首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Carotenoids are indispensable pigments of the photosynthetic apparatus in plants, algae, and cyanobacteria and are produced, as well, by many bacteria and fungi. Elucidation of biochemical pathways leading to the carotenoids that function in the photosynthetic membranes of land plants has been greatly aided by the use of carotenoid-accumulating strains of Escherichia coli as heterologous hosts for functional assays, in vivo, of the otherwise difficult to study membrane-associated pathway enzymes. This same experimental approach is uniquely well-suited to the discovery and characterization of yet-to-be identified enzymes that lead to carotenoids of the photosynthetic membranes in algal cells, to the multitude of carotenoids found in nongreen plant tissues, and to the myriad flavor and aroma compounds that are derived from carotenoids in plant tissues. A portfolio of plasmids suitable for the production in E. coli of a variety of carotenoids is presented herein. The use of these carotenoid-producing E. coli for the identification of cDNAs encoding enzymes of carotenoid and isoprenoid biosynthesis, for characterization of the enzymes these cDNAs encode, and for the production of specific carotenoids for use as enzyme substrates and reference standards, is described using the flowering plant Adonis aestivalis to provide examples. cDNAs encoding nine different A. aestivalis enzymes of carotenoid and isoprenoid synthesis were identified and the enzymatic activity of their products verified. Those cDNAs newly described include ones that encode phytoene synthase, β-carotene hydroxylase, deoxyxylulose-5-phosphate synthase, isopentenyl diphosphate isomerase, and geranylgeranyl diphosphate synthase.  相似文献   

2.
Nineteen carotenoids were identified in extracts of petals of orange- and yellow-flowered cultivars of calendula (Calendula officinalis L.). Ten carotenoids were unique to orange-flowered cultivars. The UV–vis absorption maxima of these ten carotenoids were at longer wavelengths than that of flavoxanthin, the main carotenoid of calendula petals, and it is clear that these carotenoids are responsible for the orange color of the petals. Six carotenoids had a cis structure at C-5 (C-5′), and it is conceivable that these (5Z)-carotenoids are enzymatically isomerized at C-5 in a pathway that diverges from the main carotenoid biosynthesis pathway. Among them, (5Z,9Z)-lycopene (1), (5Z,9Z,5′Z,9′Z)-lycopene (3), (5′Z)-γ-carotene (4), and (5′Z,9′Z)-rubixanthin (5) has never before been identified. Additionally, (5Z,9Z,5′Z)-lycopene (2) has been reported only as a synthesized compound.  相似文献   

3.
Carotenoids are isoprenoids with important biological roles both for plants and animals. The yellow flesh colour of potato (Solanum tuberosum L.) tubers is a quality trait dependent on the types and levels of carotenoids that accumulate. The carotenoid biosynthetic pathway is well characterised, facilitating the successful engineering of carotenoid content in numerous crops including potato. However, a clear understanding concerning the factors regulating carotenoid accumulation and localisation in plant storage organs, such as tubers, is lacking. In the present study, the localisation of key carotenoid biosynthetic enzymes was investigated, as one of the unexplored factors that could influence the accumulation of carotenoids in potato tubers. Stable transgenic potato plants were generated by over-expressing β-CAROTENE HYDROXYLASE 2 (CrtRb2) and PHYTOENE SYNTHASE 2 (PSY2) genes, fused to red fluorescent protein (RFP). Gene expression and carotenoid levels were both significantly increased, confirming functionality of the fluorescently tagged proteins. Confocal microscopy studies revealed different sub-organellar localisations of CrtRb2-RFP and PSY2-RFP within amyloplasts. CrtRb2 was detected in small vesicular structures, inside amyloplasts, whereas PSY2 was localised in the stroma of amyloplasts. We conclude that it is important to consider the location of biosynthetic enzymes when engineering the carotenoid metabolic pathway in storage organs such as tubers.  相似文献   

