首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Changes in the content of aggrecan, an essential proteoglycan of articular cartilage, have been implicated in the pathophysiology of osteoarthritis (OA), a prevalent age‐related, degenerative joint disease. Here, we examined the effect of SOX9 acetylation on ACAN transactivation in the context of osteoarthritis. Primary chondrocytes freshly isolated from degenerated OA cartilage displayed lower levels of ACAN mRNA and higher levels of acetylated SOX9 compared with cells from intact regions of OA cartilage. Degenerated OA cartilage presented chondrocyte clusters bearing diffused immunostaining for SOX9 compared with intact cartilage regions. Primary human chondrocytes freshly isolated from OA knee joints were cultured in monolayer or in three‐dimensional alginate microbeads (3D). SOX9 was hypo‐acetylated in 3D cultures and displayed enhanced binding to a ?10 kb ACAN enhancer, a result consistent with higher ACAN mRNA levels than in monolayer cultures. It also co‐immunoprecipitated with SIRT1, a major deacetylase responsible for SOX9 deacetylation. Finally, immunofluorescence assays revealed increased nuclear localization of SOX9 in primary chondrocytes treated with the NAD SIRT1 cofactor, than in cells treated with a SIRT1 inhibitor. Inhibition of importin β by importazole maintained SOX9 in the cytoplasm, even in the presence of NAD. Based on these data, we conclude that deacetylation promotes SOX9 nuclear translocation and hence its ability to activate ACAN.  相似文献   

2.
3.
Deposition of amyloid is a common aging‐associated phenomenon in several aging‐related diseases. Osteoarthritis (OA) is the most prevalent joint disease, and aging is its major risk factor. Transthyretin (TTR) is an amyloidogenic protein that is deposited in aging and OA‐affected human cartilage and promotes inflammatory and catabolic responses in cultured chondrocytes. Here, we investigated the role of TTR in vivo using transgenic mice overexpressing wild‐type human TTR (hTTR‐TG). Although TTR protein was detected in cartilage in hTTR‐TG mice, the TTR transgene was highly overexpressed in liver, but not in chondrocytes. OA was surgically induced by destabilizing the medial meniscus (DMM) in hTTR‐TG mice, wild‐type mice of the same strain (WT), and mice lacking endogenous Ttr genes. In the DMM model, both cartilage and synovitis histological scores were significantly increased in hTTR‐TG mice. Further, spontaneous degradation and OA‐like changes in cartilage and synovium developed in 18‐month‐old hTTR mice. Expression of cartilage catabolic (Adamts4, Mmp13) and inflammatory genes (Nos2, Il6) was significantly elevated in cartilage from 6‐month‐old hTTR‐TG mice compared with WT mice as was the level of phospho‐NF‐κB p65. Intra‐articular injection of aggregated TTR in WT mice increased synovitis and significantly increased expression of inflammatory genes in synovium. These findings are the first to show that TTR deposition increases disease severity in the murine DMM and aging model of OA.  相似文献   

4.
The aim of this study was to determine the mechanism underlying the association between one‐carbon metabolism and DNA methylation during chronic degenerative joint disorder, osteoarthritis (OA). Articular chondrocytes were isolated from human OA cartilage and normal cartilage biopsied, and the degree of cartilage degradation was determined by safranin O staining. We found that the expression levels of SHMT‐2 and MECP‐2 were increased in OA chondrocytes, and 3′UTR reporter assays showed that SHMT‐2 and MECP‐2 are the direct targets of miR‐370 and miR‐373, respectively, in human articular chondrocytes. Our experiments showed that miR‐370 and miR‐373 levels were significantly lower in OA chondrocytes compared to normal chondrocytes. Overexpression of miR‐370 or miR‐373, or knockdown of SHMT‐2 or MECP‐2 reduced both MMP‐13 expression and apoptotic cell death in cultured OA chondrocytes. In vivo, we found that introduction of miR‐370 or miR‐373 into the cartilage of mice that had undergone destabilization of the medial meniscus (DMM) surgery significantly reduced the cartilage destruction in this model, whereas introduction of SHMT‐2 or MECP‐2 increased the severity of cartilage destruction. Together, these results show that miR‐370 and miR‐373 contribute to the pathogenesis of OA and act as negative regulators of SHMT‐2 and MECP‐2, respectively.  相似文献   

