首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among the 11 human TLRs, a subfamily TLR7, TLR8, and TLR9 display similarities in structure and endosomal localization. Natural agonists consisting of nucleic acids, such as ssRNA or DNA with CpG motifs, activate the innate immune cells through these TLRs. Immune response modifiers (IRMs) of imidazoquinoline class compounds 3M-001, 3M-002, and 3M-003 have been shown to activate the innate immune system via TLR7, TLR8, and TLR7/8, respectively. In looking at the effect of the agonists of the TLR7, TLR8, and TLR9 on the activation of NF-kappaB of transfected HEK cells, we discovered that some oligodeoxynucleotides (ODNs) could modulate imidazoquinoline effects in a negative or positive manner. In this study we demonstrate that poly(T) ODNs can inhibit TLR7 and enhance TLR8 signaling events involving NF-kappaB activation in HEK cells and cytokine production (IFN-alpha, TNF, and IL-12) by human primary PBMC. In contrast, TLR3 agonist poly(I:C) does not affect imidazoquinoline-induced responses. The modulation of TLR7 and TLR8 responses is independent of CpG motifs or the nature of the ODN backbone structure. Furthermore, we show that to be an effective modulator, the ODNs need to be in the cell at the same time with either of the TLR7 or TLR8 agonist. We have also demonstrated that there is a physical interaction between IRMs and ODNs. The cross-talk between ODNs, IRMs, and TLR7 and TLR8 uncovered by this study may have practical implications in the field of microbial infections, vaccination, and tumor therapy.  相似文献   

2.
The TLR4-TRIF pathway protects against H5N1 influenza virus infection   总被引:1,自引:0,他引:1  
Prestimulation of the TLR4 pathway with lipopolysaccharide (LPS) protects mice from lethal infection with H5N1 influenza virus. Here, we reveal that the TLR4-TRIF pathway is required for this protective effect by using mice whose TLR4-related molecules were knocked out. Microarray analysis of primary mouse lung culture cells that were LPS pretreated and infected with an H5N1 virus indicated that TLR3 mRNA was upregulated. Primary lung culture cells of TLR3 knockout mice showed no response to LPS pretreatment against H5N1 virus infection, suggesting that TLR3 is also involved in the preventive effect of LPS. Our data suggest that the TLR4-TRIF axis has an important role in stimulating protective innate immunity against H5N1 influenza A virus infection and that TLR3 signaling is involved in this pathway.  相似文献   

3.
Toll-like receptors (TLR) sense a variety of microbial products and play an important role in the mounting of innate and adaptive immune responses. TLR1 to TLR9 are common in mice and humans and recognize similar ligands in both species, with the exception of TLR8. Human TLR7 and TLR8 and mouse TLR7 detect viral single-stranded RNA and imidazoquinoline compounds, while mouse TLR8 not. Based on this discrepancy, for long time it was believed that mouse TLR8 is not functional and as a consequence the contribution of TLR8 to innate immunity remained poorly understood. Our recent studies revealed an important role for TLR8 in the regulation of TLR7-mediated autoimmunity in the mouse. This review illustrates our current understanding regarding the function of TLR8 and its potential for future clinical use for the treatment and/or prevention of various pathological conditions.  相似文献   

4.
Toll-like receptor 8 (TLR8) is an important component of the human innate immune system that recognizes single stranded RNA (ssRNA). Recent X-ray crystal structures of TLR8 bound to ssRNA revealed a previously unrecognized binding site for a 5′-UpG-3′ dinucleotide. Here we use an atomic mutagenesis strategy coupled with a cellular TLR8 activation assay to probe the importance of specific functional groups present on the guanine base in RNA-mediated receptor agonism and antagonism. Results from RNA analogs containing 7-deazaguanosine, 2-aminopurine and inosine confirm the importance of guanine N7, O6 and N2, respectively, in TLR8 activation. Nevertheless, these RNAs each retained TLR8 antagonism activity. RNA containing 7-deaza-8-azainosine (7d8aI) was prepared from a novel phosphoramidite and found to be a weaker TLR8 activator than guanosine-containing RNA. However, 7d8aI-containing RNA also retained TLR8 antagonism activity indicating that removal of multiple TLR8 H-bonding sites on guanine is insufficient for blocking TLR8 antagonism by guanine-containing RNA. We also identified an oligoribonucleotide length dependence on both TLR8 activation and antagonism. These studies extend our understanding of the effects of nucleobase modification on immune stimulation and will inform the design of novel RNA-based therapeutics.  相似文献   

