首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The demonstrated ability of amphetamine to functionally activate the rat trace amine associated receptor 1 (rTAAR1) and the subsequent reports of amphetamine activation of TAAR1 in rhesus monkey mouse, human, and human-rat chimeric TAAR1-expressing cell lines has led to speculation as to the role of this receptor in the central nervous system (CNS) responses associated with amphetamine and its analogs. The agonist potencies of ten pairs of enantiomeric amphetamines, including several with known CNS activity, at primate TAAR1 stably expressed in RD-HGA16 cells, robustly indicate the S-configuration to be associated with higher potency. Moreover, the rank order of potency to activate TAAR1 parallels the stimulant action reported by humans for the specific amphetamines. Taken together, these data suggest that TAAR1 is a stereoselective binding site for amphetamine and that activation of TAAR1 is involved in the modulation of the stimulant properties of amphetamine and its congeners. In addition, the observed parallel between hTAAR1 and rhTAAR1 responses supports the rhesus monkey as a highly translational model for developing novel TAAR1-directed compounds as therapeutics for amphetamine-related addictions.  相似文献   

2.
Methamphetamine (MA) and neurotransmitter precursors and metabolites such as tyramine, octopamine, and β-phenethylamine stimulate the G protein-coupled trace amine-associated receptor 1 (TAAR1). TAAR1 has been implicated in human conditions including obesity, schizophrenia, depression, fibromyalgia, migraine, and addiction. Additionally TAAR1 is expressed on lymphocytes and astrocytes involved in inflammation and response to infection. In brain, TAAR1 stimulation reduces synaptic dopamine availability and alters glutamatergic function. TAAR1 is also expressed at low levels in heart, and may regulate cardiovascular tone. Taar1 knockout mice orally self-administer more MA than wild type and are insensitive to its aversive effects. DBA/2J (D2) mice express a non-synonymous single nucleotide polymorphism (SNP) in Taar1 that does not respond to MA, and D2 mice are predisposed to high MA intake, compared to C57BL/6 (B6) mice. Here we demonstrate that endogenous agonists stimulate the recombinant B6 mouse TAAR1, but do not activate the D2 mouse receptor. Progeny of the B6XD2 (BxD) family of recombinant inbred (RI) strains have been used to characterize the genetic etiology of diseases, but contrary to expectations, BXDs derived 30–40 years ago express only the functional B6 Taar1 allele whereas some more recently derived BXD RI strains express the D2 allele. Data indicate that the D2 mutation arose subsequent to derivation of the original RIs. Finally, we demonstrate that SNPs in human TAAR1 alter its function, resulting in expressed, but functional, sub-functional and non-functional receptors. Our findings are important for identifying a predisposition to human diseases, as well as for developing personalized treatment options.  相似文献   

3.
ObjectiveApplication of 3-iodothyronamine (3-T1AM) results in decreased body temperature and body weight in rodents. The trace amine-associated receptor (TAAR) 1, a family A G protein-coupled receptor, is a target of 3-T1AM. However, 3-T1AM effects still persist in mTaar1 knockout mice, which suggest so far unknown further receptor targets that are of physiological relevance. TAAR5 is a highly conserved TAAR subtype among mammals and we here tested TAAR5 as a potential 3-T1AM target. First, we investigated mouse Taar5 (mTaar5) expression in several brain regions of the mouse in comparison to mTaar1. Secondly, to unravel the full spectrum of signaling capacities, we examined the distinct Gs-, Gi/o-, G12/13-, Gq/11- and MAP kinase-mediated signaling pathways of mouse and human TAAR5 under ligand-independent conditions and after application of 3-T1AM. We found overlapping localization of mTaar1 and mTaar5 in the amygdala and ventromedial hypothalamus of the mouse brain. Second, the murine and human TAAR5 (hTAAR5) display significant basal activity in the Gq/11 pathway but show differences in the basal activity in Gs and MAP kinase signaling. In contrast to mTaar5, 3-T1AM application at hTAAR5 resulted in significant reduction in basal IP3 formation and MAP kinase signaling. In conclusion, our data suggest that the human TAAR5 is a target for 3-T1AM, exhibiting inhibitory effects on IP3 formation and MAP kinase signaling pathways, but does not mediate Gs signaling effects as observed for TAAR1. This study also indicates differences between TAAR5 orthologs with respect to their signaling profile. In consequence, 3-T1AM-mediated effects may differ between rodents and humans.  相似文献   