4.
Carotenoids play an important role in plant adaptation to fluctuating environments as well as in the human diet by contributing to the prevention of chronic diseases. Insights have been gained recently into the way individual factors, genetic, environmental or developmental, control the carotenoid biosynthetic pathway at the molecular level. The identification of the rate‐limiting steps of carotenogenesis has paved the way for programmes of breeding, and metabolic engineering, aimed at increasing the concentration of carotenoids in different crop species. However, the complexity that arises from the interactions between the different factors as well as from the coordination between organs remains poorly understood. This review focuses on recent advances in carotenoid responses to environmental stimuli and discusses how the interactions between the modulation factors and between organs affect carotenoid build‐up. We develop the idea that reactive oxygen species/redox status and sugars/carbon status can be considered as integrated factors that account for most effects of the major environmental factors influencing carotenoid biosynthesis. The discussion highlights the concept of carotenoids or carotenoid‐derivatives as stress signals that may be involved in feedback controls. We propose a conceptual model of the effects of environmental and developmental factors on carotenoid build‐up in fruits.  相似文献   

5.
6.
类胡萝卜素合成的相关基因及其基因工程   总被引:43,自引:0,他引:43  
类胡萝卜素具有多种生物功能,尤其在保护人类健康方面起着重要的作用,如它们是合成维生素A的前体,能够增强人体免疫力和具有防癌抗癌的功效。人体自身不能合成类胡萝卜素,必须通过外界摄入;但类胡萝卜素在许多植物中含量较低,并且很难用化学方法合成。随着类胡萝卜素生物合成途径的阐明及其相关基因的克隆,运用基因工程手段调控类胡萝卜素的生物合成已成为可能。本文综述了微生物和高等植物类胡萝卜素生物合成途径中相关基因的克隆,以及运用这些基因通过异源微生物生产类胡萝卜素和提高作物类胡萝卜素含量的基因工程研究进展。  相似文献   

7.
Carotenoid biotechnology in plants for nutritionally improved foods   总被引:7,自引:1,他引:7  
Carotenoids participate in light harvesting and are essential for photoprotection in photosynthetic plant tissues. They also furnish non-photosynthetic flowers and fruits with yellow to red colors to attract animals for pollination and dispersal of seeds. Although animals can not synthesize carotenoids de novo , carotenoid-derived products such as retinoids (including vitamin A) are required as visual pigments and signaling molecules. Dietary carotenoids also provide health benefits based on their antioxidant properties. The main pathway for carotenoid biosynthesis in plants and microorganisms has been virtually elucidated in recent years, and some of the identified biosynthetic genes have been successfully used in metabolic engineering approaches to overproduce carotenoids of interest in plants. Alternative approaches that enhance the metabolic flux to carotenoids by upregulating the production of their isoprenoid precursors or interfere with light-mediated regulation of carotenogenesis have been recently shown to result in increased carotenoid levels. Despite spectacular achievements in the metabolic engineering of plant carotenogenesis, much work is still ahead to better understand the regulation of carotenoid biosynthesis and accumulation in plant cells. New genetic and genomic approaches are now in progress to identify regulatory factors that might significantly contribute to improve the nutritional value of plant-derived foods by increasing their carotenoid levels.  相似文献   

8.
Baranski R  Baranska M  Schulz H 《Planta》2005,222(3):448-457
Near-infrared (NIR) excited Fourier transform (FT) Raman spectroscopy has been applied for in situ analysis of carotenoids in living plant samples. Pelargonium x hortorum leaf has been mapped using a Raman mapping technique to illustrate heterogeneous distribution of carotenoids. Mapping has also been employed for visualization of carotenoid changes induced by abiotic and biotic stress. In a tomato (Lycopersicon esculentum Mill.) fruit, inhibition of lycopene biosynthesis and accumulation of beta-carotene are demonstrated in tissue affected by sunscald physiological disorder. Raman map of diseased sugarbeet (Beta vulgaris L.) leaf shows a local carotenoid decline at infection site while the carotenoid accumulation is evident in parsley (Petroselinum crispum Mill. Nym.) as a response to Septoria petroselini infestation. Additionally, occurrence of lutein, beta-carotene and capsanthin, and changes in their relative content during bell pepper (Capsicum annum L.) fruit ripening are described by single Raman spectra. Based on these examples, the potential application of NIR-FT-Raman spectroscopy for a non-destructive analysis of carotenoids in various living plant tissues of the size ranging from about 0.01 mm2 to 35 cm2 is discussed.  相似文献   

