首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P. Thomas  C. Tubbs  V.F. Garry 《Steroids》2009,74(7):614-383
Most of the studies on the putative membrane progestin receptor (mPR) α and β subtypes that have been published in the 5 years since their discovery have supported the original hypothesis that they function as specific membrane receptors through which progestins induce rapid, nongenomic responses in target cells. Recent evidence that mPRα and mPRβ have important roles in the regulation of oocyte meiotic maturation and sperm motility in both fish and mammals is reviewed. Although rapid, cell surface-initiated progestin actions on sperm to induce hyperactive motility have been demonstrated in several mammalian models, the identity of the membrane progestin receptor mediating this effect remains unclear. We demonstrate here that mPRα mRNA is expressed in human sperm by RT-PCR and that the mPRα protein is localized to the sperm membranes by Western blot analysis. Immunocytochemical staining of whole non-permeabilized human sperm confirmed the mPRα protein is expressed in the plasma membrane, and showed it is localized to the sperm midpiece, indicating a likely role of mPRα in progestin regulation of sperm motility. Moreover, the abundance of the mPRα protein on sperm plasma membranes from human donors that displayed low motility was significantly reduced compared to that on normal motile sperm. Finally, progestin treatment of sperm membranes caused activation of G-proteins. These results suggest that, similar to its proposed function in fishes, mPRα is an intermediary in progestin stimulation of sperm motility in humans by a mechanism involving G-protein activation.  相似文献   

2.
Recently a novel cDNA was discovered in spotted seatrout ovaries encoding a protein with seven transmembrane domains that has the characteristics of the membrane progestin receptor (mPR) mediating maturation-inducing steroid (MIS) induction of oocyte maturation in this species. Preliminary results suggested the MIS also activates an mPR on the spermatozoa of spotted seatrout and a closely related species, Atlantic croaker, to stimulate sperm motility. We show here that plasma membranes of croaker sperm demonstrate high affinity (Kd approximately 20 nM), limited capacity (Bmax 0.08 nM), specific and displaceable binding for progestins that is characteristic of mPRs. The MIS (17,20beta,21-trihydroxy-4-pregnen-3-one, 20beta-S) displayed the greatest binding affinity for the sperm mPR among the steroids tested. Treatment of croaker testicular tissue in vitro with gonadotropin caused a several-fold increase in sperm mPR receptor concentrations that was partially blocked in the presence of cyanoketone, which suggests this action of gonadotropin is partially mediated by stimulation of steroidogenesis. Protein bands of the predicted sizes for the mPR and its dimer (40 and 80 kDa) were detected by Western blotting of croaker sperm membranes using a specific antibody to the novel seatrout mPR (mPRalpha). Immunocytochemistry of whole croaker spermatozoa with the mPRalpha antibody showed that staining was primarily localized on the midpiece, consistent with a role of the mPRalpha in mediating MIS stimulation of sperm motility. The results suggest that the mechanism of progestin action on fish sperm involving mPRs is basically similar to that in mammals and has been evolutionarily conserved amongst vertebrates.  相似文献   

3.
Thomas P  Pang Y  Zhu Y  Detweiler C  Doughty K 《Steroids》2004,69(8-9):567-573
Progestin hormones exert rapid, nongenomic actions on a variety of target tissues in fish. The induction of oocyte maturation and the progestin membrane receptor (mPR) that mediates this action of progestins have been well characterized in fishes. Progestins also act on Atlantic croaker spermatozoa via an mPR to rapidly increase sperm motility. Preliminary results indicate that progestins can also exert rapid actions in the preoptic anterior hypothalamus (POAH) in this species to down-regulate gonadotropin-releasing hormone (GnRH) secretion. Recently, we reported the cloning, sequencing and characterization of a novel cDNA in a closely related species, spotted seatrout, that has the characteristics of the mPR involved in the progestin induction of oocyte maturation. Three distinct mPR subtypes, named alpha, beta, and gamma, have been identified in both fishes and mammals. The tissue distribution of the mPRalpha protein in seatrout suggests the alpha-subtype mediates progestin actions on GnRH secretion, sperm motility and oocyte maturation. However, mPRbeta antisense experiments in zebrafish oocytes suggest the beta-subtype also participates in the control of oocyte maturation in zebrafish.  相似文献   

