首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Candida albicans, fungal yeast causes several lethal infections in immune-suppressed patients and recently emerged as drug-resistant pathogens worldwide. The present study aimed to screen putative drug targets of Candia albicans and to study the binding potential of novel natural lead compounds towards these targets by computational virtual screening and molecular dynamic (MD) simulation. Through extensive analysis of mitogen-activated protein kinase (MAPK) signalling pathways, mitogen-activated protein kinase-1 (HOG1) and cell division control protein-42 (CDC42) genes were prioritized as putative targets based on their virulent functions. The three-dimensional structures of these genes, not available in their native forms, were computationally modeled and validated. 76 lead molecules from various natural sources were screened and their drug likeliness and pharmacokinetic features were predicted. Among these ligands, two lead molecules that demonstrated ideal drug-likeliness and pharmacokinetic features were docked against HOG1 and CDC42 and their binding potential was compared with the binding of conventional drug Fluconazole with their usual target. The prediction was computationally validated by MD simulation. The current study revealed that Cudraxanthone-S present in Cudrania cochinchinensis and Scutifoliamide-B present in Piper scutifolium exhibited ideal drug likeliness, pharmacokinetics and binding potential to the prioritized targets in comparison with the binding of Fluconazole and their usual target. MD simulation showed that CDC42-Cudraxanthone-S and HOG1-Scutifoliamide-B complexes were exhibited stability throughout MD simulation. Thus, the study provides significant insight into employing HOG1 and CDC42 of MAPK as putative drug targets of C. albicans and Cudraxanthone-S and Scutifoliamide-B as potential inhibitors for drug discovery.

Communicated by Ramaswamy H. Sarma  相似文献   

2.
Katara P  Grover A  Kuntal H  Sharma V 《Protoplasma》2011,248(4):799-804
Identification of potential drug targets is the first step in the process of modern drug discovery, subjected to their validation and drug development. Whole genome sequences of a number of organisms allow prediction of potential drug targets using sequence comparison approaches. Here, we present a subtractive approach exploiting the knowledge of global gene expression along with sequence comparisons to predict the potential drug targets more efficiently. Based on the knowledge of 155 known virulence and their coexpressed genes mined from microarray database in the public domain, 357 coexpressed probable virulence genes for Vibrio cholerae were predicted. Based on screening of Database of Essential Genes using blastn, a total of 102 genes out of these 357 were enlisted as vitally essential genes, and hence good putative drug targets. As the effective drug target is a protein which is only present in the pathogen, similarity search of these 102 essential genes against human genome sequence led to subtraction of 66 genes, thus leaving behind a subset of 36 genes whose products have been called as potential drug targets. The gene ontology analysis using Blast2GO of these 36 genes revealed their roles in important metabolic pathways of V. cholerae or on the surface of the pathogen. Thus, we propose that the products of these genes be evaluated as target sites of drugs against V. cholerae in future investigations.  相似文献   

3.
Reverse genetics in Leishmania spp has gained importance beyond basic research as efforts increase to discover and validate new drug targets. Often, the most promising targets are essential for viability of the parasites, defying a genetic analysis by current gene replacement strategies. Duncan et al. demonstrate the applicability of DiCre recombination in Leishmania for induced replacement of the kinase CRK3 gene in promastigotes. DiCre gene replacement leads to the rapid loss of the gene and allows monitoring the phenotypic effects of the loss of function, eliminating the need for prolonged cultivation and selection. Implementation of the DiCre approach will allow functional genetics of the most important of Leishmania genes and is likely to boost genetic research and drug target discovery.  相似文献   

4.
BackgroundDrugs that modulate previously unexplored targets could potentially slow or halt the progression of neurodegenerative diseases. Several candidate proteins lie within the dark kinome, those human kinases that have not been well characterized. Much of the kinome (~80%) remains poorly studied, and these targets likely harbor untapped biological potential.Scope of reviewThis review highlights the significance of kinases as mediators of aberrant pathways in neurodegeneration and provides examples of published high-quality small molecules that modulate some of these kinases.Major conclusionsThere is a need for continued efforts to develop high-quality chemical tools to illuminate the function of understudied kinases in the brain. Potent and selective small molecules enable accurate pairing of an observed phenotype with a protein target.General significanceThe examples discussed herein support the premise that validation of therapeutic hypotheses surrounding kinase targets can be accomplished via small molecules and they can serve as the basis for disease-focused drug development campaigns.  相似文献   

