首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Lactate dehydrogenase (LDH, EC 1.1.1.27) catalyses the reduction of pyruvate to lactate in facultative anaerobes. Whole cells of Lactobacillus plantarum NCIM 2084 showed low levels of LDH activity but permeabilization of cells by treatment with organic solvents toluene, chloroform and diethyl ether increased the measurable LDH activities, ether treated cells showing the highest increase. The maximum intracellular activity was obtained upon treating the cells with ether (1%) at 28°C for 1 min. The LDH activity in permeabilized cells was nearly three-fold higher than that in the cell-free extract prepared by sonication. The kinetic properties of LDH in the permeabilized cells were comparable to that of cell-free extract, indicating that catalytically it functions similar to the isolated enzyme.  相似文献   

3.
Zhang J  Rui YC  Yang PY  Lu L  Li TJ 《Life sciences》2006,78(26):2983-2988
Ischemic stroke can trigger an acute phase response resulting in a rise of plasma concentration of C-reactive protein (CRP). Clinical data about the relationship between CRP and prognosis suggest that CRP might be involved in the pathogenesis of cerebral ischemia. In the present work, a significant increase of circulating level of CRP was observed in an vivo rat brain ischemia model of middle cerebral artery occlusion. To determine the possible effects of CRP on brain microvessel endothelium, we performed a dose-dependent experiment in mouse brain microvascular endothelial cells (bEnd.3 cells) with emphasis on its relation to cell adhesions molecules. Incubation with CRP (1-75 mg/L) for 24 h significantly increased Lactate dehydrogenase (LDH) leakage from bEnd.3 cells (P<0.01) in a dose-dependent manner, and induced significant up-regulations of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions analyzed by Western blotting (P<0.01). In contrast to earlier report, CRP also induced significant increase in ICAM-1 expression in the absence of serum (P<0.01). In conclusion, the present results suggest that CRP may be involved directly in the development of inflammation in response to cerebral ischemia.  相似文献   

4.
Fibrosis is the important pathway for end-stage renal failure. Glucose has been demonstrated to be the most important fibrogenesis-inducing agent according to previous studies. Despite diosgenin has been demonstrated to be anti-inflammatory, the possible role in fibrosis regulation of diosgenin remain to be investigated. In this study, renal proximal tubular epithelial cells (designated as HK-2) were treated with high concentration of glucose (HG, 27.5 mM) to determine whether diosgenin (0.1, 1 and 10 μM) has the effects to regulate renal cellular fibrosis. We found that 10 μM of diosgenin exert optimal inhibitory effects on high glucose-induced fibronectin expression in HK-2 cells. In addition, diosgenin markedly inhibited HG-induced increase in α-smooth muscle actin (α-SMA) and HG-induced decrease in E-cadherin. In addition, diosgenin antagonizes high glucose-induced epithelial-to-mesenchymal transition (EMT) signals partly by enhancing the catabolism of Snail in renal cells. Collectively, these data suggest that diosgenin has the potential to inhibit high glucose-induced renal tubular fibrosis possibly through EMT pathway.  相似文献   

5.
Membranes of the obligate methylotroph Methylobacillus flagellatus KT contained hemes B, O, and C and cytochromes b, o, and c both in batch and in continuous cultures. Neither heme A nor heme D was detected in the membranes. The cytochromes o and bb were the main components reversibly binding carbon monoxide (CO) in the terminal part of the respiratory chain. The alpha-region and especially the alpha-peaks at 568 and 573 nm and the alpha-troughs at 586 and 592 on the CO-difference spectra were diagnostic for the cytochromes o and bb, respectively. The cytochrome o content increased up to 1.8 times upon increasing the dilution rate of the culture from 0.15 to 0.55 h(-1) under methanol limitation. By contrast, the level of the CO-binding cytochrome bb was not affected by methanol concentration but its content increased up to 1.9 times when the level of oxygen decreased from 95 to 21 microM under the constant dilution rate (mu = 0.55 h(-1)). The maximum ratio between the cytochromes o and bb reached 2 during continuous cultivation under methanol-limited conditions (mu = 0.55 h(-1)), whereas the minimum ratio between them was about 0.7 during batch cultivation at stationary phase of growth. The synthesis of the CO-binding cytochrome bb but not of the cytochrome o in M. flagellatus KT was assumed to depend on the ambient redox potential of the medium. The cytochrome o synthesis was supposed to depend on the transmembrane gradient of protons (Delta(mu)H+).  相似文献   

