首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The serological prevalence of 13 murine viruses was surveyed among 103 wild-caught and 51 captive-bred house mice (Mus domesticus), originating from several trapping locations in northwest England, using blood samples obtained during routine health screening of an established wild mouse colony. A high proportion of recently caught wild mice were seropositive for mouse hepatitis virus (86%), mouse cytomegalovirus (79%), mouse thymic virus (78%), mouse adenovirus (68%), mouse parvovirus (59%) and minute virus of mice (41%). Seroprevalences of lymphocytic choriomeningitis virus (LCMV), orthopoxvirus, reovirus-3 and murid herpesvirus 4 (MuHV-4, also called murine gamma-herpesvirus [MHV-68]) were low (3-13%), and no animals were seropositive to Sendai virus, pneumonia virus or polyomavirus. Seroprevalence in wild-caught animals that had been in captivity for over six months was generally consistent with the range found in recently caught wild animals, while seroprevalence was generally much lower in captive-bred mice despite no attempt to prevent viral spread. A notable exception to this was LCMV, which appeared to have spread efficiently through the captive population (both captive-bred and wild-caught animals). Given the known viral life cycles in laboratory mice, it appears that viral persistence in the host was an important contributing factor in the spread of infection in captivity.  相似文献   

2.
Host immune defenses are important components of host–parasite interactions that affect the outcome of infection and may have fitness consequences for hosts when increased allocation of resources to immune responses undermines other essential life processes. Research on host–parasite interactions in large free‐ranging wild mammals is currently hampered by a lack of verified noninvasive assays. We successfully adapted existing assays to measure innate and adaptive immune responses produced by the gastrointestinal mucosa in spotted hyena (Crocuta crocuta) feces, including enzyme‐linked immunosorbent assays (ELISAs), to quantify fecal immunoglobulins (total IgA, total IgG) and total fecal O‐linked oligosaccharides (mucin). We investigated the effect of infection load by an energetically costly hookworm (Ancylostoma), parasite richness, host age, sex, year of sampling, and clan membership on immune responses and asked whether high investment in immune responses during early life affects longevity in individually known spotted hyenas in the Serengeti National Park, Tanzania. Fecal concentrations of IgA, IgG, and mucin increased with Ancylostoma egg load and were higher in juveniles than in adults. Females had higher mucin concentrations than males. Juvenile females had higher IgG concentrations than juvenile males, whereas adult females had lower IgG concentrations than adult males. High IgA concentrations during the first year of life were linked to reduced longevity after controlling for age at sampling and Ancylostoma egg load. Our study demonstrates that the use of noninvasive methods can increase knowledge on the complex relationship between gastrointestinal parasites and host local immune responses in wild large mammals and reveal fitness‐relevant effects of these responses.  相似文献   

3.
The Philippine wild-caught castaneus mouse (Mus musculus castaneus) and laboratory mouse (C57BL/6J: B6) were used to develop a new non-insulin dependent diabetes mellitus (NIDDM) model. Offspring from the cross between a wild male and B6 female were backcrossed to the sire. One male which exhibited highest fasting hyperglycemia (190 mg/dl) among eighty-seven backcross offspring was selected at 10 weeks of age, and crossed with a B6 female to comprise the fundamental stock (F0). Thereafter, full-sib mating was performed to develop a new inbred strain named CBD (Castaneus-B6 diabetic) mouse. Mice with relatively higher fasting hyperglycemia among F0 and F1 generations were selected for breeding. From the F2 generation, mice were defined as diabetic when blood glucose levels exceeded 200 mg/dl at 120 min in intraperitoneal glucose tolerance test (IPGTT) at 10 weeks of age, and have been selectively bred. The incidence of diabetic males from the F3-F6 generation fluctuated 45-75% at 10 weeks of age and 59-72% at 20 weeks of age. Diabetic males had about two-fold higher fasting glucose and insulin levels than B6 males. Glucose-stimulated insulin secretion was impaired in diabetic CBD mice compared to B6 males at 20 weeks. Moreover, diabetic mice had slight obesity compared to B6 mice. These facts indicated that diabetic features of CBD mice resemble NIDDM in humans. The CBD strain, characterized by high incidence and early onset of diabetes with mild obesity would be of value as a new NIDDM model. The method, utilizing wild castaneus mouse of different origin from laboratory mice, maybe useful in the development of other animal models.  相似文献   