5.
Fusion genes have been reported as a means of enabling the development of novel or enhanced functions. In this report, we analyzed fusion genes in the genomes of two Helicobacter pylori strains (26695 and J99) and identified 32 fusion genes that are present as neighbours in one strain (components) and are fused in the second (composite), and vice-versa. The mechanism for each case of gene fusion is explored. 28 out of 32 genes identified as fusion products in this analysis were reported as essential genes in the previously documented transposon mutagenesis of H. pylori strain G27. This observation suggests the potential of the products of fusion genes as putative microbial drug targets. These results underscore the utility of bacterial genomic sequence comparisons for understanding gene evolution and for in silico drug target identification in the post-genomic era. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

6.
Salmonella typhi, a Gram negative bacterium, has become multidrug resistant (MDR) to wide classes of antibacterials which necessitate an alarming precaution. This study focuses on the binding potential and therapeutic insight of Nano-Fullerene C60 towards virulent targets of Salmonella typhi by computational prediction and preliminary in vitro assays. The clinical isolates of Salmonella typhi were collected and antibiotic susceptibility profiles were assessed. The drug targets of pathogen were selected by rigorous literature survey and gene network analysis by various metabolic network resources. Based on this study, 20 targets were screened and the 3D structures of few drug targets were retrieved from PDB and others were computationally predicted. The structures of nanoleads such as Fullerene C60, ZnO and CuO were retrieved from drug databases. The binding potential of these nanoleads towards all selected targets were predicted by molecular docking. The best docked conformations were screened and concept was investigated by preliminary bioassays. This study revealed that most of the isolates of Salmonella typhi were found to be MDR (p < .05). The theoretical models of selected drug targets showed high stereochemical validity. The molecular docking studies suggested that Fullerene C60 showed better binding affinity towards the drug targets when compared to ZnO and CuO. The preliminary in vitro assays suggested that 100 μg/L Fullerene C60 posses significant inhibitory activities and absence of drug resistance to this nanoparticle. This study suggests that Fullerene C60 can be scaled up as probable lead molecules against the major drug targets of MDR Salmonella typhi.  相似文献   

7.
Specific inhibition of gene expression by antisense agents provides the basis for rational drug discovery based on molecular targets. Due to the specificity of Watson-Crick base-pair hybridization, antisense oligodeoxynucleotides have been used extensively in attempts to inhibit gene expression in both in vitro and in vivo models. Analogues modified from normal phosphodiester oligodeoxynucleotides have entered clinical trials against diseases including AIDS and cancer. Although the precise mechanism of action of these drugs has not been clarified, these oligodeoxynucleotides offer considerable promise as novel molecular therapeutics. We review the recent attempts to harness the therapeutic potential of these oligodeoxynucleotides and appraise the near-term prospects for antisense technology.  相似文献   

8.
Abstract

Cancer is a multi-origin collection of diseases attributed by abnormal and uncontrolled cell growth spread from origin to other parts of body eventually leading to death. After decades of research, anticancer drug therapy is still very much limited to inhibiting growth and controlling the spread of tumour cells. Finding novel molecular targets and drug candidates using assimilation of experimental and computational approaches is among the recent strategies adopted by researchers to speed up the anticancer drug discovery process. In present study, synthesis of 40 novel substituted 5-aryl-2-oxo-/thioxo-2,3-dihydro-1H-benzo[6,7]chromeno[2,3-d]pyrimidine-4,6,11(5H)-triones has been accomplished followed by molecular target identification using different in silico approaches. The target prioritization methodology involved identification and selection of targets, molecular docking followed by molecular dynamic simulation and determination of binding free energy using MM-GBSA technique. Systematic and stepwise virtual screening of biological targets lead to identification of B-cell lymphoma 6 protein (BCL6), lysine-specific histone demethylase 1?A (LSD1), nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB P65) and poly (ADP-ribose) polymerase 1 (PARP1) as suitable anticancer targets for the set of synthesized compounds.

Communicated by Ramaswamy H. Sarma  相似文献   

9.
Infectious diseases are the leading causes of death worldwide. Hence, there is a need to develop new antimicrobial agents. Traditional method of drug discovery is time consuming and yields a few drug targets with little intracellular information for guiding target selection. Thus, focus in drug development has been shifted to computational comparative genomics for identifying novel drug targets. Leptospirosis is a worldwide zoonosis of global concern caused by Leptospira interrogans. Availability of L. interrogans serovars and human genome sequences facilitated to search for novel drug targets using bioinformatics tools. The genome sequence of L. interrogans serovar Copenhageni has 5,124 genes while that of serovar Lai has 4,727 genes. Through subtractive genomic approach 218 genes in serovar Copenhageni and 158 genes in serovar Lai have been identified as putative drug targets. Comparative genomic approach had revealed that 88 drug targets were common to both the serovars. Pathway analysis using the Kyoto Encyclopaedia of Genes and Genomes revealed that 66 targets are enzymes and 22 are non-enzymes. Sixty two common drug targets were predicted to be localized in cytoplasm and 16 were surface proteins. The identified potential drug targets form a platform for further investigation in discovery of novel therapeutic compounds against Leptospira.  相似文献   