4.
One of the hallmarks of mammalian sperm capacitation is the loss of cholesterol from the plasma membrane. Cholesterol has been associated with the formation of detergent insoluble membrane microdomains in many cell types, and sperm from several mammalian species have been shown to contain detergent-resistant membranes (DRMs). The change in cholesterol composition of the sperm plasma membrane during capacitation raises the question of whether the contents of DRMs are altered during this process. In this study, we investigated changes in protein composition of DRMs isolated from uncapacitated or capacitated mouse sperm. TX-100 insoluble membranes were fractionated by sucrose flotation gradient centrifugation and analyzed by Western and lectin blotting, and capacitation-related differences in protein composition were identified. Following capacitation, the detergent insoluble fractions moved to lighter positions on the sucrose gradients, reflecting a global change in density or composition. We identified several individual proteins that either became enriched or depleted in DRM fractions following capacitation. These data suggest that the physiological changes in sperm motility, ability to penetrate the zona pellucida (ZP), ZP responsiveness, and other capacitation-dependent changes, may be due in part to a functional reorganization of plasma membrane microdomains.  相似文献   

5.
The recognition and binding of sperm cells to the zona pellucida (the extracellular matrix of the oocyte) are essential for fertilization and are believed to be species specific. Freshly ejaculated sperm cells do not bind to the zona pellucida. Physiologically this interaction is initiated after sperm activation in the female genital tract (capacitation) via a yet unknown mechanism, resulting in the binding of a receptor in the apical sperm plasma membrane to the zona pellucida. In order to mimic this biochemically, we isolated zona pellucida fragments from gilt ovaries to prepare an affinity column with the intact zona pellucida structure and loaded this column with solubilized apical plasma membranes of boar sperm cells before and after in vitro capacitation. With this technique we demonstrated that two plasma membrane proteins of capacitated boar sperm cells showed high affinity for zona pellucida fragments. Further analysis showed that these proteins were tyrosine phosphorylated. Plasma membrane proteins from freshly ejaculated sperm cells did not exhibit any zona pellucida binding proteins, likely because these proteins were not tyrosine phosphorylated.  相似文献   

6.
Maintenance of motility in mouse sperm permeabilized with streptolysin O   总被引:1,自引:0,他引:1  
One approach to studying the mechanisms governing sperm motility is to permeabilize sperm and examine the regulation of motility by manipulating the intracellular milieu of the cell. The most common method of sperm permeabilization, detergent treatment, has the disadvantage that the membranes and many proteins are extracted from the cell. To avoid this problem, we have developed a method that uses streptolysin O to create stable pores within the plasma membrane while leaving internal membranes intact. Sperm were permeabilized, preincubated, and then treated with 0.6 U/ml of streptolysin O. Permeabilization was assessed by fluorescent dye technologies and endogenous protein phosphorylation using exogenously added [gamma-32P]ATP. Streptolysin O-induced permeabilization rendered the sperm immotile, and the effect was Ca2+-dependent. When the cells were treated simultaneously with a medium containing ATP, streptolysin O-treated sperm maintained flagellar movement. These results demonstrate that the streptolysin O permeabilization model system is a useful experimental method for studying the mechanisms that regulate sperm motility since it allows the flagellar apparatus to be exposed to various exogenously added molecules.  相似文献   

7.
L Leyton  P Saling 《Cell》1989,57(7):1123-1130
In the mouse, the zona pellucida (ZP) glycoprotein ZP3 both binds intact sperm and induces acrosomal exocytosis. The subsequent signaling pathway(s) is still uncertain, but Gi-like proteins have been implicated. By analogy with other signal transduction mechanisms, we examined anti-phosphotyrosine antibody reactivity in mouse sperm. Antibodies reacted with three proteins of 52, 75, and 95 kd. Indirect immunofluorescence localized reactivity to the acrosomal region of the sperm head. The 52 kd and 75 kd phosphoproteins are detected only in capacitated sperm, whereas the 95 kd protein is detected in both fresh and capacitated sperm. For the 95 kd protein, the level of immunoreactivity is not related to sperm motility but is enhanced by both capacitation and sperm interaction with solubilized ZP proteins. In addition, binding of radiolabeled whole ZP or purified ZP3 to blots of separated sperm proteins identified two ZP binding proteins of 95 kd and 42 kd. 95 kd sperm proteins that bind to ZP3 also react with anti-phosphotyrosine antibodies (in a ZP concentration-dependent manner), supporting the idea that the same 95 kd sperm protein serves as a ZP3 receptor and as a tyrosine kinase substrate. These findings and our evidence on acrosome reaction triggering via sperm receptor aggregation suggest that a 95 kd protein in the sperm plasma membrane is aggregated by ZP3, which stimulates tyrosine kinase activity leading to acrosomal exocytosis.  相似文献   