9.
10.
11.
Carotenoids are important natural pigments produced by many microorganisms and plants. Traditionally, carotenoids have been used in the feed, food and nutraceutical industries. The recent discoveries of health-related beneficial properties attributed to carotenoids have spurred great interest in the production of structurally diverse carotenoids for pharmaceutical applications. The availability of a considerable number of microbial and plant carotenoid genes that can be functionally expressed in heterologous hosts has opened ways for the production of diverse carotenoid compounds in heterologous systems. In this review, we will describe the recent progress made in metabolic engineering of non-carotenogenic microorganisms for improved carotenoid productivity. In addition, we will discuss the application of combinatorial and evolutionary strategies to carotenoid pathway engineering to broaden the diversity of carotenoid structures synthesized in recombinant hosts.  相似文献   

12.
Carotenoids are important natural pigments produced by many microorganisms and plants. We have previously reported the isolation of a new marine bacterium,Paracoccus haeundaensis, which produces carotenoids, mainly in the form of astaxanthin. The astaxanthin biosynthesis gene cluster, consisting of six carotenogenic genes, was cloned and characterized from this organism. Individual genes of the carotenoid biosynthesis gene cluster were functionally expressed inEscherichia coli and each gene product was purified to homogeneity. Their molecular characteristics, including enzymatic activities, were previously reported. Here, we report cloning the genes for crtE, crtEB, crtEBI, crtEBIY, crtEBIYZ, and crtEBI-YZW of theP. haeundaensis carotenoid biosynthesis genes inE. coli and verifying the production of the corresponding pathway intermediates. The carotenoids that accumulated in the transformed cells carrying these gene combinations were analyzed by chromatographic and spectroscopic methods.  相似文献   

13.
Carotenoids are known to function as light-harvesting pigments and they play important roles in photoprotection in both plant and bacterial photosynthesis. These functions are also important for carotenoids in photosystem II. In addition, beta-carotene recently has been found to function as a redox intermediate in an alternate pathway of electron transfer within photosystem II. This redox role of a carotenoid in photosystem II is unique among photosynthetic reaction centers and stems from the very highly oxidizing intermediates that form in the process of water oxidation. In this minireview, an overview of the electron-transfer reactions in photosystem II is presented, with an emphasis on those involving carotenoids. The carotenoid composition of photosystem II and the physical methods used to study the structure of the redox-active carotenoid are reviewed. Possible roles of carotenoid cations in photoprotection of photosystem II are discussed.  相似文献   

14.
To better understand the potential function of carotenoids in the chemoprevention of cancers, mechanistic understanding of carotenoid action on genetic and epigenetic signaling pathways is critically needed for human studies. The use of appropriate animal models is the most justifiable approach to resolve mechanistic issues regarding protective effects of carotenoids at specific organs and tissue sites. While the initial impetus for studying the benefits of carotenoids in cancer prevention was their antioxidant capacity and pro-vitamin A activity, significant advances have been made in the understanding of the action of carotenoids with regards to other mechanisms. This review will focus on two common carotenoids, provitamin A carotenoid β-cryptoxanthin and non-provitamin A carotenoid lycopene, as promising chemopreventive agents or chemotherapeutic compounds against cancer development and progression. We reviewed animal studies demonstrating that β-cryptoxanthin and lycopene effectively prevent the development or progression of various cancers and the potential mechanisms involved. We highlight recent research that the biological functions of β-cryptoxanthin and lycopene are mediated, partially via their oxidative metabolites, through their effects on key molecular targeting events, such as NF-κB signaling pathway, RAR/PPARs signaling, SIRT1 signaling pathway, and p53 tumor suppressor pathways. The molecular targets by β-cryptoxanthin and lycopene, offer new opportunities to further our understanding of common and distinct mechanisms that involve carotenoids in cancer prevention.This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.  相似文献   