4.
Trace amine-associated receptors (TAAR) are rhodopsin-like G-protein-coupled receptors (GPCR). TAAR are involved in modulation of neuronal, cardiac and vascular functions and they are potentially linked with neurological disorders like schizophrenia and Parkinson's disease. Subtype TAAR1, the best characterized TAAR so far, is promiscuous for a wide set of ligands and is activated by trace amines tyramine (TYR), phenylethylamine (PEA), octopamine (OA), but also by thyronamines, dopamine, and psycho-active drugs. Unfortunately, effects of trace amines on signaling of the two homologous β-adrenergic receptors 1 (ADRB1) and 2 (ADRB2) have not been clarified yet in detail. We, therefore, tested TAAR1 agonists TYR, PEA and OA regarding their effects on ADRB1/2 signaling by co-stimulation studies. Surprisingly, trace amines TYR and PEA are partial allosteric antagonists at ADRB1/2, whereas OA is a partial orthosteric ADRB2-antagonist and ADRB1-agonist. To specify molecular reasons for TAAR1 ligand promiscuity and for observed differences in signaling effects on particular aminergic receptors we compared TAAR, tyramine (TAR) octopamine (OAR), ADRB1/2 and dopamine receptors at the structural level. We found especially for TAAR1 that the remarkable ligand promiscuity is likely based on high amino acid similarity in the ligand-binding region compared with further aminergic receptors. On the other hand few TAAR specific properties in the ligand-binding site might determine differences in ligand-induced effects compared to ADRB1/2. Taken together, this study points to molecular details of TAAR1-ligand promiscuity and identified specific trace amines as allosteric or orthosteric ligands of particular β-adrenergic receptor subtypes.  相似文献   

5.
Dopamine (3-hydroxytyramine) is a well-known catecholamine neurotransmitter involved in multiple physiological functions including movement control. Here we report that the major extracellular metabolite of dopamine, 3-methoxytyramine (3-MT), can induce behavioral effects in a dopamine-independent manner and these effects are partially mediated by the trace amine associated receptor 1 (TAAR1). Unbiased in vivo screening of putative trace amine receptor ligands for potential effects on the movement control revealed that 3-MT infused in the brain is able to induce a complex set of abnormal involuntary movements in mice acutely depleted of dopamine. In normal mice, the central administration of 3-MT caused a temporary mild hyperactivity with a concomitant set of abnormal movements. Furthermore, 3-MT induced significant ERK and CREB phosphorylation in the mouse striatum, signaling events generally related to PKA-mediated cAMP accumulation. In mice lacking TAAR1, both behavioral and signaling effects of 3-MT were partially attenuated, consistent with the ability of 3-MT to activate TAAR1 receptors and cause cAMP accumulation as well as ERK and CREB phosphorylation in cellular assays. Thus, 3-MT is not just an inactive metabolite of DA, but a novel neuromodulator that in certain situations may be involved in movement control. Further characterization of the physiological functions mediated by 3-MT may advance understanding of the pathophysiology and pharmacology of brain disorders involving abnormal dopaminergic transmission, such as Parkinson's disease, dyskinesia and schizophrenia.  相似文献   

6.
The family of trace amine-associated receptors (TAAR) comprises 9 mammalian TAAR subtypes, with intact gene and pseudogene numbers differing considerably even between closely related species. To date the best characterized subtype is TAAR1, which activates the Gs protein/adenylyl cyclase pathway upon stimulation by trace amines and psychoactive substances like MDMA or LSD. Recently, chemosensory function involving recognition of volatile amines was proposed for murine TAAR3, TAAR4 and TAAR5. Humans can smell volatile amines despite carrying open reading frame (ORF) disruptions in TAAR3 and TAAR4. Therefore, we set out to study the functional and structural evolution of these genes with a special focus on primates. Functional analyses showed that ligands activating the murine TAAR3, TAAR4 and TAAR5 do not activate intact primate and mammalian orthologs, although they evolve under purifying selection and hence must be functional. We also find little evidence for positive selection that could explain the functional differences between mouse and other mammals. Our findings rather suggest that the previously identified volatile amine TAAR3–5 agonists reflect the high agonist promiscuity of TAAR, and that the ligands driving purifying selection of these TAAR in mouse and other mammals still await discovery. More generally, our study points out how analyses in an evolutionary context can help to interpret functional data generated in single species.  相似文献   

