首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proteinase-catalysed synthesis of [Leu]enkephalin and [Met]enkephalin was studied kinetically. N alpha-t-Butoxycarbonyl-amino acids and peptides or their ethyl esters served as acyl donors, and amino acid phenylhydrazides were used as acyl acceptors. Initial-velocity measurements of alpha-chymotrypsin-catalysed peptide synthesis gave rise to kinetic patterns that are compatible with a ping-pong mechanism modified by a hydrolytic branch. Initial-rate and alternative-substrate inhibition patterns for papain-controlled peptide-bond formation are consistent with a sequential ordered mechanism with the acyl donor as the obligatory first substrate. On the basis of the observed kinetic features, reaction mechanisms are proposed for chymotrypsin- and papain-catalysed peptide synthesis that inversely equal those describing the pathways of proteolysis. The respective initial-velocity expressions for bireactant systems are given, along with the numerical values of the corresponding kinetic parameters.  相似文献   

2.
S Yoneda  K Kitamura  M Doi  M Inoue  T Ishida 《FEBS letters》1988,239(2):271-275
Simulations of the molecular dynamics of the [Met5]enkephalin monomer and dimer structures in water have been carried out. The dynamic trajectories have been analyzed in terms of the distances between intra- or intermolecular polar atoms. The time-correlated conformational transitions of an extended monomer structure have been converged into a stationary state among the beta-bend folded forms. However, the dynamics simulation of an extended antiparallel dimer structure has shown no noticeable conformation change. These results imply that both the beta-bend monomer and the extended dimer structures exist together as the fundamental conformation of enkephalins.  相似文献   

3.
Dipeptidyl carboxypeptidase‐I is an enzyme involved in the biological degradation of enkephalins. It has been suggested that C‐terminal amidation of enkephalins enhances their resistance to dipeptidyl carboxypeptidase‐I‐mediated biodegradation. In this study, a novel [Met5]enkephalin amide (MEA) analogue [Met5]enkephalin (ME)‐semicarbazide synthesized by another laboratory in our group was assessed for its antinociceptive effects compared with ME‐ethylamide, MEA and ME, using tail flick test. To protect the administered drugs from biodegradation, rats were pretreated with peptidase inhibitors including amastatin, phosphoramidon and captopril. Then captopril (dipeptidyl carboxypeptidase‐I inhibitor) was deleted from the peptidase inhibitors' combination for evaluating in vivo resistance of the synthetic drugs to dipeptidyl carboxypeptidase‐I. According to the results, ME‐semicarbazide and MEA were resistant enough to dipeptidyl carboxypeptidase‐I to exert their strong antinociception following intrathecal administration even in the absence of captopril, whereas the antinociceptive effects produced by ME‐ethylamide (10 nmol) were abolished in rats not pretreated with captopril, indicating that significant amounts of the ME‐ethylamide were degraded by dipeptidyl carboxypeptidase‐I. Replacement of the amide moiety of MEA with semicarbazide provides a new ME derivative, with high analgesic effects as well as more resistance to dipeptidyl carboxypeptidase‐I‐mediated biodegradation. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
The structure of enkephalin, a small neuropeptide with five amino acids, has been simulated on computers using molecular dynamics. Such simulations exhibit a few stable conformations, which also have been identified experimentally. The simulations provide the possibility to perform cluster analysis in the space defined by potentially pharmacophoric measures such as dihedral angles, side-chain orientation, etc. By analyzing the statistics of the resulting clusters, the probability distribution of the side-chain conformations may be determined. These probabilities allow us to predict the selectivity of [Leu]enkephalin and [Met]enkephalin to the known mu- and delta-type opiate receptors to which they bind as agonists. Other plausible consequences of these probability distributions are discussed in relation to the way in which they may influence the dynamics of the synapse.  相似文献   

5.
125I[D-Ala2, Met5] enkephalin with high specific activity (122-185 Ci/mmol) was prepared and purified by Sep-Pak C18 reverse phase cartridge followed by high performance liquid chromatography (HPLC). HPLC at pH 3.0 resolved 125I[D-Ala2, Met5] enkephalin into two fractions, which ran as a single spot in thin-layer chromatography with the same Rf values. Alkaline hydrolysates of the HPLC-purified fractions showed a single spot corresponding to monoiodotyrosine standard when analysed by thin-layer chromatography. Binding kinetics of the tracer was found to approach equilibrium after 30 min at 24 degrees. Scatchard analysis of the saturation equilibrium binding studies gave an equilibrium dissociation constant of 3.58 nM and the number of binding site of 30 fmol/mg protein. Enkephalin analogs were capable of displacing 125I[D-Ala2, Met5] enkephalin binding from the rat brain plasma membrane. The effective concentration of [D-Ala2, Met5] enkephalin and [D-Ala2, Leu5] enkephalin for 50% inhibition of 125I[D-Ala2, Met5] enkephalin binding was estimated to be 79 nM and 23 nM, respectively. Both substance P and gastrin tetrapeptide failed to displace the 125I[D-Ala2, Met5] enkephalin binding to any significant extent. The 125I[D-Ala2, Met5] enkephalin prepared by the present procedure is therefore a useful tracer. This method of preparing radioiodinated peptide may be applicable to other enkephalin analogs or neuropeptides in general.  相似文献   