5.
Characterization of equine and other vertebrate TLR3, TLR7, and TLR8 genes   总被引:2,自引:0,他引:2  
Toll-like receptors 3, 7, and 8 (TLR3, TLR7, and TLR8) were studied in the genomes of the domestic horse and several other mammals. The messenger RNA sequences and exon/intron structures of these TLR genes were determined. An equine bacterial artificial chromosome clone containing the TLR3 gene was assigned by fluorescent in situ hybridization to the horse chromosomal location ECA27q16–q17 and this map location was confirmed using an equine radiation hybrid panel. Direct sequencing revealed 13 single-nucleotide polymorphisms in the coding regions of the equine TLR 3, 7, and 8 genes. Of these polymorphisms, 12 were not previously reported. The allelic frequency was estimated for each single-nucleotide polymorphism from genotyping data obtained for 154 animals from five horse breeds. Some of these frequencies varied significantly among different horse breeds. Domain architecture predictions for the three equine TLR protein sequences revealed several conserved regions within the variable leucine-rich repeats between the corresponding horse and cattle TLR proteins. A phylogenetic analysis did not indicate that any significant exchanges had occurred between paralogous TLR7 and TLR8 genes in 20 vertebrate species analyzed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Mycoplasma arthritidis mitogen (MAM) is a superantigen secreted by M. arthritidis, an agent of murine arthritis and toxicity. We previously demonstrated that C3H mouse sub-strains differing in expression of Toll-like receptor 4 (TLR4), differed in immune reactivity to MAM due to differential engagement of TLR2 and TLR4. Here we examine the role of B7 co-stimulatory molecules in immune outcome and disease manifestations resulting from these different MAM/TLR2 and MAM/TLR4 interactions. Injections of MAM into C3H/HeJ mice upregulated expression of B7-1 but not B7-2 on peritoneal adherent cells, whereas B7-1 expression was lower on cells from C3H/HeSnJ mice. Anti-B7-1 antibody but not anti-B7-2, injected in vivo, changed the type 1 cytokines in MAM-injected C3H/HeJ mice to a type 2 cytokines and, conversely, the type 2 response in C3H/HeSnJ mice injected with anti-B7-1 shifted to a type 1 pattern. Whereas anti-B7-2 exerted no effect on disease in either mouse strain, anti-B7-1 significantly delayed the lethal toxicity of M. arthritidis in C3H/HeJ mice but enhanced arthritis in C3H/HeSnJ mice. Thus, TLR-mediated regulation of B7-1 results in diverse cytokine profiles in C3H sub-strains, and that the interaction of MAM with different TLR(s) may differentially affect cytokine responses and ultimately, M. arthritidis disease.  相似文献   

7.
Although TLR7 and TLR8 are phylogenetically and structurally related, their relative functions are largely unknown. The role of TLR7 has been established using TLR7-deficient mice and small molecule TLR7 agonists. The absence of TLR8-selective agonists has hampered our understanding of the role of TLR8. In this study TLR agonists selective for TLR7 or TLR8 were used to determine the repertoire of human innate immune cells that are activated through these TLRs. We found that TLR7 agonists directly activated purified plasmacytoid dendritic cells and, to a lesser extent, monocytes. Conversely, TLR8 agonists directly activated purified myeloid dendritic cells, monocytes, and monocyte-derived dendritic cells (GM-CSF/IL-4/TGF-beta). Accordingly, TLR7-selective agonists were more effective than TLR8-selective agonists at inducing IFN-alpha- and IFN-regulated chemokines such as IFN-inducible protein and IFN-inducible T cell alpha chemoattractant from human PBMC. In contrast, TLR8 agonists were more effective than TLR7 agonists at inducing proinflammatory cytokines and chemokines, such as TNF-alpha, IL-12, and MIP-1alpha. Thus, this study demonstrated that TLR7 and TLR8 agonists differ in their target cell selectivity and cytokine induction profile.  相似文献   

