首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The 3D organization of chromatin controls gene expression through spatial interactions between genomic loci. FISH and 3C‐based methods that are commonly used to study chromatin organization utilize chemical crosslinking, a step that may introduce biases in detectable chromatin interactions. In their recent study, Papantonis and colleagues (Brant et al, 2016 ) developed alternative new methods of detecting chromatin contacts without the use of chemical crosslinking agents. These tools increase the resolution and confidence at which interactions can be identified, and may be informative for chromatin interaction dynamics.  相似文献   

2.
3.
4.
5.
Zhang Z  Pugh BF 《Cell》2011,144(2):175-186
The genomic organization of chromatin is increasingly recognized as a key regulator of cell behavior, but deciphering its regulation mechanisms requires detailed knowledge of chromatin's primary structure-the assembly of nucleosomes throughout the genome. This Primer explains the principles for mapping and analyzing the primary organization of chromatin on a genomic scale. After introducing chromatin organization and its impact on gene regulation and human health, we then describe methods that detect nucleosome positioning and occupancy levels using chromatin immunoprecipitation in combination with deep sequencing (ChIP-Seq), a strategy that is now straightforward and cost efficient. We then explore current strategies for converting the sequence information into knowledge about chromatin, an exciting challenge for biologists and bioinformaticians.  相似文献   

6.
7.
8.
9.
Chromosome conformation capture technologies that provide frequency information for contacts between genomic regions have been crucial for increasing our understanding of genome folding and regulation. However, such data do not provide direct evidence of the spatial 3D organization of chromatin. In this opinion article, we discuss the development and application of computational methods to reconstruct chromatin 3D structures from experimental 2D contact data, highlighting how such modeling provides biological insights and can suggest mechanisms anchored to experimental data. By applying different reconstruction methods to the same contact data, we illustrate some state-of-the-art of these techniques and discuss our gene resolution approach based on Brownian dynamics and Monte Carlo sampling.  相似文献   

10.
在细胞核内,染色质可及性模式会随着外部刺激和发育线索的改变而发生动态变化。染色质可及性重构对于基因表达调控至关重要,在建立和维持细胞特性等方面发挥着重要作用。因此开展染色质可及性的研究对染色质功能上的三维解析具有十分重要的意义。近几年,随着高通量测序技术的进步以及测序成本的降低,基于高通量测序技术的染色质可及性分析方法得到了迅速发展。目前观察和分析全基因组染色质开放与否的常见技术主要有脱氧核糖核酸酶I超敏位点测序(DNase-seq)、微球菌核酸酶测序(MNase-seq)、甲醛辅助分离调控元件测序(FAIRE-seq)以及转座酶可及性测序(ATAC-seq)。本文比较了这4种染色质可及性分析技术的优缺点,详细介绍了它们的原理及主要实验流程,并简要讨论了它们的发展及相关技术的应用,期望通过这些互补的方法为染色质分析领域的未来发展提供一些借鉴和思路。  相似文献   

11.
李占杰  秦源 《植物学报》2021,56(6):664-675
真核生物基因组上的核小体呈现不均匀分布, 转录活跃区域的染色质结构相对松散且易被调节蛋白结合, 这些区域的可接近程度称为染色质可及性。随着测序技术的发展, DNase-seq、ATAC-seq、MNase-seq和NOMe-seq等组学技术的应用, 全基因组范围内染色质可及性检测变得简便且高效。该文主要介绍了真核生物染色质可及性的4种基本检测方法的技术原理, 总结了核小体定位、组蛋白修饰以及转录因子结合与染色质可及性的关系, 并综述了染色质可及性参与植物生长发育和环境响应研究进展, 以期为植物领域全基因组水平染色质可及性研究、顺式调控元件挖掘及发育和环境响应过程中基因表达调控网络的解析提供借鉴。  相似文献   