8.
9.
Sea urchin spermatozoa are model cells for studying signal transduction events underlying flagellar motility and the acrosome reaction. We previously described the sea urchin sperm receptor for egg jelly 1 (suREJ1) which consists of 1450 amino acids, has one transmembrane segment and binds to the fucose sulfate polymer of egg jelly to induce the sperm acrosome reaction. We also cloned suREJ3 which consists of 2681 amino acids and has 11 putative transmembrane segments. Both these proteins localize to the plasma membrane over the acrosomal vesicle. While cloning suREJ1, we found suREJ2, which consists of 1472 amino acids, has two transmembrane segments and is present in the entire sperm plasma membrane, but is concentrated over the sperm mitochondrion. Experimental evidence suggests that, unlike suREJ1 and suREJ3, suREJ2 does not project extracellularly from the plasma membrane, but is an intracellular plasma membrane protein. All three sea urchin sperm REJ proteins possess a protein module of > 900 amino acids, termed 'the REJ module', that is shared by the human autosomal dominant polycystic kidney disease protein, polycystin-1, and PKDREJ, a testis-specific protein in mammals whose function is unknown. In the present study, we describe the sequence, domain structure and localization of suREJ2 and speculate on its possible function.  相似文献   

10.
Adenylyl cyclases (ACs) synthesize cAMP and are present in cells as transmembrane AC and soluble AC (sAC). In sperm, the cAMP produced regulates ion channels and it also activates protein kinase-A that in turn phosphorylates specific axonemal proteins to activate flagellar motility. In mammalian sperm, sAC localizes to the midpiece of flagella, whereas in sea urchin sperm sAC is along the entire flagellum. Here we show that in sea urchin sperm, sAC is complexed with proteins of the plasma membrane and axoneme. Immunoprecipitation shows that a minimum of 10 proteins is tightly associated with sAC. Mass spectrometry of peptides derived from these proteins shows them to be: axonemal dynein heavy chains 7 and 9, sperm specific Na+/H+ exchanger, cyclic nucleotide-gated ion channel, sperm specific creatine kinase, membrane bound guanylyl cyclase, cyclic GMP specific phosphodiesterase 5A, the receptor for the egg peptide speract, and alpha- and beta-tubulins. The sAC-associated proteins could be important in linking membrane signal transduction to energy utilisation in the regulation of flagellar motility.  相似文献   

11.
Lipid rafts, membrane sub-domains enriched in sterols and sphingolipids, are controversial because demonstrations of rafts have often utilized fixed cells. We showed in living sperm that the ganglioside G(M1) localized to a micron-scale membrane sub-domain in the plasma membrane overlying the acrosome. We investigated four models proposed for membrane sub-domain maintenance. G(M1) segregation was maintained in live sperm incubated under non-capacitating conditions, and after sterol efflux, a membrane alteration necessary for capacitation. The complete lack of G(M1) diffusion to the post-acrosomal plasma membrane (PAPM) in live cells argued against the transient confinement zone model. However, within seconds after cessation of sperm motility, G(M1) dramatically redistributed several microns from the acrosomal sub-domain to the post-acrosomal, non-raft sub-domain. This redistribution was not accompanied by movement of sterols, and was induced by the pentameric cholera toxin subunit B (CTB). These data argued against a lipid-lipid interaction model for sub-domain maintenance. Although impossible to rule out a lipid shell model definitively, mice lacking caveolin-1 maintained segregation of both sterols and G(M1), arguing against a role for lipid shells surrounding caveolin-1 in sub-domain maintenance. Scanning electron microscopy of sperm freeze-dried without fixation identified cytoskeletal structures at the sub-domain boundary. Although drugs used to disrupt actin and intermediate filaments had no effect on the segregation of G(M1), we found that disulfide-bonded proteins played a significant role in sub-domain segregation. Together, these data provide an example of membrane sub-domains extreme in terms of size and stability of lipid segregation, and implicate a protein-based membrane compartmentation mechanism.  相似文献   