8.
Imidazoquinolone compounds, such as resiquimod are Toll-like receptor (TLR) 7/8 ligands representing novel immune response modifiers undergoing clinical testing. Resiquimod has been reported to modulate conventional human monocyte-derived DC (moDC) differentiation, but the role of TLR7 and TLR8 is unclear. We directly dissected the TLR7- and TLR8-dependency by employing selective TLR7 ligands and resiquimod-coculture experiments with inhibitory oligonucleotides (iODN) suppressing TLR7, TLR7+8 or TLR7+8+9. Selective TLR7 ligands did not affect conventional moDC differentiation as analyzed by CD14/CD1a expression. iODN experiments confirmed that resiquimod’s effects during DC differentiation were antagonized only with TLR8 iODNs. Direct comparison of resiquimod DC with TLR7- and control-DC revealed significantly higher T-cell costimulatory molecule and MHC class II expression. Resiquimod DC promoted significantly stronger allogeneic T-cell proliferation and stronger naïve CD4+ T-cell proliferation. These results indicate the relevance of TLR8 for human monocyte-derived DC differentiation and maturation and may be relevant for clinical trials employing resiquimod.  相似文献   

9.
TLR7 enhances germinal center maturation and migration of B cells to the dark zone where proliferation and somatic hypermutation occur. Our goal was to determine how Tlr7 dose influences selection of the autoreactive B cell repertoire in NZW/BXSB. Yaa mice bearing the site-directed heavy chain transgene 3H9 that encodes for the TLR7 regulated anti-CL response. To create a physiologic setting in which autoreactive B cells compete for survival with non-autoreactive B cells, we generated bone marrow chimeras in which disease onset occurred with similar kinetics and the transferred 3H9+ female non-Yaa, male Yaa or male TLR7-/Yaa cells could be easily identified by positivity for GFP. Deletion of 3H9 B cells occurred in the bone marrow and the remaining 3H9 follicular B cells manifested a decrease in surface IgM. Although there were differences in the naïve repertoire between the chimeras it was not possible to distinguish a clear pattern of selection against lupus related autoreactivity in TLR7-/Yaa or female chimeras. By contrast, preferential expansion of 3H9+ B cells occurred in the germinal centers of male Yaa chimeras. In addition, although all chimeras preferentially selected 3H9/Vκ5 encoded B cells into the germinal center and plasma cell compartments, 3H9 male Yaa chimeras had a more diverse repertoire and positively selected the 3H9/Vκ5-48/Jκ4 pair that confers high affinity anti-cardiolipin activity. We were unable to demonstrate a consistent effect of Tlr7 dose or Yaa on somatic mutations. Our data show that TLR7 excess influences the selection, expansion and diversification of B cells in the germinal center, independent of other genes in the Yaa locus.  相似文献   

10.
The toll-like receptors (TLRs) 7, 8, and 9 stimulate innate immune responses upon recognizing pathogen nucleic acids. Certain GU- or AU-rich RNA sequences were described to differentiate between human TLR7- and TLR8-mediated immune effects. Those single-stranded RNA molecules require endosomal delivery for stabilization against ribonucleases. We have discovered RNA sequences that preferentially activate TLR7, form higher ordered structures, and do not require specific cellular delivery. In addition, a dual activation of TLR8 and TLR9 without affecting TLR7 can be achieved by chimeric molecules consisting of GU-rich RNA and Cytosin (C) phosphordiester or phosphorthioat (p) guanine (CpG) motif DNA sequences. Such chimeras stimulate TLR9-mediated type I interferon (IFN) and TLR8-depending proinflammatory cytokine and chemokine production upon primary human cell activation. However, an RNA-dependent TLR7 IFN-α cytokine release is suppressed by the phosphorothioate DNA sequence contained in the chimeric molecule. To convert the immune response of a single-stranded RNA from TLR7/8 to TLR9, a simple chemical modification at the 5' end proves to be sufficient. Such 8-oxo-2'-deoxy-guanosine or 8-bromo-2'-deoxy-guanosine modifications of the first guanosine in GU-rich single-stranded RNAs convert the immune response to include TLR9 activation and demonstrate strong additive effects for type I IFN immune responses in human primary cells.  相似文献   