4.
The neural mechanisms by which short photoperiod induces gonadal regression among seasonally breeding mammals are not well understood. One hypothesis suggests that the proximate cause of seasonal gonadal regression is a photoperiod-induced modification in GnRH secretion. This hypothesis is indirectly supported by our recent findings using immunocytochemistry which identified specific photoperiod-induced adjustments in the number and morphology of GnRH containing neurones between reproductively competent and reproductively regressed laboratory housed male deer mice. Herein, we report that the GnRH neuronal system is similarly affected in reproductively responsive and nonresponsive wild male deer mice Peromyscus maniculatus exposed to a natural short photoperiod. The distribution of immunoreactive (IR)-GnRH neurones was nearly identical in field caught animals and those housed under artificial photoperiod in the laboratory. Compared with reproductively nonresponsive males, reproductively responsive mice from the field population possessed a greater total number of IR-GnRH neurones, a greater number of IR-GnRH neurones within the lateral hypothalamus, and a greater proportion of bipolar IR-GnRH neurones. Each of these distributional and morphological characters was consistent with our findings in laboratory housed male deer mice exposed to an artificial short photoperiod. Taken together, these data underscore the validity of using an artificial photoperiod to evaluate seasonal adjustments in reproductive function in the laboratory.  相似文献   

5.
Sex differences in immune function are well established among laboratory rodents, with males typically having lower immunity than females. This sex difference may reflect the suppressive effects of testosterone on immune function. Because polygynous males generally have higher circulating testosterone concentrations than monogamous males, sex differences in immune function are hypothesized to be more pronounced among polygynous as compared to monogamous species. Sex differences in immune function have not been consistently observed among individually housed Microtus in the laboratory; thus, social interactions are hypothesized to be necessary for the expression of sex differences in immune function. We assessed the effect of differential housing conditions on humoral immunity and steroid hormone concentrations in polygynous meadow voles Microtus pennsylvanicus, and monogamous prairie voles M. ochrogaster. We examined humoral immunity by immunizing voles with keyhole limpet haemocyanin (KLH) and measuring antibody production 5, 10, 15 and 30 days postimmunization. Overall, meadow voles mounted higher anti-KLH immunoglobulin (Ig)M and IgG responses than prairie voles, regardless of the housing condition. Sex differences in antibody production were only observed among meadow voles housed in pairs, in which females had higher anti-KLH IgM and IgG responses than males. Sex differences in antibody production were not observed among prairie voles or meadow voles housed individually. Sex and species differences in circulating oestradiol, testosterone, and corticosterone concentrations were not related to differences in humoral immunity. These data suggest that sex differences in immune function are more pronounced among polygynous species than monogamous species, but may be context dependent. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

6.
Environments and experiences encountered in early life stages of animals shape their adult behaviour. When environments are maintained for several generations, differential selection forces act upon individuals to select those most fit to the particular conditions. As such, differences in the behaviour of captive bred and wild caught individuals have been observed recurrently. In fish, hatchery raised individuals tend to seek refuge less, making them more vulnerable to predators. We tested the hypothesis that captive breeding induces non‐adaptive changes in behaviour of freshwater angelfish, Pterophyllum scalare. Wild‐caught and captive‐bred fish were exposed to a natural predator and measured for their anti‐predator behaviours; no differences were found in behaviour under control conditions. When exposed to a natural predator, wild‐caught fish exhibited significantly shorter freezing durations than captive‐bred fish, and took significantly shorter time to resume normal behaviour. No differences in the time taken to initiate investigations of the predator were detected. The results demonstrate that captive‐bred fish respond differently than their wild counterparts when exposed to a natural predator, and that this domestication has implications for captive rearing programmes.  相似文献   