5.
Abnormal expression of KDM6A and SOX9 is a key factor in the pathogenesis of osteoarthritis (OA). Cellular treatments of OA with articular cartilage chondrocytes (ACCs) and bone marrow mesenchymal stem cells (BMSCs) are promising, but their underlying mechanisms remain to be explored. The pellet size, weight and sulfated glycosaminoglycan/DNA content of ACCs were measured to evaluate the effect of BMSCs on the chondrogenic differentiation of SCCs. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to analyze the proliferation of ACCs cultured along or cocultured with BMSCs. Quantitative polymerase chain reaction (qPCR) was performed to evaluate the messenger RNA expression of KDM6A, SOX9, type2 collagen, and Aggrecan in ACCs and OA rats. Western blot and immunohistochemistry were performed to analyze the expression of KDM6A and SOX9 proteins. Bisulfite sequencing PCR was performed to assess the DNA methylation level of the SOX9 promoter. Flow cytometry was used to evaluate the apoptotic status of ACCs. The chondrogenic differentiation of ACCs was significantly enhanced by coculturing with BMSCs, especially under a hypoxic condition. The expression of KDM6A, SOX9, type2 collagen, and Aggrecan was remarkably elevated in ACCs cocultured with BMSCs. Also, the DNA methylation of SOX9 promoter was decreased in ACCs cocultured with BMSCs, along with notably reduced apoptosis. Moreover, ACCs cocultured with BMSCs could repair cartilage lesions and prevent the abnormal expression of KDM6A, SOX9, type2 collagen, and Aggrecan in OA rats. In this study, we cocultured ACCs with BMSCs and used them to treat OA rats. Our findings presented a mechanistic basis for explaining the therapeutic effect of BMSCs on OA treatment.  相似文献   

6.
7.
The identification of new components implicated in the pathogenesis of osteoarthritis (OA) might improve our understanding of the disease process. Here, we investigated the levels of the survival of motor neuron (SMN) expression in OA cartilage considering the fundamental role of the SMN protein in cell survival and its involvement in other stress‐associated pathologies. We report that SMN expression is up‐regulated in human OA compared with normal cartilage, showing a strong correlation with the disease severity, a result confirmed in vivo in an experimental model of the disease. We further show that the prominent inflammatory cytokines (IL‐1β, TNF‐α) are critical inducers of SMN expression. This is in marked contrast with the reported impaired levels of SMN in spinal muscular atrophy, a single inherited neuromuscular disorder characterized by mutations in the smn gene whereas OA is a complex disease with multiple aetiologies. While the precise functions of SMN during OA remain to be elucidated, the conclusions of this study shed light on a novel pathophysiological pathway involved in the progression of OA, potentially offering new targets for therapy.  相似文献   

8.
The prognosis of advanced gastric cancer is poor and understanding the biology and subsequent development of new targeting therapy is still an urgent need. This study was conducted to explore the effect of BR2 (a 17‐amino acid peptide)‐SOX17 (human sex determining region Y (SRY)‐related high‐mobility group (HMG) box protein family member 17) fusion protein on Klotho gene expression in gastric cancer cells. The regulatory effects of SOX17 on Klotho gene in gastric cancer cells were tested using dual‐luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay. The therapeutic effects of BR2‐SOX17 were evaluated by proliferation, colony formation, invasion assay, and cell apoptosis analysis. Results showed that SOX17 enhanced Klotho gene expression in gastric adenocarcinoma cells through binding to the promoter of Klotho gene. BR2‐SOX17 fusion protein was effective in delivering SOX17 into gastric cancer cells and subsequently inhibited the cell proliferation, colony formation, and invasion, increased E‐cadherin protein expression, decreased vimentin protein expression, as well as induced apoptosis. Our findings suggested SOX17 can bind to the promoter of Klotho gene to enhance Klotho gene expression in gastric cancer cells. The fused BR2‐SOX17 protein is an effective agent for targeting therapy of gastric cancer.  相似文献   

9.
10.
This study was aimed to explore the role of miR‐29b‐3p and PGRN in chondrocyte apoptosis and the initiation and progress of osteoarthritis (OA). Both miR‐29b‐3p and PGRN were up‐regulated in cartilage tissue from patients with OA. Transfection of miR‐29b‐3p mimic into rat primary chondrocytes and SW1353 chondrosarcoma cells significantly suppressed PGRN expression and release, induced apoptosis, inhibited proliferation and scratch wound closure. By contrast, transfection of miR‐29b‐3p inhibitor exhibited the opposite effects. Moreover, the expression and secretion of cartilaginous degeneration‐related molecules were also altered by miR‐29b‐3p. Luciferase reporter gene assay showed rat GRN mRNA is directly targeted and repressed by miR‐29b‐3p. The fact that recombinant PGRN or shPGRN‐mediated PGRN interference abolished miR‐29b‐3p mimic‐induced cell apoptosis and growth inhibition suggested miR‐29b‐3p affect the cellular functions of chondrocyte through regulating PGRN expression. In vivo, joint cavity injection of miR‐29b‐3p antagomir prior to surgical induction of OA significantly suppressed the upregulation of miR‐29b‐3p, whereas further promoted the increased expression of PGRN. Articular chondrocytes apoptosis and cartilage loss in the knee joint of surgically induced OA rats were also ameliorated by the injection of miR‐29b‐3p antagomir, demonstrated by TUNEL and safranin O‐fast green staining. This work showed miR‐29b‐3p facilitates chondrocyte apoptosis and OA by targeting PGRN, and miR‐29b‐3p or PGRN may be the potential target for OA treatments.  相似文献   