11.
In continuation of our studies with stabilized immune modulatory RNA (SIMRA) compounds, we have synthesized novel SIMRA compounds incorporating arabinonucleotides to study their effects on TLR7 and TLR8 activation. The SIMRA compounds containing ara-G, ara-C, ara-U or ara-A substitutions activated TLR8 in HEK293 cells. Interestingly, the SIMRA compound containing ara-C also activated TLR7 and stimulated immune responses in vivo in mice. In human PBMC and pDC assays, SIMRA compounds containing arabinonucleotides induced Th1-type cytokine profiles. These results suggest that SIMRA compounds containing arabinonucleotides act as agonists of TLR7 and TLR8.  相似文献   

12.
Activation of macrophages via toll-like receptors (TLRs) is important for inflammation and host defense against pathogens. Recent data suggest that non-pathogenic molecules released by trauma also can trigger inflammation via TLR2 and TLR4. Here, we tested whether TLRs are regulated after sterile spinal cord injury (SCI) and examined their effects on functional and anatomical recovery. We show that mRNA for TLR1, 2, 4, 5, and 7 are increased after SCI as are molecules associated with TLR signaling (e.g. MyD88, NFkappaB). The significance of in vivo TLR2 and TLR4 signaling was evident in SCI TLR4 mutant (C3H/HeJ) and TLR2 knockout (TLR2-/-) mice. In C3H/HeJ mice, sustained locomotor deficits were observed relative to SCI wild-type control mice and were associated with increased demyelination, astrogliosis, and macrophage activation. These changes were preceded by reduced intraspinal expression of interleukin-1beta mRNA. In TLR2-/- mice, locomotor recovery also was impaired relative to SCI wild-type controls and novel patterns of myelin pathology existed within ventromedial white matter--an area important for overground locomotion. Together, these data suggest that in the absence of pathogens, TLR2 and TLR4 are important for coordinating post-injury sequelae and perhaps in regulating inflammation and gliosis after SCI.  相似文献   

13.
Mycoplasma arthritidis mitogen (MAM) is a superantigen (SAg) from M. arthritidis, an agent of murine toxic shock syndrome and arthritis. We previously demonstrated that C3H/HeJ and C3H/HeSnJ mice that differ in expression of TLR4 differed in immune reactivity to MAM. We show here that MAM directly interacts with TLR2 and TLR4 by using monoclonal antibodies to TLR2 and TLR4 which inhibit cytokine responses of THP-1 cells to MAM. Also, using macrophages from C3H substrains and TLR2-deficient mice, we confirmed that both TLR2 and TLR4 are used by MAM. Levels of IL-6 in supernatants of MAM-challenged macrophages were higher in mice which expressed only TLR2, lesser with both TLR2 and TLR4, and absent in mice lacking both TLR2 and TLR4. In addition, expression of TLR2 and TLR4 was moderately upregulated in wild-type cells but cells lacking TLR4 showed a fivefold increase in TLR2 expression. Further, blockade of TLR4 on macrophages of C3H/HeN mice with antibody greatly increased expression of TLR2 and release of IL-12p40 in response to MAM. These results indicate that the SAg, MAM, interacts with both TLR2 and TLR4 and that TLR4 signalling might downregulate the MAM/TLR2 inflammatory response.  相似文献   

14.
The relative roles of the endosomal TLR3/7/8 versus the intracellular RNA helicases RIG-I and MDA5 in viral infection is much debated. We investigated the roles of each pattern recognition receptor in rhinovirus infection using primary bronchial epithelial cells. TLR3 was constitutively expressed; however, RIG-I and MDA5 were inducible by 8-12 h following rhinovirus infection. Bronchial epithelial tissue from normal volunteers challenged with rhinovirus in vivo exhibited low levels of RIG-I and MDA5 that were increased at day 4 post infection. Inhibition of TLR3, RIG-I and MDA5 by siRNA reduced innate cytokine mRNA, and increased rhinovirus replication. Inhibition of TLR3 and TRIF using siRNA reduced rhinovirus induced RNA helicases. Furthermore, IFNAR1 deficient mice exhibited RIG-I and MDA5 induction early during RV1B infection in an interferon independent manner. Hence anti-viral defense within bronchial epithelium requires co-ordinated recognition of rhinovirus infection, initially via TLR3/TRIF and later via inducible RNA helicases.  相似文献   