7.
The gut microbiota profoundly affects the biology of its host. The composition of the microbiota is dynamic and is affected by both host genetic and many environmental effects. The gut microbiota of laboratory mice has been studied extensively, which has uncovered many of the effects that the microbiota can have. This work has also shown that the environments of different research institutions can affect the mouse microbiota. There has been relatively limited study of the microbiota of wild mice, but this has shown that it typically differs from that of laboratory mice (and that maintaining wild caught mice in the laboratory can quite quickly alter the microbiota). There is also inter-individual variation in the microbiota of wild mice, with this principally explained by geographical location. In this study we have characterised the gut (both the caecum and rectum) microbiota of wild caught Mus musculus domesticus at three UK sites and have investigated how the microbiota varies depending on host location and host characteristics. We find that the microbiota of these mice are generally consistent with those described from other wild mice. The rectal and caecal microbiotas of individual mice are generally more similar to each other, than they are to the microbiota of other individuals. We found significant differences in the diversity of the microbiotas among mice from different sample sites. There were significant correlations of microbiota diversity and body weight, a measure of age, body-mass index, serum concentration of leptin, and virus, nematode and mite infection.  相似文献   

8.
Murine immunoglobulin G (IgG) plays an important role in mediating protective immune responses to malaria. We still know relatively little about which IgG subclasses protect against this disease in mouse models, although IgG2a and IgG2b are considered to be the most potent and dominate in successful passive transfer experiments in rodent malarias. To explore the mechanism(s) by which the different mouse IgG subclasses may mediate a protective effect, we generated mouse IgG1, IgG2a, IgG2b and IgG3 specific for the C-terminal 19-kDa region of Plasmodium falciparum merozoite surface protein 1 (PfMSP1(19)), and to the homologous antigen from Plasmodium yoelii (P. yoelii), both major targets of protective immune responses. This panel of eight IgGs bound antigen with an affinity comparable to that seen for their epitope-matched parental monoclonal antibodies (mAbs) from which they were derived, although for reasons of yield, we were only able to explore the function of mouse IgG1 recognizing PfMSP1(19) in detail, both in vitro and in vivo. Murine IgG1 was as effective as the parental human IgG from which it was derived at inducing NADPH-mediated oxidative bursts and degranulation from neutrophils. Despite showing efficacy in in vitro functional assays with neutrophils, the mouse IgG1 failed to protect against parasite challenge in vivo. The lack of protection afforded by MSP1(19)-specific IgG1 against parasite challenge in wild type mice suggests that this Ab class does not play a major role in the control of infection with mouse malaria in the Plasmodium berghei transgenic model.  相似文献   

9.
Little is known about the innate immune mechanisms regulating adaptive immune responses elicited through the skin. Tissue injury is postulated to liberate Toll like receptor 4 (TLR4) ligands. In this study, we determined whether TLR4 signaling modulates the response to epidermal injury induced by tape stripping (TS) and whether it alters humoral and cellular immune responses generated through epicutaneous immunization with peptide+cholera toxin (CT). The combined use of cholera toxin and TS with antigen promoted optimal antigen-specific CD4(+) and CD8(+) T cell proliferation in Balb/c and C57BL/6 mice, respectively. TLR4 mutant mice had similar T cell responses to wild type mice. Further, OVA-protein specific IgG, IgG(1), IgG(2a), and IgE titers were similar in wild type and TLR4 mutant mice. Thus, TLR4 signaling was not required for the generation of epicutaneous T cell or antibody mediated immune responses and did not alter the quality of the immune responses elicited.  相似文献   