10.
Pseudomonas aeruginosa is an opportunistic bacterium known for causing chronic infections in cystic fibrosis and chronic obstructive pulmonary disease (COPD) patients. Recently, several drug targets in Pseudomonas aeruginosa PAO1 have been reported using network biology approaches on the basis of essentiality and topology and further ranked on network measures viz. degree and centrality. Till date no drug/ligand molecule has been reported against this targets.In our work we have identified the ligand /drug molecules, through Orthologous gene mapping against Bacillus subtilis subsp. subtilis str. 168 and performed modelling and docking analysis. From the predicted drug targets in PA PAO1, we selected those drug targets which show statistically significant orthology with a model organism and whose orthologs are present in all the selected drug targets of PA PAO1.Modeling of their structure has been done using I-Tasser web server. Orthologous gene mapping has been performed using Cluster of Orthologs (COGs) and based on orthology; drugs available for Bacillus sp. have been docked with PA PAO1 protein drug targets using MoleGro virtual docker version 4.0.2.Orthologous gene for PA3168 gyrA is BS gyrAfound in Bacillus subtilis subsp. subtilis str. 168. The drugs cited for Bacillus sp. have been docked with PA genes and energy analyses have been made. Based on Orthologous gene mapping andin-silico studies, Nalidixic acid is reported as an effective drug against PA3168 gyrA for the treatment of CF and COPD.  相似文献   

11.
Abstract

Functional genomics is inundating the pharmaceutical industry with large numbers of potential gene targets from several sources such as gene expression profiling experiments (DNA microchips, proteomics) or database mining. Oligonucleotide-based RNA-knock down technologies such as antisense or RNA interference can aid in the filtering and prioritization of target candidates in the drug discovery process.  相似文献   

12.
【背景】沙门菌是一种重要的食源性人兽共患病原菌,可引起多种食源性疾病。【目的】了解云南地区鸭源沙门菌病的流行现状、耐药现象及毒力基因携带等基本情况。【方法】无菌采集云南各地区病死鸭肝脏样品169份进行沙门菌分离,对分离株进行血清分型鉴定、药敏及相关耐药基因、毒力基因筛查。【结果】分离到鸭源沙门菌48株,分离率为28.40%,鉴定出3种血清型,其中肠炎沙门菌为优势血清型。分离株对青霉素G、林可霉素、克林霉素和利福平的耐药率达100%,每株菌至少对3类6种及以上的抗生素耐药,单株最高可耐14种,产生了22种耐药谱型。共检出耐药基因5种,blaTEMtetB检出率分别为27.08%和22.92%,tetAsul2和EBC的检出率较低。毒力基因共检出10种,其中,SPI-1(avrA)、SPI-3(mgtC)、SPI-4(siiD)、SPI-5(sopB)和bcfC检出率均高达100%,SPI-2(ssaQ)、spvBspvC、pefAstn的检出率均达60%以上,cdtB未检出。【结论】云南地区鸭源沙门菌主要流行血清型为肠炎沙门菌,耐药性及多重耐药情况严重,耐药机制复杂,耐药基因与耐药表型符合率低,毒力基因检出率较高。研究结果可为云南地区鸭群沙门菌病的防控和净化提供参考。  相似文献   

13.
Abstract

During the last few years, many gene therapy strategies have been developed for various disease targets. The development of anticancer gene therapy strategies to selectively generate cytotoxic nucleoside or nucleotide analogs is an attractive goal. One such approach involves the delivery of herpes simplex virus thymidine kinase followed by the acyclic nucleoside analog ganciclovir. We have developed another gene therapy methodology for the treatment of cancer that has several significant attributes. Specifically, our approach involves the delivery of E. coli purine nucleoside phosphorylase, followed by treatment with a relatively non-toxic nucleoside prodrug that is cleaved by the enzyme to a toxic compound. This presentation describes the concept, details our search for suitable prodrugs, and summarizes the current biological data.  相似文献   