15.
Toll-like receptors (TLRs), important components of innate immune response, play a pivotal role in early recognition of pathogen as well as in the initiation of robust and specific adaptive immune response. In the present study, the expression profile of chicken TLRs (TLR2A, TLR3, TLR4, TLR5, TLR7, TLR15, and TLR21) in various chicken embryonic tissues during embryo development was examined by real-time PCR assay. All the TLR mRNAs were expressed in whole embryonic tissue as early as 3rd embryonic day (ED). Four of the seven TLRs (TLR2, TLR3, TLR4, and TLR7) mRNA expressions were significantly (P < 0.01) higher at 12ED relative to expression at 3 ED, whereas TLR15 mRNA expression was significantly (P < 0.01) higher on 7ED and TLR5 and 21 were highly expressed on 18 ED. Among all the TLRs investigated TLR4 mRNA was the highest expressed and TLR15 mRNA expression was the lowest in all tissues during chicken embryo development. Tissue wise analysis of mRNA expression of TLRs showed that liver expressed significantly (P < 0.01) higher levels of most of the genes (TLR2, TLR4, and TLR21). However no significant difference was found in TLR15 mRNA expression among the tissues during development. Our results suggest the innate preparedness of chicken embryos and also a possible role for TLRs in the regulation of chicken embryo development that needs to be further evaluated.  相似文献   

16.
TLR7 and TLR8 recognize RNA from pathogens and lead to subsequent immune stimulation. Here we demonstrate that a single naturally occurring 2’-O-methylation within a synthetic 18s rRNA derived RNA sequence prevents IFN-α production, however secretion of proinflammatory cytokines such as IL-6 is not impaired. By analysing TLR-deficient plasmacytoid dendritic cells and performing HEK293 genetic complementation assays we could demonstrate that the single 2’-O-methylation containing RNA still activated TLR8 but not TLR7. Therefore this specific 2’-O-ribose methylation in rRNA converts a TLR7 / TLR8 ligand to an exclusively TLR8-specific ligand. Interestingly, other modifications at this position such as 2’-O-deoxy or 2’-fluoro had no strong modulating effect on TLR7 or TLR8 activation suggesting an important role of 2’-O-methylation for shaping differential TLR7 or TLR8 activation.  相似文献   

17.
Helicobacter pylori infection is mainly acquired in childhood, and polymorphisms in the host genes coding for Toll-like receptors (TLRs) may influence the innate and adaptive immune response to the infection, affecting the susceptibility to H. pylori or the disease outcomes. Our aim was to investigate whether TLR4, TLR2, and TLR5 polymorphisms were associated with H. pylori susceptibility and risk for duodenal ulcer in children. Gastric biopsy specimens were obtained at endoscopy for evaluation of H. pylori status, TLR4, TLR2 and TLR5 polymorphisms from 486 children (254 H. pylori-negative and 232 H. pylori-positive: 72 with and 160 without duodenal ulcer). cagA status of H. pylori infection was investigated by PCR. The levels of gastric cytokines were detected by ELISA. H. pylori-positivity or duodenal ulcer were not associated with TLR2, TLR4 or TLR5 polymorphisms. Otherwise, the presence of TLR4 polymorphic allele was associated with infection by cagA-positive strains and with increased gastric levels of interleukin-8 and interleukin-10. TLR4 polymorphism might ultimately contribute to more severe consequences of the infection in adulthood since it was associated with susceptibility to cagA-positive H. pylori infection early in life.  相似文献   

18.
Endosomal TLRs play an important role in innate immune response as well as in autoimmune processes. In the therapy of systemic lupus erythematosus, antimalarial drugs chloroquine, hydroxychloroquine, and quinacrine have been used for a long time. Their suppression of endosomal TLR activation has been attributed to the inhibition of endosomal acidification, which is a prerequisite for the activation of these receptors. We discovered that chloroquine inhibits only activation of endosomal TLRs by nucleic acids, whereas it augments activation of TLR8 by a small synthetic compound, R848. We detected direct binding of antimalarials to nucleic acids by spectroscopic experiments and determined their cellular colocalization. Further analysis revealed that other nucleic acid-binding compounds, such as propidium iodide, also inhibited activation of endosomal TLRs and colocalized with nucleic acids to endosomes. We found that imidazoquinolines, which are TLR7/8 agonists, inhibit TLR9 and TLR3 even in the absence of TLR7 or TLR8, and their mechanism of inhibition is similar to the antimalarials. In contrast to bafilomycin, none of the tested antimalarials and imidazoquinolines inhibited endosomal proteolysis or increased the endosomal pH, confirming that inhibition of pH acidification is not the underlying cause of inhibition. We conclude that the direct binding of inhibitors to nucleic acids mask their TLR-binding epitope and may explain the efficiency of those compounds in the treatment of autoimmune diseases.  相似文献   