6.
Hydrolysis of [Leu]- and [Met]enkephalin was determined in whole rat plasma in vitro by using HPLC-ECD to measure Tyr, Tyr-Gly and Tyr-Gly-Gly formation. Although [Leu]- and [Met]enkephalin did not differ in Tyr or Tyr-Gly accumulation, the amount of Tyr-Gly-Gly resulting from [Met]enkephalin hydrolysis was greater than that resulting from [Leu]enkephalin hydrolysis, and [Met]enkephalin's half-life in plasma was slightly shorter than that of [Leu]enkephalin. By comparing metabolite formation in the presence and absence of peptidase inhibitors with high selectivity for their respective enzymes, these studies demonstrated that aminopeptidase M and angiotensin converting enzyme are the major peptidases that hydrolyze enkephalins in rat plasma.  相似文献   

7.
Using high-performance liquid chromatography with electrochemical detection to measure substrate disappearance and metabolite accumulation following addition of [Leu]enkephalin to samples prepared from chick brain in vitro, the following were found: 1. [Leu]enkephalin hydrolysis by whole forebrain homogenates is almost solely attributable to aminopeptidase MII activity. 2. [Leu]enkephalin hydrolysis by whole forebrain P2 membrane fractions is attributable to both aminopeptidase MII and dipeptidyl carboxypeptidase activity. 3. Differences are apparent in both [Leu]enkephalin disappearance and Tyr-Gly-Gly accumulation in P2 membrane fractions, but not in homogenate fractions, prepared from several regions of the chick brain.  相似文献   

8.
To investigate the biologically active conformation of enkephalin, molecular-dynamics simulations were applied to [Met5]- and [D-Ala2,Met5]-enkephalins. The dynamic trajectory of monomeric extended [Met5]-enkephalin was analysed in terms of relative mobility between respective torsions of backbone chain. After 10 ps of the dynamics simulation, the conformational transition was converged into a stationary state among the beta-bend folded forms, where they are stabilized by several intramolecular hydrogen-bond formations. Similar conformational transition was also observed in the dynamics simulation of [D-Ala2,Met5]enkephalin, which is a more mu-receptor-specific peptide than [Met5]enkephalin. The geometrical correspondence between the monomeric enkephalin conformation in the stationary state and morphine molecule (a mu-specific rigid opiate) was surveyed by virtue of the triangular substructures generated by choosing three functional atoms in each molecule, and good resemblances were observed. On the other hand, the dynamics simulation of the antiparallel extended [Met5]enkephalin dimer showed a trajectory different from that of the monomeric one. Two intermolecular hydrogen bonds at Tyr1 (NH3+)...Met5(CO2-) end residues were held throughout the 100 ps simulation, the dimeric structure being consequently kept. The conformational transition of the backbone chains from the antiparallel extended form to the twisted one took place via an intermediate state. Many conformations revealed during the dynamics simulation showed that the relative orientations of each two Tyr1, Gly3, Phe4 and Met5 residues in the dimer are nearly related by a pseudo-C2-symmetry respectively, and both halves of the dimer structure could be further fitted to the monomeric folded enkephalin conformation. The monomeric and dimeric conformations of enkephalin at their stationary states are discussed in relation to the substrate-specificity for mu- and delta-opioid receptors.  相似文献   

9.
Conformational energy calculations were carried out for beta-endorphin. Its spatial structure can be described by nine low-energy conformations. The calculations yielded the values of all dihedral angles of the backbone and side chains of these forms as well as intra- and inter-residue interaction energies.  相似文献   

10.
Two peptidases which convert 125I-Lys-Arg-ME and 125I-ME-Arg6, respectively, to 125I-ME, have been identified and characterized in bovine adrenomedullary chromaffin granules. The former is referred to as a secretory granule peptidase (SGP) and the latter as a carboxypeptidase B-like enzyme (CPB-like) [7] which is here further characterized. SGP cleaved 125I-Lys-Arg-ME to produce only 125I-ME and was localized in chromaffin granules which contained co2+-stimulated CPB-like activity, ME, and catecholamines. Both the SGP and the CPB-like enzymes appear to be thiol-metalloproteases. While the CPB-like enzyme seems likely to be involved in processing the enkephalin precursors [7], SGP may function as a trypsin-like or aminopeptidase enzyme in secretory granules.  相似文献   