10.
野生来源TW小鼠近交系培育及其生物学特性的研究   总被引:3,自引:3,他引:0  
目的 培育中国特有TW (TianjinWild)野生小鼠来源的实验近交小鼠品系 ,筛选其重要的生物学特征 ,丰富现有实验动物基因库。方法 严格按照国际培育近交系动物标准 ,即每代繁育的雌雄小鼠严格按照同胎雌雄 (兄妹 )进行交配。结果 经过 1 2年的精心培育 ,培育TW小鼠至F2 2代 ,其他 1 5地野生小鼠品系均因故中断。结论 该项研究将为丰富国际现有实验小鼠基因库资源 ,建立抗肺肿瘤特性实验小鼠模型动物奠定坚实基础。  相似文献   

11.
Bacillus cereus causes a uniquely rapid and blinding intraocular infection, endophthalmitis. B. cereus replicates in the eye, synthesizes numerous toxins, and incites explosive intraocular inflammation. The mechanisms involved in the rapid and explosive intraocular immune response have not been addressed. Because Toll-like receptors (TLRs) are integral to the initial recognition of organisms during infection, we hypothesized that the uniquely explosive immune response observed during B. cereus endophthalmitis is directly influenced by the presence of TLR2, a known gram-positive pathogen recognition receptor. To address this hypothesis, we compared the courses of experimental B. cereus endophthalmitis in wild type C57BL/6J mice to that of age-matched homozygous TLR2(-/-) mice. Output parameters included analysis of bacterial growth, inflammatory cell (PMN) infiltration, cytokine/chemokine kinetics, retinal function testing, and histology, with N≥4 eyes/assay/time point/mouse strain. B. cereus grew at similar rates to10(8) CFU/eye by 12 h, regardless of the mouse strain. Retinal function was preserved to a greater degree in infected TLR2(-/-) eyes compared to that of infected wild type eyes, but infected eyes of both mouse strains lost significant function. Retinal architecture was preserved in infected TLR2(-/-) eyes, with limited retinal and vitreal cellular infiltration compared to that of infected wild type eyes. Ocular myeloperoxidase activities corroborated these results. In general, TNFα, IFNγ, IL6, and KC were detected in greater concentrations in infected wild type eyes than in infected TLR2(-/-) eyes. The absence of TLR2 resulted in decreased intraocular proinflammatory cytokine/chemokine levels and altered recruitment of inflammatory cells into the eye, resulting in less intraocular inflammation and preservation of retinal architecture, and a slightly greater degree of retinal function. These results demonstrate TLR2 is an important component of the initial ocular response to B. cereus endophthalmitis.  相似文献   

12.
Many aspects of mouse behavior have been studied by using only a relatively small sample of available laboratory strains. These laboratory mice were derived from the so-called ``fancy mouse' and in most cases underwent extensive domestication before inbreeding. Thus, the behavioral repertoire of the laboratory mouse may be very different from that exhibited by stocks that have not been deliberately domesticated. Another inherent problem in analyzing mouse behavior is that genetic diversity is limited among currently available strains. In this respect, the use of strains that are derived from a variety of wild mice should provide a means to identifying novel behavioral phenotypes. We have investigated several behavioral phenotypes, using females of a number of mouse strains derived from wild mice of different subspecies, BFM/2, NJL, BLG2, HMI, CAST/Ei, KJR, SWN and MSM; a strain derived from fancy mice, JF1; and two laboratory strains, C57BL/6 and DBA/1. In this report, tests for locomotor activity, light-dark transitions, passive and active avoidance, and nociception were conducted. The results show great diversity of behavioral patterns between strains in contrast to less within-strain variability. We also found that two strains, KJR and SWN, both have good learning ability, whereas BLG2 mice exhibit impairment in both passive and active avoidance learning. Received: 11 January 2000 / Accepted: 27 March 2000  相似文献   