12.
13.
14.
15.
The RUNX1/AML1 gene is the most frequent target for chromosomal translocation, and often identified as a site for reciprocal rearrangement of chromosomes 8 and 21 in patients with acute myelogenous leukemia. Virtually all chromosome translocations in leukemia show no consistent homologous sequences at the breakpoint regions. However, specific chromatin elements (DNase I and topoisomerase II cleavage) have been found at the breakpoints of some genes suggesting that structural motifs are determinant for the double strand DNA-breaks. We analyzed the chromatin organization at intron 5 of the RUNX1 gene where all the sequenced breakpoints involved in t(8;21) have been mapped. Using chromatin immunoprecipitation assays we show that chromatin organization at intron 5 of the RUNX1 gene is different in HL-60 and HeLa cells. Two distinct features mark the intron 5 in cells expressing RUNX1: a complete lack or significantly reduced levels of Histone H1 and enrichment of hyperacetylated histone H3. Strikingly, induction of DNA damage resulted in formation of t(8;21) in HL-60 but not in HeLa cells. Taken together, our results suggest that H1 depletion and/or histone H3 hyperacetylation may have a linkage with an increase susceptibility of specific chromosomal regions to undergo translocations.  相似文献   

16.
The organization and dynamics of the genome have been shown to influence gene expression in many organisms. Data from mammalian tissue culture cells have provided conflicting conclusions with regard to the extent to which chromatin organization is inherited from mother to daughter nuclei. To gain insight into chromatin organization and dynamics, we developed transgenic Arabidopsis lines in which centromeres were tagged with a green fluorescent protein fusion of the centromere-specific histone H3. Using four-dimensional (4-D) live cell imaging, we show that Arabidopsis centromeres are constrained at the nuclear periphery during interphase and that the organization of endoreduplicated sister centromeres is cell type dependent with predominant clustering in root epidermal cells and dispersion in leaf epidermal cells. 4-D tracking of the entire set of centromeres through mitosis, in growing root meristematic cells, demonstrated that global centromere position is not precisely transmitted from the mother cell to daughter cells. These results provide important insight into our understanding of chromatin organization among different cells of a living organism.  相似文献   

17.
《Biophysical journal》2020,118(9):2193-2208
The three-dimensional (3D) organization of chromatin, on the length scale of a few genes, is crucial in determining the functional state—accessibility and amount of gene expression—of the chromatin. Recent advances in chromosome conformation capture experiments provide partial information on the chromatin organization in a cell population, namely the contact count between any segment pairs, but not on the interaction strength that leads to these contact counts. However, given the contact matrix, determining the complete 3D organization of the whole chromatin polymer is an inverse problem. In this work, a novel inverse Brownian dynamics method based on a coarse-grained bead-spring chain model has been proposed to compute the optimal interaction strengths between different segments of chromatin such that the experimentally measured contact count probability constraints are satisfied. Applying this method to the α-globin gene locus in two different cell types, we predict the 3D organizations corresponding to active and repressed states of chromatin at the locus. We show that the average distance between any two segments of the region has a broad distribution and cannot be computed as a simple inverse relation based on the contact probability alone. The results presented for multiple normalization methods suggest that all measurable quantities may crucially depend on the nature of normalization. We argue that by experimentally measuring predicted quantities, one may infer the appropriate form of normalization.  相似文献   

18.
We have used gene disruptions and nuclease probes to assess the roles of yeast 2 micron plasmid genes in plasmid chromatin organization. The chromatin structure at the replication origin is not dependent on any of the four major open reading frames, A, B, C, or D. While stable plasmid maintenance is known to depend on a cis-acting locus STB and genes B and C, we find that only gene B influences STB chromatin. Other interactions between plasmid gene products and sequences may reflect gene regulation: the chromatin organization at the 5' end of gene A, which codes for a site-specific recombinase, depends on both gene B and gene C. Since disruption of gene C results in an increase in plasmid copy number that is dependent on gene A, we propose that gene C (and probably gene B) control copy number by regulating the level of the gene A recombinase.  相似文献   

19.
Gene activity is controlled at different levels of chromatin organization, which involve genomic sequences, nucleosome structure, chromatin folding and chromosome arrangement. These levels are interconnected and influence each other. At the basic level nucleosomes generally occlude the DNA sequence from interacting with DNA-binding proteins. Evidently, nucleosome positioning is a major factor in gene control and chromatin organization. Understanding the biological rules that govern the deposition and removal of the nucleosomes to and from the chromatin fiber is the key to understanding gene regulation and chromatin organization. In this review we describe and discuss the relationship between the different levels of chromatin organization in plants and animals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号