11.
The primary structure of the 5300 dalton adrenal enkephalin-containing polypeptide was shown to contain at its carboxyl terminus the sequence -Lys-Arg-Tyr-Gly-Gly-Phe-Met-Arg-Gly-Leu-COOH (Jones et al., (1981) Proc. Natl. Acad. Sci. USA, in press). From knowledge of the type of processing that occurs at paired basic amino acid residues such as -Lys-Arg-, it was predicted that the octapeptide Tyr-Gly-Gly-Phe-Met-Arg-Gly-Leu should be produced and exist in free form in the adrenal gland. This octapeptide has now been purified from bovine adrenal chromaffin granules. Its structure was determined by amino acid analysis, carboxypeptidase Y time course hydrolysis and sequential digestion with trypsin and carboxypeptidase B. The octapeptide has 35% the opiate receptor binding activity of [Met]enkephalin.  相似文献   

12.
The conformation of [Leu5]enkephalin has been studied by 1H-NMR spectroscopy in media more like the actual environment in which the agonist-receptor interaction takes place than water, i.e. in three cryoprotective mixtures (dimethylformamide/water, methanol/water and ethylene glycol/water), in aqueous SDS and in two neat solvents, dimethylformamide and acetonitrile, whose dielectric constants (36.7 and 37.5) are intermediate between that of water and that of the lipid phase. In all cases examined, contrary to the studies in water or dimethylsulfoxide, we were able to detect numerous nuclear Overhauser effects, indicating that the media employed favour well-defined structures and/or reduce the internal motions of the peptide. Data from both organic solvents and cryoprotective mixtures suggest a 4----1 beta turn as the most probable structure of [Leu5]enkephalin in solution, whereas in SDS/H2O micelles the structural picture appears completely different, suggesting the presence of a 5----2 beta turn. The existence of two different preferred conformations of enkephalins may possibly be related to their ability to be effective towards both mu and delta opioid receptors.  相似文献   

13.
The crystals of Boc-Tyr-Gly-Gly-Phe psi[CSNH]Leu-OBzl monohydrate (C40H51N5O8S.H2O), a monothionated Leu-enkephalin analogue, were obtained with space group P2(1), a = 12.616(3), b = 9.347(2), c = 18.548(5) A, beta = 96.31(4) degrees. The structure was elucidated by X-ray diffraction analysis, and refined to the R value of 0.091 for the observed 3294 reflections. Two antiparallel molecules related by a pseudo twofold symmetry were stabilized to each other by four intermolecular hydrogen bonds. The molecular conformation was bent at the Phe residue, and the extended moiety of the Tyr-Gly-Gly fragment was almost perpendicular to that of the Phe-Leu residues. Consequently the molecule, as a whole, formed an L-shape conformation with a slightly left-handed helicity.  相似文献   

14.
The distribution in rat brain of angiotensin converting enzyme (EC3.4.15.1) using hippuryl-His-Leu as substrate was identical to a dipeptidyl carboxypeptidase present in membranes assayed with Met-enkephalin as substrate. Highest activity occurred in pituitary, followed by cerebellum, corpus striatum, midbrain, pons-medulla, hypothalamus, cerebral cortex and spinal cord. The ratio of products His-Leu/Tyr-Gly-Gly was identical for all regions but differed from His-Leu/Tyr. Angiotensin converting enzyme purified by immunoaffinity chromatography gave a Km for hippuryl-His-Leu of 0.5mM and for Met-enkephalin of 0.1 mM. In the presence of the specific inhibitor of angiotensin converting enzyme, SQ 14,225, the Ki value was 10?7M. Present data point to the co-identity of brain angiotensin converting enzyme with the dipeptidyl carboxypeptidase inactivating enkephalin.  相似文献   

15.
The range of delta-selectivity of linear and cyclic analogues of enkephalin in rat brain was found to be: [D-Pen2, L-Pen5] enkephalin (DPLPE) greater than [D-Pen2, D-Pen5] enkephalin (DPDPE) greater than [D-Thr2, Leu5] enkephalyl-Thr6 (DTLET) greater than [D-Ser2, Leu5] enkephalyl-Thr6 (DSLET). Saturation experiments performed with [3H]DPDPE and [3H]DTLET in NG108-15 cells and rat brain showed similar binding capacities for both the ligands, but the delta-affinity of [3H]DTLET (KD approximately 1.2 nM) was much better than that of [3H]DPDPE (KD approximately 7.2 nM). The rather low delta-affinity of DPDPE induced high experimental errors cancelling the benefit of its better delta-selectivity. Binding experiments in rat or guinea-pig brains showed, in both cases, the better delta-selectivity of [3H]DTLET compared to [3H]DSLET. The former peptide remains at this time the most appropriate radioactive probe for binding studies of delta-receptor.  相似文献   