13.
We describe four examples of the XO condition in wild mammals. One XO house mouse (Mus musculus domesticus) was caught in nature and subsequently gave birth to three litters in captivity, confirming for wild mice the fertility observed for XO laboratory mice. Two other XO house mice were produced from laboratory crosses of wild-caught mice. An immature XO common shrew (Sorex araneus) was caught in nature; this appears to be the first XO recorded in the order Insectivora. We collected data from researchers studying chromosome variation in house mice and common shrews and found an overall incidence of 0.22% sex chromosome aneuploidy in 4608 mice and 0.05% in 6625 shrews. The discrepancy related to a much higher frequency of XO's in mice than shrews. Single XXY and XYY shrews and an XXX mouse have been recorded in nature.  相似文献   

14.
ABSTRACT Males generally exhibit reduced immune responses and greater susceptibility to disease than females. The suppressive effect of testosterone on immune function is hypothesized to be one reason why males have lower immune responses than females. Presumably, this effect of testosterone should be more pronounced among polygynous than monogamous species because circulating testosterone is higher among polygynous than monogamous males. The present study examined the extent to which sex differences in specific humoral immunity are related to the endocrine status and mating system of two arvicoline rodents. Humoral immunity was evaluated among polygynous meadow voles (Microtus pennsylvanicus) and monogamous prairie voles (Microtus ochrogaster) by challenging them with the novel antigen keyhole limpet hemocyanin (KLH) and assessing specific immune responses 5, 10, and 15 d following immunization. Overall, meadow voles mounted higher anti-KLH IgM and IgG responses than prairie voles did. Sex differences were also apparent for anti-KLH IgM responses; male meadow voles mounted higher antibody responses than conspecific females, whereas female prairie voles mounted greater responses to KLH than did conspecific males. Male meadow voles had significantly higher testosterone concentrations and reproductive organ mass than male prairie voles did but had elevated immune responses, suggesting that testosterone may not be the primary factor involved in the observed sex and species differences in immune responses. Species and sex differences in corticosterone concentrations were also evident and may contribute to the observed differences in immune function. The influence of extrinsic factors on immune function is also discussed. Taken together, these data provide evidence that the mating system may influence endocrine-immune interactions.  相似文献   

15.
Inbred P4 strain mice have previously been shown to be uniquely defective in their resistance to challenge infection induced by irradiated cercariae of Schistosoma mansoni. To assess whether the low levels of resistance developed by vaccinated P mice could be due to a defective antibody response, we compared the anti-schistosomulum antibody responses in vaccinated P animals with those occurring in vaccinated C57BL/6J (B6) mice, a strain that consistently develops high levels of resistance to challenge infection. Our results indicate that vaccinated P mice develop levels of total anti-schistosomulum antibodies that are significantly lower than those occurring in B6 mice for at least 15 wk after immunization, with the exception of the fifth week, at which time the responses are indistinguishable. Further analysis revealed that the defect in P strain antibody response occurs specifically in the IgM isotype and that specific IgM levels in P mice are less than one-half the levels in B6 mice at every time point examined. In contrast, no differences in total IgM immunoglobulins were evident when sera from normal (nonvaccinated) P and B6 mice were compared. P mouse anti-schistosomulum IgG antibody responses reached the same levels as those observed in B6 mice by 5 wk after vaccination. However, a much faster decay in IgG antibody levels occurred after this time point in P animals. No differences were observed when the levels of anti-schistosomulum antibodies occurring in each of the major IgG isotypes (IgG1, IgG2a, IgG2b, IgG3) were compared in sera from P and B6 mice vaccinated 4 wk previously. Similarly, vaccinated P and B6 mice were found to mount indistinguishable IgG anamnestic responses after challenge infection. Finally, no differences between vaccinated P and B6 mice were observed when immediate (30 min) skin test and mast cell degranulation responses to a soluble schistosome antigenic preparation were compared. The above findings suggest that P strain mice have a specific defect in their ability to mount IgM antibody responses after immunization with irradiated cercariae. The possible contribution of this defect in IgM response to the decreased resistance of vaccinated P mice to challenge infection is discussed.  相似文献   