7.
Investigation of the effects of injecting monoamines (noradrenaline, dopamine and serotonin) into the third ventricle of the brain on the LH-RH content in the synaptosomal fraction of the mediobasal hypothalamus in intact and castrated male rats has demonstrated that all the three monoamines are involved in the regulation of synthesis and secretion of LH-RH and that their effects on LH-RH-producing neurons are steroid-dependent.  相似文献   

8.
Trace amine-associated receptors (TAARs) are a member of the G-protein-coupled receptor superfamily and are known to be expressed in olfactory sensory neurons. A limited number of molecular evolutionary studies have been done for TAARs so far. To elucidate how lineage-specific evolution contributed to their functional divergence, we examined 30 metazoan genomes. In total, 493 TAAR gene candidates (including 84 pseudogenes) were identified from 26 vertebrate genomes. TAARs were not identified from non-vertebrate genomes. An ancestral-type TAAR-like gene appeared to have emerged in lamprey. We found four therian-specific TAAR subfamilies (one eutherian-specific and three metatherian-specific) in addition to previously known nine subfamilies. Many species-specific TAAR gene duplications and losses contributed to a large variation of TAAR gene numbers among mammals, ranging from 0 in dolphin to 26 in flying fox. TAARs are classified into two groups based on binding preferences for primary or tertiary amines as well as their sequence similarities. Primary amine-detecting TAARs (TAAR1-4) have emerged earlier, generally have single-copy orthologs (very few duplication or loss), and have evolved under strong functional constraints. In contrast, tertiary amine-detecting TAARs (TAAR5-9) have emerged more recently and the majority of them experienced higher rates of gene duplications. Protein members that belong to the tertiary amine-detecting TAAR group also showed the patterns of positive selection especially in the area surrounding the ligand-binding pocket, which could have affected ligand-binding activities and specificities. Expansions of the tertiary amine-detecting TAAR gene family may have played important roles in terrestrial adaptations of therian mammals. Molecular evolution of the TAAR gene family appears to be governed by a complex, species-specific, interplay between environmental and evolutionary factors.  相似文献   

9.

Background  

The trace amine associated receptor family is a diverse array of GPCRs that arose before the first vertebrates walked on land. Trace amine associated receptor 1 (TAAR1) is a wide spectrum aminergic receptor that acts as a modulator in brain monoaminergic systems. Other trace amine associated receptors appear to relate to environmental perception and show a birth-and-death pattern in mammals similar to olfactory receptors.  相似文献   

10.
Fluorimetric methods were used to determine adrenaline, dopamine, noradrenaline, serotonin and tryptamine in the pia mater of the brain and spinal cord of various vertebrates (fishes, birds, mammals) and of man. The histochemical method using glyoxylic acid showed the presence of biogenic monoamines in adrenergic nerve fibres and in the monoaminocytes. Their total amount in the pia mater is roughly the same, except in man, in whom it is significantly lower. From the higher adrenergic axon concentration on the one hand and the lower number of monoaminocytes on the other, it can be concluded that the neuronal factor has a more important role in the regulation of brain haemodynamics in man.  相似文献   

11.
Fluorimetric studies have been made on the content of adrenalin, noradrenaline, serotonin, dopamine, and tryptamine in the pial matter of the brain and spinal cord of fishes, birds and mammals including man. Using histochemical method with glyoxylic acid, biogenic monoamines were revealed in the adrenergic nerve fibers and monoaminocytes. Their total content in the pial matter of the brain is approximately the same in all vertebrates, being significantly lower in man. Higher concentration of adrenergic axons and lower amount of monoaminocytes in human subjects reveal the key role of the nervous influences in regulation of hemodynamics of the brain.  相似文献   

12.
Trace amines (TAs) in the mammalian brain have been investigated for four decades. Trace amine‐associated receptors (TAARs) were discovered during the search for receptors activated by TAs. TAARs are considered a second class of vertebrate olfactory receptors and successfully proliferated in conjunction with adaptation to living on the ground to detect carnivore odors. Thus, therian mammals have a high number of TAAR genes due to rapid species‐specific gene duplications. In primate lineages, however, their genomes have significantly smaller numbers of TAAR genes than do other mammals. To elucidate the evolutionary force driving these patterns, exhaustive data mining of TAAR genes was performed for 13 primate genomes (covering all four infraorders) and two nonprimate euarchontan genomes. This study identified a large number of pseudogenes in many of these primate genomes and thus investigated the pseudogenization event process for the TAAR repertoires. The degeneration of TAARs is likely associated with arboreal inhabitants reducing their exposure to carnivores, and this was accelerated by the change in the nose shape of haplorhines after their divergence from strepsirrhines. Arboreal life may have decreased the reliance on the chemosensing of predators, suggestive of leading to the depauperation of TAAR subfamilies. The evolutionary deterioration of TAARs in primates has been reestablished in recently derived primates due to high selection pressure and probably functional diversity.  相似文献   