16.
The immunogenic conjugates of [leu]enkephalin and bovine serum albumin (BSA) with bisdiazobenzidine and 1,4-benzoquinone as bifunctional reagents have been synthesized. The antisera with high titer of antibodies to [leu]enkephalin have been obtained at rabbit [correction of rat] immunization by both conjugates. The antiserum obtained at immunization by conjugate [leu]enkephalin-benzoquinone-BSA possesses the high affinity and sensitivity to [leu]enkephalin.  相似文献   

17.
The effects of [leucine]enkephalin and angiotensin on hepatic carbohydrate and cyclic nucleotide metabolism are compared. Both peptides stimulated glycogenolysis as a result of an increase in phosphorylase a activity and enhanced glucose synthesis from [2-14C]pyruvate, although neither had any significant effect on pyruvate kinase activity. Although the magnitudes of the effects of both peptides on glycogenolysis were comparable and unaffected by the presence of insulin. [Leu]enkephalin proved to be more efficacious in enhancing gluconeogenesis, the response being comparable with that to glucagon. Both effectors decreased the intracellular concentration of cyclic AMP in hepatocytes when incubated under control conditions and after addition of sub-optimal concentrations of glucagon. This was correlated with the ability of the two peptides to inhibit both basal and hormone-stimulated adenylate cyclase activity in purified liver plasma membranes.  相似文献   

18.
Both [Leu]enkephalin and DPen2-[DPen5]enkephalin, a delta opioid receptor selective analog of [Leu]enkephalin, impaired acquisition of an automated shelf-jump response in rats. A similar level of impairment was produced by equimolar doses of the two enkephalins. As is seen for [Leu]enkephalin when tested in a one-way active avoidance task, the dose-response function for the impairment produced by DPen2-[DPen5]enkephalin in the automated shelf-jump task is U-shaped. These results, together with our previous findings that DPen2-[DPen5]enkephalin and [Leu]enkephalin both impair acquisition of a one-way active avoidance response in mice, and that [Leu]enkephalin impairs acquisition of that same response in rats, support our suggestion that delta opioid receptors are implicated in the effects of [Leu]enkephalin on conditioning. In addition, these results indicate that the involvement of delta opioid receptors in acquisition impairment extends to two species of rodents and to two different avoidance conditioning tasks.  相似文献   

19.
Delta opioid peptide [D-Ala2,D-Leu5]enkephalin promotes cell survival   总被引:6,自引:0,他引:6  
By studying the hibernation in ground squirrels, a protein factor termed hibernation induction trigger (HIT) was found to induce hibernation in summer-active ground squirrels. Further purification of HIT yielded an 88-kD peptide that is enriched in winter hibernator. Partial sequence of the 88-kD protein indicates that it may be related to the inhibitor of metalloproteinase. Delta opioid [D-Ala(2),D-Leu(5)]enkephalin (DADLE) also induced hibernation. HIT and DADLE were found to prolong survival of peripheral organs preserved en bloc or as a single preparation. These organs include the lung, the heart, liver and kidney. DADLE also promotes survival of neurons in the central nervous system. Methamphetamine (METH) is known to cause destruction of dopaminergic (DA) terminals in the brain. DADLE blocked and reversed the DA terminal damage induced by METH. DADLE acted against this effect of METH at least in part by attenuating the mRNA expressions of a tumor necrosis factor p53 and an immediate early gene c-fos. DADLE also blocked the neuronal damage induced by ischemia-reperfusion following a transient middle cerebral artery occlusion. In PC12 cells, DADLE blocked the cell death caused by serum deprivation in a naltrexone-sensitive manner. Thus, DADLE, and by extension the endogenous delta opioid peptides and delta opioid receptors, may play an important role in organ and neuronal survival. Here, critical developments concerning these fascinating cell protective properties of DADLE are reviewed.  相似文献   

20.
Neuronal antigens can be demonstrated histologically by numerous direct and indirect immunocytochemical techniques in which a specific antibody is identified by a marker compound such as fluorescein isothiocyanate, ferritin, or horseradish peroxidase. One of the more sensitive methods for the light and electron microscopic localizations of antigens in sections of tissue is the peroxidase-antiperoxidase (PAP) technique. The experimental procedures and the results obtained using this technique for the localization of the catecholamine synthesizing enzyme, tyrosine hydroxylase, are described. The cellular and ultrastructural localization of the enzyme is demonstrated in perikarya, processes, and terminals of catecholaminergic neurons in rat brain. The immunocytochemical localization of tyrosine hydroxylase is compared to the localization of two peptides, substance P and [Met5]-enkephalin, in the A2 region of the medulla. These studies suggest that a synaptic interaction exists between the catecholaminergic neurons and neurons showing positive immunoreactivity for the peptides. The limitations of the PAP immunocytochemical technique are also discussed in relation to the immunocytochemical localization of tyrosine hydroxylase and other antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号