16.
Infections with high doses of intestinal nematodes result in protective immunity based on robust type 2 responses in most mouse lines under laboratory conditions. Here, we report on cellular responses of wild house mice from northern Germany. We detected robust Th1 responses in wild house mice naturally infected with the whipworm Trichuris muris. In contrast, mice infected with pinworms (Syphacia, Aspiculuris) reported type-2 activity by elevated IgG1 levels and eosinophil counts, but also harbored high frequencies of Foxp3+ regulatory T cells, suggesting that natural whip- and pinworm infections induce distinct immunoregulatory as well as effector profiles.  相似文献   

17.
Many osteological collections from museums and research institutions consist mainly of remains from captive‐bred animals. The restrictions related to the space of their enclosures and the nature of its substrate are likely to affect the locomotor and postural behaviors of captive‐bred animals, which are widely considered uninformative regarding bone morphology and anatomical adaptations of wild animals, especially so in the case of extant great apes. We made a landmark‐based geometric morphometrics analysis of the dorsal side of the scapular bone of both wild‐caught and captive‐bred great apes to clarify the effect of captivity on the morphology of a bone greatly involved in locomotion. The comparison suggested that captivity did not have a significant effect on the landmark configuration used, neither on average scapular shape nor shape variability, being impossible to distinguish the scapulae of a captive‐bred animal from that of a wild‐caught one. This indicates that the analyzed scapulae from captive Hominoidea specimens may be used in morphological or taxonomic analyses since they show no atypical morphological traits caused by living conditions in captivity. Am J Phys Anthropol 152:306–310, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
目的:探讨新型呼肠病毒R4株S片段免疫小鼠后引发的免疫应答。方法构建4个不同S基因节段的重组真核表达质粒,并免疫小鼠;ELISA检测血清以研究R4特异性抗体升高水平,并对其抗体亚型进行鉴定;ELISPOT检测小鼠淋巴细胞INF-γ的表达情况。结果与对照组相比,4个重组质粒免疫的小鼠血清都有明显的R4特异性抗体升高,尤其以S1和S3基因免疫后抗体水平较高,且均以IgG2a占绝对优势;S1基因免疫组小鼠的细胞免疫应答最强。结论 S1基因重组质粒免疫小鼠后可同时引发较强的体液免疫和细胞免疫应答,是较为理想的疫苗备选基因片段。  相似文献   

19.
Serum IgG, IgA, and IgM levels were measured in domestically bred African green monkeys (Cercopithecus aethiops) ranging in age from 0 day to 49 months as well as in adult (5 years or older) animals of wild origin. Transplacental transfer of IgG was observed. IgG, IgA, and IgM levels increased with increasing age except for a temporal decrease of IgG level in the first month of life.  相似文献   

20.
Evolutionary processes have shaped the vertebrate immune system over time, but proximal mechanisms control the onset, duration, and intensity of immune responses. Based on testing of the hygiene hypothesis, it is now well known that microbial exposure is important for proper development and regulation of the immune system. However, few studies have examined the differences between wild animals in their natural environments, in which they are typically exposed to a wide array of potential pathogens, and their conspecifics living in captivity. Wild spotted hyenas (Crocuta crocuta) are regularly exposed to myriad pathogens, but there is little evidence of disease-induced mortality in wild hyena populations, suggesting that immune defenses are robust in this species. Here we assessed differences in immune defenses between wild spotted hyenas that inhabit their natural savanna environment and captive hyenas that inhabit a captive environment where pathogen control programs are implemented. Importantly, the captive population of spotted hyenas was derived directly from the wild population and has been in captivity for less than four generations. Our results show that wild hyenas have significantly higher serum antibody concentrations, including total IgG and IgM, natural antibodies, and autoantibodies than do captive hyenas; there was no difference in the bacterial killing capacity of sera collected from captive and wild hyenas. The striking differences in serum antibody concentrations observed here suggest that complementing traditional immunology studies, with comparative studies of wild animals in their natural environment may help to uncover links between environment and immune function, and facilitate progress towards answering immunological questions associated with the hygiene hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号