13.
The family of trace amine-associated receptors (TAARs) is distantly related to G protein-coupled biogenic aminergic receptors. TAARs are found in the brain as well as in the olfactory epithelium where they detect biogenic amines. However, the functional relationship of receptors from distinct TAAR subfamilies and in different species is still uncertain. Here, we perform a thorough phylogenetic analysis of 702 TAAR-like (TARL) and TAAR sequences from 48 species. We show that a clade of Tarl genes has greatly expanded in lampreys, whereas the other Tarl clade consists of only one or two orthologs in jawed vertebrates and is lost in amniotes. We also identify two small clades of Taar genes in sharks related to the remaining Taar genes in bony vertebrates, which are divided into four major clades. We further identify ligands for 61 orphan TARLs and TAARs from sea lamprey, shark, ray-finned fishes, and mammals, as well as novel ligands for two 5-hydroxytryptamine receptor 4 orthologs, a serotonin receptor subtype closely related to TAARs. Our results reveal a pattern of functional convergence and segregation: TARLs from sea lamprey and bony vertebrate olfactory TAARs underwent independent expansions to function as chemosensory receptors, whereas TARLs from jawed vertebrates retain ancestral response profiles and may have similar functions to TAAR1 in the brain. Overall, our data provide a comprehensive understanding of the evolution and ligand recognition profiles of TAARs and TARLs.  相似文献   

14.
The trace amine-associated receptors (TAARs) form a specific family of G protein-coupled receptors in vertebrates. TAARs were initially considered neurotransmitter receptors, but recent study showed that mouse TAARs function as chemosensory receptors in the olfactory epithelium. To clarify the evolutionary dynamics of the TAAR gene family in vertebrates, near-complete repertoires of TAAR genes and pseudogenes were identified from the genomic assemblies of 4 teleost fishes (zebrafish, fugu, stickleback, and medaka), western clawed frogs, chickens, 3 mammals (humans, mice, and opossum), and sea lampreys. Database searches revealed that fishes had many putatively functional TAAR genes (13-109 genes), whereas relatively small numbers of TAAR genes (3-22 genes) were identified in tetrapods. Phylogenetic analysis of these genes indicated that the TAAR gene family was subdivided into 5 subfamilies that diverged before the divergence of ray-finned fishes and tetrapods. In tetrapods, virtually all TAAR genes were located in 1 specific region of their genomes as a gene cluster; however, in fishes, TAAR genes were scattered throughout more than 2 genomic locations. This possibly reflects a whole-genome duplication that occurred in the common ancestor of ray-finned fishes. Expression analysis of zebrafish and stickleback TAAR genes revealed that many TAARs in these fishes were expressed in the olfactory organ, suggesting the relatively high importance of TAARs as chemosensory receptors in fishes. A possible evolutionary history of the vertebrate TAAR gene family was inferred from the phylogenetic and comparative genomic analyses.  相似文献   

15.
16.
The aim of this review is a review of literature data, which characterize participation of monoamines brain systems and sex steroids in regulation (modulation) of the amygdalas' functions. Shown were characteristic noradrenergic, dopaminergic and serotoninergic systems and their representation in amygdala. Effect ofnoradrenaline, dopamine and serotonine on neurons of Amygdala was shown realized from appropriate cell receptors under modulated influence of sex steroids. Combined participation of monoamines and sex steroids occur in regulation of activity in cyclic centre of secretion and releasing of gonadotropins, constituted a base of forming adaptive (sexual, food and aggressive-defensive) behaviour, including stress reaction. The presented data could be used for understanding influence of gender factor on personality characteristics of humans, cognitive abilities and behavioural reactions, and also in application to development of optimal medicinal treatment of psychoneurological diseases.  相似文献   