12.
13.
Sperm plasma membrane lipids have an important role to play in determining membrane fluidity and sperm motility. The objective of the present study was to determine whether there are differences in the lipid and fatty acid (FA) composition of boar sperm and seminal plasma in the ejaculates of boars having different sperm motilities. Semen was collected from two groups of boars having normal (> 60%; n = 53) or low (< 60%; n = 53) motility sperm and the semen was evaluated for motility, morphology and vitality. The semen was then centrifuged to separate the sperm from the seminal plasma and both were kept at −20 °C until analyzed for lipid content and FA profile by gas chromatography. Total antioxidant status (TAS) of seminal plasma was determined using a commercial kit. There were differences (P ≤ 0.05) in sperm total lipids, cholesterol, saturated fatty acids (SFA), phospholipids, n-3 polyunsaturated fatty acids (PUFA), docosahexaenoic acid (DHA) and the ratio of n-6:n-3 PUFA between boars with normal and low motility sperm. Total lipids, cholesterol, phospholipids, PUFA, DHA and n-3 PUFA were positively correlated with sperm motility, viability, normal morphology and normal plasma membrane. In contrast, SFA and the ratio of n-6: n-3 PUFA were negatively correlated (P ≤ 0.05) with sperm motility, viability, normal morphology and normal plasma membranes. The TAS of seminal plasma from boars having normal motility sperm was higher (P ≤ 0.05) than that of boars having low motility sperm and TAS was positively correlated (P = 0.0001) with sperm motility, viability, normal morphology and normal plasma membranes. In summary, differences in sperm motility were related to n-3 PUFA content in the sperm plasma membrane and extracellular antioxidants in seminal plasma which protect sperm plasma membranes from lipid peroxidation during periods of oxidative stress.  相似文献   

14.
Lipid rafts are specialized membrane microdomains that function as signaling platforms across plasma membranes of many animal and plant cells. Although there are several studies implicating the role of lipid rafts in capacitation of mammalian sperm, the function of these structures in sperm motility activation and chemotaxis remains unknown. In the ascidian Ciona intestinalis, egg-derived sperm activating- and attracting-factor (SAAF) induces both activation of sperm motility and sperm chemotaxis to the egg. Here we found that a lipid raft disrupter, methyl-β-cyclodextrin (MCD), inhibited both SAAF-induced sperm motility activation and chemotaxis. MCD inhibited both SAAF-promoted synthesis of intracellular cyclic AMP and sperm motility induced by ionophore-mediated Ca(2+) entry, but not that induced by valinomycin-mediated hyperpolarization. Ca(2+)-imaging revealed that lipid raft disruption inhibited Ca(2+) influx upon activation of sperm motility. The Ca(2+)-activated adenylyl cyclase was clearly inhibited by MCD in isolated lipid rafts. The results suggest that sperm lipid rafts function in signaling upstream of cAMP synthesis, most likely in SAAF-induced Ca(2+) influx, and are required for Ca(2+)-dependent pathways underlying activation and chemotaxis in Ciona sperm.  相似文献   

15.
Heterotrimeric G proteins play important roles as signal transducing components in various mammalian sperm functions. We were interested in the distribution of G proteins in human sperm tails. Prior to membrane preparation, spermatozoa were separated from contaminating cells which are frequently present in human ejaculates. Enriched human sperm tail membranes were generated by using hypoosmotic swelling and homogenization procedures. Antisera against synthetic peptides were used to identify G proteins in immunoblots. AS 8, an antiserum directed against an amino acid sequence that is found in most G protein α-subunits, and A 86, which detects all known pertussis toxin-sensitive α-subunits, reacted specifically with a 40-kDa protein. Antisera against individual G protein α-subunits failed to detect any specific antigens in enriched tail membranes AS 36, recognizing the ã2-subunit of G proteins, identified a 35-kDa protein in sperm tail membranes. Antisera against the 36-kDa β1-subunit did not detect any relevant proteins in the membrane fraction. Neither G protein α-subunits nor G protein β-subunits were found in the cytosol. ADP ribosylation of spermatozoal membrane or cytosolic proteins revealed no pertussis toxin-sensitive α-subunits. However, membrane preparations of nonpurified human spermatozoa contained α2 subunits, as shown immunologically and by ADP ribosylation; they most probably derived from somatic cells which are frequently present in human ejaculates. Our results stress the fact that spermatozoa need to be purified before sperm membrane preparation to avoid misinterpretations caused by contaminating cells. Furthermore, we suggest that G proteins in membranes of human sperm tails belong to a novel subtype of G protein α-subunits; the putative β-subunit was identified as a β2-subunit. © 1995 Wiley-Liss, Inc.  相似文献   

