dynamics. Received: 24 February 1999 / Revised version: 23 July 1999 / Published online: 14 September 2000  相似文献   

14.
In order to understand the development of non-genetically encoded actions during an animal’s lifespan, it is necessary to analyze the dynamics and evolution of learning rules producing behavior. Owing to the intrinsic stochastic and frequency-dependent nature of learning dynamics, these rules are often studied in evolutionary biology via agent-based computer simulations. In this paper, we show that stochastic approximation theory can help to qualitatively understand learning dynamics and formulate analytical models for the evolution of learning rules. We consider a population of individuals repeatedly interacting during their lifespan, and where the stage game faced by the individuals fluctuates according to an environmental stochastic process. Individuals adjust their behavioral actions according to learning rules belonging to the class of experience-weighted attraction learning mechanisms, which includes standard reinforcement and Bayesian learning as special cases. We use stochastic approximation theory in order to derive differential equations governing action play probabilities, which turn out to have qualitative features of mutator-selection equations. We then perform agent-based simulations to find the conditions where the deterministic approximation is closest to the original stochastic learning process for standard 2-action 2-player fluctuating games, where interaction between learning rules and preference reversal may occur. Finally, we analyze a simplified model for the evolution of learning in a producer–scrounger game, which shows that the exploration rate can interact in a non-intuitive way with other features of co-evolving learning rules. Overall, our analyses illustrate the usefulness of applying stochastic approximation theory in the study of animal learning.  相似文献   

15.
We link deterministic integrodifference equations to stochastic, individual-based simulations by means of branching random walks. Using standard methods, we determine speeds of invasion for both average densities and furthest-forward individuals. For density-independent branching random walks, demographic stochasticity can produce extinction. Demographic stochasticity does not, however, reduce the overall asymptotic speed of invasion or preclude continually accelerating invasions.  相似文献   

16.
Density-independent and density-dependent, stochastic and deterministic, discrete-time, structured models are formulated, analysed and numerically simulated. A special case of the deterministic, density-independent, structured model is the well-known Leslie age-structured model. The stochastic, density-independent model is a multitype branching process. A review of linear, density-independent models is given first, then nonlinear, density-dependent models are discussed. In the linear, density-independent structured models, transitions between states are independent of time and state. Population extinction is determined by the dominant eigenvalue λ of the transition matrix. If λ ≤ 1, then extinction occurs with probability one in the stochastic and deterministic models. However, if λ > 1, then the deterministic model has exponential growth, but in the stochastic model there is a positive probability of extinction which depends on the fixed point of the system of probability generating functions. The linear, density-independent, stochastic model is generalized to a nonlinear, density-dependent one. The dependence on state is in terms of a weighted total population size. It is shown for small initial population sizes that the density-dependent, stochastic model can be approximated by the density-independent, stochastic model and thus, the extinction behavior exhibited by the linear model occurs in the nonlinear model. In the deterministic models there is a unique stable equilibrium. Given the population does not go extinct, it is shown that the stochastic model has a quasi-stationary distribution with mean close to the stable equilibrium, provided the population size is sufficiently large. For small values of the population size, complete extinction can be observed in the simulations. However, the persistence time increases rapidly with the population size. This author received partial support by the National Science Foundation grant # DMS-9626417.  相似文献   

17.
The population of raccoon dogs (Nyctereutes procyonoides) in Denmark has increased rapidly from 1995 when the first was recorded until today where 3291 raccoon dogs are trapped, shot by hunters or road killed. The aims of this study are to present the first data on reproduction and life tables of raccoon dogs in Denmark and to compare mortality from modelled life tables with game bag records and sampled raccoon dogs in different age groups. In this study, the uteri of 89 adult females (> 10 months) were examined for placental scars (PSC), and 561 individuals (289 males, 272 females) were aged using pulp cavity width and dental lines in canine teeth. The litter size of raccoon dogs in Denmark is to date the largest litter size recorded in the wild (mean ± SE) 10.8 ± 0.4, range 1–16 pubs and fecundity 8.4 ± 0.6 pubs. The percent-reproducing females are 78–83%, based on dark and all PSC, respectively. A significant difference was found between the proportion of individuals composing the different age groups based on age determination of individuals collected (Ntage) and the modelled number of individuals in age groups based on fecundity and different mortality rate (Ntmodel), X2 = 8, p < 0.05. The discrepancy between the relatively high reproduction and lifetables may be due to older and more experienced animals that avoid culling. A low population density in a newly founded Danish population of raccoon dogs, together with a milder climate where raccoon dogs can forage during the winter, may cause an exceptionally high reproduction in Danish raccoon dogs.  相似文献   

18.
 A method for detecting mutual deterministic dependence between a pair of spike trains is proposed. When it is assumed that a cell assembly, which is a subgroup of neurons processing a common task, is constituted as a dynamical system, then the mutual determinism between constituent neurons may be directly reflected in functional connectivity in the assembly. The deterministic dependence between two spike trains can be measured with statistical significance using a method of nonlinear prediction. Some examples of simulations are demonstrated in both deterministic and stochastic cases. Received: 8 August 1999 / Accepted in revised form: 29 March 2001  相似文献   

19.
In this work we develop approximate aggregation techniques in the context of slow-fast linear population models governed by stochastic differential equations and apply the results to the treatment of populations with spatial heterogeneity. Approximate aggregation techniques allow one to transform a complex system involving many coupled variables and in which there are processes with different time scales, by a simpler reduced model with a fewer number of ‘global’ variables, in such a way that the dynamics of the former can be approximated by that of the latter. In our model we contemplate a linear fast deterministic process together with a linear slow process in which the parameters are affected by additive noise, and give conditions for the solutions corresponding to positive initial conditions to remain positive for all times. By letting the fast process reach equilibrium we build a reduced system with a lesser number of variables, and provide results relating the asymptotic behaviour of the first- and second-order moments of the population vector for the original and the reduced system. The general technique is illustrated by analysing a multiregional stochastic system in which dispersal is deterministic and the rate growth of the populations in each patch is affected by additive noise.  相似文献   

20.
Understanding the factors that influence successful colonization can help inform ecological theory and aid in the management of invasive species. When founder populations are small, individual fitness may be negatively impacted by component Allee effects through positive density dependence (e.g., mate limitation). Reproductive and survival mechanisms that suffer due to a shortage of conspecifics may scale up to be manifest in a decreased per-capita population growth rate (i.e., a demographic Allee effect). Mean-field population level models are limited in representing how component Allee effects scale up to demographic Allee effects when heterogeneous spatial structure influences conspecific availability. Thus, such models may not adequately characterize the probability of establishment. In order to better assess how individual level processes influence population establishment and spread, we developed a spatially explicit individual-based stochastic simulation of a small founder population. We found that increased aggregation can affect individual fitness and subsequently impact population growth; however, relatively slow dispersal—in addition to initial spatial structure—is required for establishment, ultimately creating a tradeoff between probability of initial establishment and rate of subsequent spread. Since this result is sensitive to the scaling up of component Allee effects, details of individual dispersal and interaction kernels are key factors influencing population level processes. Overall, we demonstrate the importance of considering both spatial structure and individual level traits in assessing the consequences of Allee effects in biological invasions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号