17.
Perturbations in brain monoamine systems during stress   总被引:1,自引:0,他引:1  
Monoamines modulate the activity of many neurons and there is evidence that a balanced synthesis of central nervous monoamines is a prerequisite for normal brain functioning. Stress accelerates both release and turnover of brain monoamines and the resulting fluctuations in concentrations affect various parameters within neurotransmitter systems. Acute stress leads to only transient alterations in monoamine systems so that homeostasis can be restored, in contrast, chronic stress accompanied by repetitive and/or prolonged stimulation of monoaminergic neurons can induce a long-lasting imbalance in central nervous neurotransmitter systems. Accordingly, stress-induced changes in brain monoamine systems are suspected to contribute to psychiatric diseases such as depression. The present paper gives a short overview of stress effects on brain monoamines and their receptors.The work presented in this review was in part supported by the German Science Foundation (SFB406, C4 to G.F.). M.J.M. was supported by the DFG grant Fu 174/17–1 and EC Training Through Research (ERBFMBICT 961829).  相似文献   

18.
Recent studies of mammals and fish indicate that most trace amine-associated receptors (TAARs) may be involved in the detection of volatile biogenic compounds. It has therefore been suggested that this new class of "olfactory" receptors could be highly relevant for social communication and individual recognition. To determine if TAAR orthologues are encoded in avian genomes, we initiated BLAST searches of the Gallus gallus genome and public avian expressed sequence tags databases and performed associated phylogenetic analyses of the TAAR homologues identified. Our results suggest that a minimum of 3 TAAR paralogues are encoded in the G. gallus genome and that these are putative orthologues of the human/mouse genes TAAR1, TAAR2, and TAAR5. It is noteworthy that TAAR5 is activated by compounds that have been found in avian feces. We tentatively suggest that avian TAARs may compensate for the lack of an avian equivalent of the mammalian vomeronasal system and therefore may be important mediators of socially important avian chemical cues.  相似文献   

19.
The role in the regulation of cell replication of the neurotransmitter compounds and the drugs which affect their balance was studied in vitro, using morphologically preserved brain slices. Compounds affecting noradrenergic, dopaminergic and serotoninergic neurotransmitter systems reduced the brain cell replication, measured in terms of the rate of [3H]thymidine incorporation into DNA. The reduction was dose dependent and half-maximal effects were obtained at about 1–5×10–4 M concentrations. Although agonists and antagonists both showed similar inhibitory effect, the action of agonists was reversed by the appropriate antagonists. Also, the pharmacologically active isomers were several-fold more effective than the inactive isomers in forebrain slices, although with cerebellar slices the selectivity was less marked. Cyclic nucleotides and drugs affecting cholinergic neurotransmitter systems were apparently ineffective. Tese results indicate that monoamines may be involved in the regulation of cell replication in the developing brain. Furthermore, as some of the CNS acting drugs tested are suspected behavioural teratogens the present results suggest that the reported behavioural abnormalities in the offspring may be related, in part, to a chronologically determined interference with the formation of certain cell types.This paper is dedicated to Dr. Derek Richter on his seventy-fifth birthday.  相似文献   

20.
Since alterations in monoamines and monoamine oxidase (MAO) have been postulated to play a role in toxic effects of lead (Pb) on the central nervous system, we have examined the protective effects of calcium (Ca2+) and zinc (Zn2+) supplementation on Pb-induced perturbations in the levels of monoamines and the activity of MAO. Swiss albino mice were lactationally exposed to low (0.2%) and high (1%) levels of Pb-acetate via drinking water of the mother. Pb-exposure commenced on postnatal day (PND) 1, continued up to PND 21 and stopped at weaning. Ca2+ or Zn2+ (0.02% in 0.2% Pb–water or 0.1% in 1% Pb–water) was supplemented separately to the mother up to PND 21. The levels of monoamines (epinephrine, norepinephrine, dopamine and serotonin) and the activity of MAO in the brain regions such as hippocampus, cortex, cerebellum and medulla of young (1 month old) and adult (3 month old) mice were determined in the synaptosomal fractions. The synaptosomal monoamines though increased with low level (0.2%) Pb-exposure, significantly decreased with high level (1%) Pb-exposure in all the brain regions in both the age groups. In general, the young mice seem to be more vulnerable to Pb-neurotoxicity. Ca2+ or Zn2+ supplementation significantly reversed the Pb-induced perturbations both in the levels of monoamines and in the activity of MAO. However, the recovery in monoamine levels and MAO activity was more pronounced with Ca2+ supplementation as compared to Zn2+. These results provide evidence that dietary Ca2+ and/or Zn2+ provide protection against Pb-induced neurotoxic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号