15.
Carotenoids are used for many functions by animals, including combining with other pigments to produce aposematic and cryptic coloration. Carotenoids in combination with blue pigments are responsible for green coloration in many caterpillars, and thus carotenoid sequestration may reduce their contrast against a green foliage background. We tested the hypothesis that carotenoid sequestration reduces contrast and enhances survival by rearing Trichoplusia ni Hübner (Lepidoptera: Noctuidae) on Brassica oleracea L. var. Acephala (Brassicaceae) leaves and exposing them to predators. We found that carotenoids derived from the host plant are partially excreted, along with chlorophyll, but also sequestered in hemolymph. Larvae that were given plants that provided carotenoids showed less contrast against their host plants within 1 day compared to larvae that were not provided with carotenoids. Last, both short‐term field observations and laboratory trials of larvae caged with predatory Podisus maculiventris Say (Hemiptera: Pentatomidae) nymphs showed that survival of carotenoid‐sequestering larvae was higher compared to larvae that did not sequester. These results suggest that carotenoid sequestration may be an important adaptive strategy that reduces susceptibility to natural enemies that hunt by sight. Further research that examines the mechanisms by which carotenoids are absorbed and modified will lend insights into the evolution of carotenoids functioning as passive defensive compounds.  相似文献   

16.
Dong H  Deng Y  Mu J  Lu Q  Wang Y  Xu Y  Chu C  Chong K  Lu C  Zuo J 《Cell research》2007,17(5):458-470
Carotenoids, a class of natural pigments found in all photosynthetic organisms, are involved in a variety of physiological processes, including coloration, photoprotection, biosynthesis of abscisic acid (ABA) and chloroplast biogenesis. Although carotenoid biosynthesis has been well studied biochemically, the genetic basis of the pathway is not well understood. Here, we report the characterization of two allelic Arabidopsis mutants, spontaneous cell death1-1 (spcl-1) and spc1-2. The weak allele spc1-1 mutant showed characteristics of bleached leaves, accumulation of superoxide and mosaic cell death. The strong mutant allele spc1-2 caused a complete arrest of plant growth and development shortly after germination, leading to a seedling-lethal phenotype. Genetic and molecular analyses indicated that SPC1 encodes a putative ζ-carotene desaturase (ZDS) in the carotenoid biosynthesis pathway. Analysis of carotenoids revealed that several major carotenoid compounds downstream of SPC 1/ZDS were substantially reduced in spc1-1, suggesting that SPC 1 is a functional ZDS. Consistent with the downregulated expression of CAO and PORB, the chlorophyll content was decreased in spc1-1 plants. In addition, expression of Lhcb1. 1, Lhcbl. 4 and RbcS was absent in spc1-2, suggesting the possible involvement of carotenoids in the plastid-to-nucleus retrograde signaling. The spc1-1 mutant also displays an ABA-deficient phenotype that can be partially rescued by the externally supplied phytohormone. These results suggest that SPC1/ZDS is essential for biosynthesis of carotenoids and plays a crucial role in plant growth and development.  相似文献   

17.
Increased accumulation of specific carotenoids in plastids through plant breeding or genetic engineering requires an understanding of the limitations that storage sites for these compounds may impose on that accumulation. Here, using Capsicum annuum L. fruit, we demonstrate directly the unique sub‐organellar accumulation sites of specific carotenoids using live cell hyperspectral confocal Raman microscopy. Further, we show that chromoplasts from specific cultivars vary in shape and size, and these structural variations are associated with carotenoid compositional differences. Live‐cell imaging utilizing laser scanning confocal (LSCM) and confocal Raman microscopy, as well as fixed tissue imaging by scanning and transmission electron microscopy (SEM and TEM), all demonstrated morphological differences with high concordance for the measurements across the multiple imaging modalities. These results reveal additional opportunities for genetic controls on fruit color and carotenoid‐based phenotypes.  相似文献   

18.