16.
In the bovine, as in many mammalian species, sperm are temporarily stored in the oviduct before fertilization by binding to the oviduct epithelial cell apical plasma membranes. As the oviduct is able to maintain motility and viability of sperm and modulate capacitation, we propose that proteins present on the apical plasma membrane of oviduct epithelial cells contribute to these effects. To verify this hypothesis, the motility of frozen-thawed sperm was determined after incubation for 6 h with purified apical plasma membranes from fresh or cultured oviduct epithelial cells or from bovine mammary gland cells as a control. Analysis of intracellular calcium levels was performed by flow cytometry on sperm incubated with fresh membranes using Indo-1 to assess the membrane effect on intracellular calcium concentration. The coculture of sperm with fresh and cultured apical membranes maintained initial motility for 6 h (65% and 84%, respectively). This effect was significantly different from control sperm incubated without oviduct epithelial cell apical membranes (23%), with mammary gland cell apical membranes (23%), or with boiled epithelial cell apical membranes (21%). Apical membranes from oviduct epithelial cells diminished the percentage of sperm that reached a lethal calcium concentration over a 4-h period (18.7%) compared with the control (53.8%) and maintained lower intracellular calcium levels in viable sperm. These results show that the apical plasma membrane of bovine oviduct epithelial cells contains anchored proteinic factors that contribute to maintaining motility and viability and possibly to modulating capacitation of bovine sperm.  相似文献   

17.
Milk is used as a medium for sperm preservation. Caseins, the major proteins of milk, appear to be responsible for the protective effect of milk on sperm. Recently, we have shown that egg yolk, which is also widely used to preserve semen, protects sperm functions by preventing the binding to sperm of the major proteins of bull seminal plasma (BSP proteins), thereby preventing BSP protein-mediated stimulation of lipid loss from the sperm membrane. In the present study, we investigated whether milk caseins protect sperm in the same manner as egg yolk. Bovine ejaculates were diluted with skimmed milk permeate (skimmed milk devoid of caseins) or permeate that was supplemented with caseins and stored at 4 degrees C for 4 h. In the semen diluted with permeate, sperm viability and motility decreased in a time-dependent manner. However, in semen diluted with milk or permeate supplemented with caseins, sperm functions were maintained. In addition, lower amounts of the BSP proteins were associated with sperm in semen diluted with milk or permeate supplemented with caseins, as compared to semen diluted with permeate. No milk proteins were detected in the sperm protein extracts. Furthermore, sperm diluted with milk or permeate supplemented with caseins showed 3-fold lower losses of cholesterol and choline phospholipids than sperm diluted with permeate during storage. Thus, milk caseins decreased the binding of BSP proteins to sperm and reduced sperm lipid loss, while maintaining sperm motility and viability during storage. These results support our view that milk caseins prevent the detrimental effects of BSP proteins on the sperm membrane during sperm preservation.  相似文献   

18.
Sperm-oocyte plasma membrane interaction is an essential step in fertilization. In amphibians, the molecules involved have not been identified. Our aim was to detect and characterize oocyte molecules with binding affinity for sperm. We isolated plasma membranes free from vitelline envelope and yolk proteins from surface-biotinylated Bufo arenarum oocytes. Using binding assays we detected a biotinylated 100 kDa plasma membrane protein that consistently bound to sperm. Chromatographic studies confirmed the 100 kDa protein and detected two additional oocyte molecules of 30 and 70 kDa with affinity for sperm. Competition studies with an integrin-interacting peptide and cross-reaction with an anti-HSP70 antibody suggested that the 100 and 70 kDa proteins are members of the integrin family and HSP70, respectively. MS/MS analysis suggested extra candidates for a role in this step of fertilization. In conclusion, we provide evidence for the involvement of several proteins, including integrins and HSP70, in B. arenarum sperm-oocyte plasma membrane interactions.  相似文献   

19.
20.
A number of plasma membrane receptor types originally thought to be specific to neurons have been found in other somatic cells. More surprisingly, the mammalian sperm and neuron appear to share many of these 'neuronal' receptors. The morphology, chromosome number, genomic activity, and functions of those two cell types are as unlike as any two cells in the body, but they both achieve their highly disparate goals with the aid of a number of the same receptors. Exocytosis in neurons and sperm is essential to the functions of these cells and is strongly influenced by similar receptors. 'Neuronal' receptor types in sperm may also play a role in the control of sperm motility (a function of course not shared by neurons). This review will consider the evidence for the presence of sperm plasma membrane 'neuronal' receptors and for their significance to mammalian sperm function. The persuasiveness of the evidence varies depending on the receptor being considered, but there is strong experimental support for the presence and importance of a number of 'neuronal' receptors in sperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号