19.
The cells of innate and adaptive immunity, although activated by different ligands, engage in cross talk to ensure a successful immune outcome. To better understand this interaction, we examined the demographic picture of individual TLR (TLRs 2-9) -driven profiles of eleven cytokines (IFN-alpha/beta, IFN-gamma, IL-12p40/IL-12p70, IL-4, 1L-13, TNF-alpha, IL-1beta, IL-2, IL-10) and four chemokines (MCP-1, MIP1beta, IL-8, and RANTES), and compared them with direct T-cell receptor triggered responses in an assay platform using human PBMCs. We find that T-cell activation by a combination of anti-CD3/anti-CD28/PHA induced a dominant IL-2, IL-13, and Type-II interferon (IFN-gamma) response without major IL-12 and little Type-I interferon (IFN-alphabeta) release. In contrast, TLR7 and TLR9 agonists induced high levels of Type-I interferons. The highest IFN-gamma levels were displayed by TLR8 and TLR7/8 agonists, which also induced the highest levels of pro-inflammatory cytokines IL-12, TNF-alpha, and IL-1beta. Amongst endosomal TLRs, TLR7 displayed a unique profile producing weak IL-12, IFN-gamma, TNF-alpha, IL-1beta, and IL-8. TLR7 and TLR9 resembled each other in their cytokine profile but differed in MIP-1beta and MCP1 chemokine profiles. Gram positive (TLR2, TLR2/6) and gram negative (TLR4) pathogen-derived TLR agonists displayed significant similarities in profile, but not in potency. TLR5 and TLR2/6 agonists paralleled TLR2 and TLR4 in generating pro-inflammatory chemokines MCP-1, MIP-1beta, RANTES, and IL-8 but yielded weak TNF-alpha and IL-1 responses. Taken together, the data show that diverse TLR agonists, despite their operation through common pathways induce distinct cytokine/chemokine profiles that in turn have little or no overlap with TCR-mediated response.  相似文献   

20.
Proteolytic modification of pattern recognition receptors and their signaling adaptor molecules has recently emerged as an essential cellular event to regulate immune and inflammatory responses. Here we show that the TIR domain containing adaptor-inducing interferon-β (TRIF), an adaptor molecule mediating TLR3 signaling and MyD88-independent signaling of TLR4, plays an inhibitory role in TLR5-elicited responses by inducing proteolytic degradation of TLR5. TRIF overexpression in human embryonic kidney (HEK293) and human colonic epithelial (NCM460) cells abolishes the cellular protein level of TLR5, whereas it does not alter TLR5 mRNA level. Thus, TRIF overexpression dramatically suppresses flagellin/TLR5-deriven NFκB activation in NCM460 cells. TRIF-induced TLR5 protein degradation is completely inhibited in the presence of pan-caspase inhibitor (benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone), whereas several specific inhibitors against cathepsin B, reactive oxygen species, or ubiquitin-mediated proteasome activity fail to suppress this degradation. These results indicate that TRIF-induced caspase activity causes TLR5 protein degradation. In addition, we identify that the C terminus of TRIF and extracellular domain of TLR5 are required for TRIF-induced TLR5 degradation. Furthermore, TRIF-induced proteolytic degradation is extended to TLR3, TLR6, TLR7, TLR8, TLR9, and TLR10, whereas the cellular level of TLR1, TLR2, and TLR4 is not affected by TRIF overexpression. These results suggest that, in addition to mediating TLR3- or TLR4-induced signaling as an adaptor molecule, TRIF can participate in proteolytic modification of certain members of TLRs to modulate the functionality of TLRs at post-translational level. Collectively, our findings propose a potential inhibitory role of TRIF at least in regulating host-microbial communication via TLR5 in colonic epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号