Key message

Genetic control of maize grain carotenoid profiles is coordinated through several loci distributed throughout three secondary metabolic pathways, most of which exhibit additive, and more importantly, pleiotropic effects.

Abstract

The genetic basis for the variation in maize grain carotenoid concentrations was investigated in two F2:3 populations, DEexp × CI7 and A619 × SC55, derived from high total carotenoid and high β-carotene inbred lines. A comparison of grain carotenoid concentrations from population DEexp × CI7 grown in different environments revealed significantly higher concentrations and greater trait variation in samples harvested from a subtropical environment relative to those from a temperate environment. Genotype by environment interactions was significant for most carotenoid traits. Using phenotypic data in additive, environment-specific genetic models, quantitative trait loci (QTL) were identified for absolute and derived carotenoid traits in each population, including those specific to the isomerization of β-carotene. A multivariate approach for these correlated traits was taken, using carotenoid trait principal components (PCs) that jointly accounted for 97 % or more of trait variation. Component loadings for carotenoid PCs were interpreted in the context of known substrate-product relationships within the carotenoid pathway. Importantly, QTL for univariate and multivariate traits were found to cluster in close proximity to map locations of loci involved in methyl-erythritol, isoprenoid and carotenoid metabolism. Several of these genes, including lycopene epsilon cyclase, carotenoid cleavage dioxygenase1 and beta-carotene hydroxylase, were mapped in the segregating populations. These loci exhibited pleiotropic effects on α-branch carotenoids, total carotenoid profile and β-branch carotenoids, respectively. Our results confirm that several QTL are involved in the modification of carotenoid profiles, and suggest genetic targets that could be used for the improvement of total carotenoid and β-carotene in future breeding populations.  相似文献   

19.

Background  

Carotenoids are a group of C40 isoprenoid molecules that play diverse biological and ecological roles in plants. Tomato is an important vegetable in human diet and provides the vitamin A precursor β-carotene. Genes encoding enzymes involved in carotenoid biosynthetic pathway have been cloned. However, regulation of genes involved in carotenoid biosynthetic pathway and accumulation of specific carotenoid in chromoplasts are not well understood. One of the approaches to understand regulation of carotenoid metabolism is to characterize the promoters of genes encoding proteins involved in carotenoid metabolism. Lycopene β-cyclase is one of the crucial enzymes in carotenoid biosynthesis pathway in plants. Its activity is required for synthesis of both α-and β-carotenes that are further converted into other carotenoids such as lutein, zeaxanthin, etc. This study describes the isolation and characterization of chromoplast-specific Lycopene β-cyclase (CYC-B) promoter from a green fruited S. habrochaites genotype EC520061.  相似文献   

20.
类胡萝卜素生物合成途径及其控制与遗传操作   总被引:11,自引:1,他引:10  
类胡萝卜素在真菌和植物细胞胞液/内质网上是由乙酰CoA经甲羟戊酸途径合成的,在细菌与植物质体中由磷酸甘油醛与丙酮酸经1-脱氧木酮糖-5-磷酸途径合成。形成的异戊烯基焦磷酸经多次缩合生成第一个类胡萝卜素八氢番茄红素,再经脱氢、环化、羟基化、环氧化等转变为其它类胡萝卜素。类胡萝卜素生物合成中涉及的酶都是膜结合的或整合入膜中的。类胡萝卜素合成是通过底物可利用性与环化分支方式进行控制的。白色体到叶绿体的转变以及花与果实成熟时类胡萝卜素合成增加是在基因转录水平调节的。进行类胡萝卜素合成酶基因的转化,可增加转化体类胡萝卜素的积累。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号