11.
12.
NR4A3 is a member of nuclear receptor subfamily 4, which is an important regulator of cellular function and inflammation. In this study, high expression of NR4A3 in human osteoarthritis (OA) cartilage was firstly observed. To explore the relationship between NR4A3 and OA, we used a lentivirus overexpression system to simulate its high expression and study its role in OA. Additionally, siRNA‐mediated knockdown of NR4A3 was used to confirm the findings of overexpression experiments. The results showed the stimulatory effect of IL‐1β on cartilage matrix‐degrading enzyme expression such as MMP‐3, 9, INOS and COX‐2 was enhanced in NR4A3‐overexpressed chondrocytes and decreased in NR4A3‐knockdown chondrocytes at both mRNA and protein levels, while IL‐1β‐induced chondrocyte‐specific gene (collagen 2 and SOX‐9) degradation was only regulated by NR4A3 at protein level. Furthermore, overexpression of NR4A3 would also enhance EBSS‐induced chondrocytes apoptosis, while knockdown of NR4A3 decreased apoptotic level after EBSS treatment. A pathway study indicated that IL‐1β‐induced NF‐κB activation was enhanced by NR4A3 overexpression and reduced by NR4A3 knockdown. We suggest that NR4A3 plays a pro‐inflammatory role in the development of OA, and we also speculate that NR4A3 mainly regulates cartilage matrix‐degrading gene expression under inflammatory conditions via the NF‐κB pathway.  相似文献   

13.
This study sought to evaluate the levels of mRNA expression and protein synthesis of MMP-13, cathepsin K, aggrecanase-1 (ADAMTS-4), aggrecanase-2 (ADAMTS-5) and 5-lipoxygenase (5-LOX) in cartilage in the experimental anterior cruciate ligament (ACL) dog model of osteoarthritis (OA), and to examine the effects of treatment with licofelone, a 5-lipoxygenase (LOX)/cyclooxygenase (COX) inhibitor, on the levels of these catabolic factors. Sectioning of the ACL of the right knee was performed in three experimental groups: group 1 received no active treatment (placebo group); and groups 2 and 3 received therapeutic concentrations of licofelone (2.5 or 5.0 mg/kg/day orally, respectively) for 8 weeks, beginning the day following surgery. A fourth group consisted of untreated dogs that were used as normal controls. Specimens of cartilage were selected from lesional areas of OA femoral condyles and tibial plateaus, and were processed for real-time quantitative PCR and immunohistochemical analyses. The levels of MMP-13, cathepsin K, ADAMTS-4, ADAMTS-5 and 5-LOX were found to be significantly increased in OA cartilage. Licofelone treatment decreased the levels of both mRNA expression and protein synthesis of the factors studied. Of note was the marked reduction in the level of 5-LOX gene expression. The effects of the drug were about the same at both tested dosages. In vivo treatment with therapeutic dosages of licofelone has been found to reduce the degradation of OA cartilage in experimental OA. This, coupled with the results of the present study, indicates that the effects of licofelone are mediated by the inhibition of the major cartilage catabolic pathways involved in the destruction of cartilage matrix macromolecules. Moreover, our findings also indicate the possible auto-regulation of 5-LOX gene expression by licofelone in OA cartilage.  相似文献   