14.
【背景】马链球菌兽疫亚种(Streptococcus equi subsp. zooepidemicus,SeZ)是引起马腺疫的主要病原,还可引起猪链球菌病,加强该菌的地方株分子流行病学监测对有效防控相关疫病十分必要。【目的】对新疆地区2个马场SeZ分离株进行鉴定和药敏特性分析,并分析3株新疆分离株的分子流行与菌株的遗传进化特征。【方法】对分离纯化的3株病原菌(ZHZ113、ZHZ211和ZHZ523)进行染色观察、生化及药敏特性检测,对16S rRNA和SeM基因进行遗传进化分析,以链球菌7个管家基因arcC、nrdE、proS、spi、tdk、tpi和yqiL为目的基因对3株分离菌进行多位点序列分型(Multilocus Sequence Typing,MLST)研究。【结果】3株SeZ的药敏结果显示这3株分离菌对不同抗生素的耐药程度不同,但均对头孢西丁、庆大霉素、链霉素、红霉素、左氧氟沙星、环丙沙星、土霉素等11种药物敏感。16SrRNA基因序列分析显示这3株分离菌均属于Ⅱ群(兽疫链球菌)。3株菌的MLST分型结果分别为ST39、ST419、ST421型,其中ST419和ST42...  相似文献   

15.
Aspartic proteases are important virulence factors for pathogens and are recognized as attractive drug targets. Seven aspartic proteases (ASPs) have been identified in Toxoplasma gondii genome. Bioinformatics and phylogenetic analyses regroup them into five monophyletic groups. Among them, TgASP1, a coccidian specific aspartic protease related to the food vacuole plasmepsins, is associated with the secretory pathway in non-dividing cells and relocalizes in close proximity to the nascent inner membrane complex (IMC) of daughter cells during replication. Despite a potential role for TgASP1 in IMC formation, the generation of a conventional knockout of the TgASP1 gene revealed that this protease is not required for T. gondii tachyzoite survival or for proper IMC biogenesis.  相似文献   

16.
17.
【背景】F-RNA噬菌体近年来常被作为水环境中诺如病毒污染的指示物。本课题组前期以大肠杆菌ATCC700891T为宿主,从人便样中筛选出一株F-RNA噬菌体YM1,其与大肠杆菌噬菌体MS2亲缘关系最近,MS2宿主通常为含有性菌毛的雄性大肠杆菌。【目的】探索F-RNA噬菌体与其肠道宿主及诺如病毒之间的互作关系,筛选YM1的肠道宿主。【方法】采用选择性培养基筛选YM1阳性便样中的大肠杆菌并进行YM1侵染验证,结合16S rRNA基因扩增子测序分析YM1接种前后便样中的差异性菌群种类,对YM1阳性便样中潜在的YM1肠道宿主进行分析。【结果】筛选到351个大肠杆菌菌株,YM1侵染结果表明这些大肠杆菌均不是YM1的宿主;16S rRNA基因扩增子测序分析差异性菌种显示,Enterobacter sp. (OTU144)和Enterobacter sp. (OTU11)这2株肠杆菌属细菌的相对丰度在YM1感染后发生显著性的降低,表明该2种细菌可能为YM1的潜在肠道宿主。【结论】YM1具有严格的宿主特异性,便样中大肠杆菌并非YM1的肠道宿主,同时发现了2种YM1的潜在宿主,为进一步筛选分离YM1的肠道宿主提供了方向和依据。  相似文献   

18.
19.
Abstract

Two polypurine sequences interrupted respectively by one and two adjacent pyrimidines have been identified in the promoter of the human bcr gene. Although these targets are irregular they are recognised and tightly bound by AG and GT motif triplex-forming oligonucleotides. Thermodynamic and kinetic data are presented.  相似文献   

20.
【背景】水体环境分布广、流动性强,是耐药菌和耐药基因传播的主要媒介。【目的】了解北方污水厂大肠杆菌携带的耐药基因及可移动遗传元件情况。【方法】从北方污水厂筛选出一株多重耐药大肠杆菌,通过药敏试验进行耐药性检验,采用96孔板法测定菌株的最小抑菌浓度,利用酶标仪探究亚抑菌浓度抗生素对菌株生长的影响,并对菌株进行全基因组测序,对其携带的耐药基因及可移动遗传元件进行预测。【结果】大肠杆菌WEC对四环素、环丙沙星、诺氟沙星和红霉素具有耐药性,亚抑菌浓度的四环素、环丙沙星和诺氟沙星能够延缓或抑制菌株的生长。WEC菌株的基因组中包含一条大小为4 782 114 bp的环状染色体和2个大小分别为60 306 bp (pWEC-1)和92 065 bp (pWEC-2)的环状质粒。菌株共携带129个耐药基因,其中128个位于染色体上,在染色体上预测到原噬菌体、基因岛及插入序列的存在,部分可移动遗传元件携带有耐药基因。质粒pWEC-1中无耐药基因,pWEC-2含有1个耐药基因,在质粒基因组中预测到原噬菌体和插入序列。【结论】污水源大肠杆菌WEC是一株多重耐药菌株,其基因组中携带耐药基因和多种可移动遗传元件...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号