14.
15.
16.
目的:探讨乳腺癌MDA-MB-231细胞中,Y性别决定区基因7(SOX7)基因启动子甲基化水平对细胞的体外迁移和侵袭的影响。方法:脂质体转染pcDNA3.0-DNA甲基转移酶3a(DNMT3a)质粒至MDA-MB-231细胞中,并于24h、48h及72h后,采用蛋白质免疫印迹实验(WB)检测细胞内DNMT3a蛋白表达水平;甲基化特异性定量PCR(Q-MSP)检测DNMT3a处理组、5-aza-C处理组及对照(Control)组MDA-MB-231细胞中的SOX7基因启动子DNA甲基化水平;实时荧光定量PCR(qRT-PCR)及WB实验检测各组MDA-MB-231细胞中的SOX7 m RNA和蛋白表达水平;细胞划痕实验及细胞侵袭实验检测各组MDA-MB-231细胞的迁移和侵袭能力。结果:pcDNA3.0-DNMT3a质粒转染MDA-MB-231细胞24h时,细胞内的DNMT3a蛋白表达水平最高。DNMT3a能够显著提高SOX7基因启动子DNA甲基化水平,而5-aza-C则抑制了SOX7基因启动子DNA甲基化水平(P0.05)。与Control组相比,DNMT3a处理组的MDA-MB-231细胞中,SOX7的m RNA及蛋白表达水平均明显下降,而5-aza-C处理组SOX7的m RNA及蛋白表达水平均明显增加(P0.05)。与Control组相比,DNMT3a处理组的MDA-MB-231细胞的迁移和侵袭能力均显著增强(P0.05),而5-aza-C处理组的MDA-MB-231细胞的迁移和侵袭能力变化不大(P0.05)。结论:在恶性肿瘤中,SOX7低表达表受其基因启动子高甲基化调节,且乳腺癌MDA-MB-231细胞中低表达的SOX7能够影响细胞的外迁移和侵袭能力。  相似文献   

17.
18.
The study was to evaluate the effect of ten‐eleven translocation 1 (TET1) regulating o6‐methylguanine‐DNA methyltransferase (MGMT) in chemotherapy resistance of oral squamous cell carcinoma (OSCC) stem cells. OSCC stem cells were divided into the blank, negative control (NC), TET1‐siRNA, TET1‐siRNA + MGMT‐OE, and MGMT‐OE groups. Methylation‐specific polymerase chain reaction (MSP), qRT‐PCR and Western blotting were conducted to detect the methylation status of MGMT, expressions of TET1, MGMT, ABCG2, and Oct‐4. Cell proliferation, cisplatin chemosensitivity, and cell cycle and apoptosis, were detected using CCK8 and flow cytometry. A chromatin immunoprecipitation (ChIP) assay was employed for detecting the link between TET1 and MGMT gene promoters. In comparison to the NC group, the TET1‐siRNA group exhibited increased levels of MGMT methylation, the number of apoptotic cells and cisplatin chemosensitivity consisting of varying concentrations, however, decreased levels of mRNA and protein expressions of TET1 as well as MGMT, cell viability, the number of cells in the S phase, and protein expressions of ABCG2 and Oct‐4 were all have diminished amounts. The TET1‐siRNA + MGMT‐OE and MGMT‐OE groups had higher MGMT mRNA and protein expression, as well as increased protein expressions of ABCG2 and Oct‐4, greater cell activity, higher number of cells in the S phase, decreased apoptotic rates in cells and decreased cisplatin chemosensitivity with different concentrations. Our study provided evidence that low‐expression of TET1 in OSCC stem cells may stimulate MGMT promoter methylation, while inhibiting MGMT mRNA expression, this ultimately strengthens the sensitivity of OSCC stem cells in regards to chemotherapeutics.  相似文献   

19.
DNA methylation exerts extensive impacts on gene expression of various living organisms exposed to environmental variation. However, little is known whether DNA methylation is involved in the host transfer of diamondback moth, Plutella xylostella (L.), a worldwide destructive pest of crucifers. In this study, we found that P. xylostella genome exhibited a relatively low level of DNA methylation on the basis of the CpG O/E prediction and experimental validation. A significant positive linear correlation was observed between the stage‐specific expressions of PxDNMT1 and DNA methylation levels (5mC content). Particularly, high levels of DNA methylation and gene expression of PxDNMT1 were observed in eggs and mature females of P. xylostella. After host transfer of P. xylostella from Raphanus sativus to Arabidopsis thaliana, we identified some potential genomic loci that might have changed methylation levels. Using the method of fluorescence‐labeled methylation‐sensitive amplified polymorphism (F‐MSAP), we also found the corresponding genes primarily involved in neural system and signaling. The expressions of six candidate genes were verified by qRT‐PCR. One of the genes, Px009600, might be regulated by a DNA methylation‐mediated mechanism in response to host transfer. Our study provides evidence for a functional system of DNA methylation in P. xylostella and its possible role in adaptation during host transfer. Further studies should examine methylation as responsive factors to different host plants and environmental cues in insect pests.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号