6.
Cold preservation results in cell death via iron-dependent formation of reactive oxygen species, leading to apoptosis during rewarming. We aimed to study cold-induced damage (i.e., injury as a consequence of hypothermia itself and not cold ischemia) in proximal tubular cells (PTC) in various preservation solutions presently applied and to clarify the role of mitochondria in this injury. Primary cultures of rat PTC were incubated at 4 degrees C for 24 h in culture medium, UW, Euro-Collins or HTK solution with and without the iron chelator desferal and rewarmed at 37 degrees C in culture medium. Cell damage, morphology, and apoptosis were studied and mitochondrial membrane potential was assessed by fluorescence microscopy. Cold incubation of PTC in culture medium followed by rewarming caused marked cell damage compared to warm incubation alone (LDH release 39+/-10% vs. 1.6+/-0.3%). Cold-induced damage was aggravated in all preservation solutions (LDH release 85+/-2% for UW; similar in Euro-Collins and HTK). After rewarming, cells showed features suggestive for apoptosis. Desferal prevented cell injury in all solutions (e.g., 8+/-2% for UW). Mitochondrial membrane potential was lost during rewarming and this loss could also be inhibited by desferal. Trifluoperazine, which is known to inhibit mitochondrial permeability transition (MPT), was able to prevent cold-induced injury (LDH 85+/-5% vs. 12+/-2%). We conclude that cold-induced injury occurs in PTC and is aggravated by UW, Euro-Collins, and HTK solution. Iron-dependent MPT is suggested to play a role in this damage. Strategies to prevent cold-induced injury should aim at reducing the availability of "free" iron.  相似文献   

7.
Isaka Y  Kimura T  Takabatake Y 《Autophagy》2011,7(9):1085-1087
In kidney, proximal tubules consume a large amount of energy in the process of electrolyte reabsorption. These tubules contain large quantities of mitochondria which provide the energy for this reabsorption. Proximal tubules are susceptible to many kinds of insults such as ischemia-reperfusion injury and nephrotoxic substrates, but little is known of the factors that counteract cellular stress signaling pathways. Autophagy mediates bulk degradation and recycling of cytoplasmic constituents to maintain cellular homeostasis. We demonstrated the critical role of autophagy in normal proximal tubule function and protection against acute tubular injury.  相似文献   

8.
《Autophagy》2013,9(9):1085-1087
In kidney, proximal tubules consume a large amount of energy in the process of electrolyte reabsorption. These tubules contain large quantities of mitochondria which provide the energy for this reabsorption. Proximal tubules are susceptible to many kinds of insults such as ischemia-reperfusion injury and nephrotoxic substrates, but little is known of the factors that counteract cellular stress signaling pathways. Autophagy mediates bulk degradation and recycling of cytoplasmic constituents to maintain cellular homeostasis. We demonstrated the critical role of autophagy in normal proximal tubule function and protection against acute tubular injury.  相似文献   

9.
Calbindin-D(28K) is suggested to play a postsynaptic role in neurotransmission and in the regulation of the intracellular Ca(2+) concentration. However, it is still unclear whether calbindin-D(28K) has a role in the regulation of exocytosis, either as Ca(2+) buffer or as Ca(2+) sensor. Amperometric recordings of catecholamine exocytosis from wild-type and calbindin-D(28K) knockout mouse chromaffin cells reveal a strong reduction in the number of released vesicles, as well as in the amount of neurotransmitter released per fusion event in knockout cells. However, Ca(2+) current recordings and Ca(2+) imaging experiments, including video-rate confocal laser scanning microscopy, revealed that the intracellular Ca(2+) dynamics are remarkably similar in wild-type and knockout cells. The combined results demonstrate that calbindin-D(28K) plays an important and dual role in exocytosis, affecting both release frequency and quantal size, apparently without strong effects on intracellular Ca(2+) dynamics. Consequently, the possibility that calbindin-D(28K) functions not only as a Ca(2+) buffer but also as a modulator of vesicular catecholamine release is discussed.  相似文献   

10.
11.
The aim of this study was to investigate the protective effect of inhibition of aquaporin-1 (AQP1) expression against aristolochic acid I (AA-I)-induced apoptosis. HK-2 cells impaired by AA-I were used in this study as the cell model of aristolochic acid nephropathy. Apoptosis was studied by different methods, including 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assays, flow cytometry, and caspase 3 activity assays. We compared AA-I-mediated apoptosis in HK-2 cells with or without knockdown of AQP1 expression by RNA interference. MTT assays showed that AA-I inhibited the viability of HK-2 cells in a time- and concentration-dependent manner. Apoptosis was evidenced by the results of the Annexin V/propidium iodide assay and the occurrence of a sub-G1 peak in cell-cycle analysis. The activity of caspase 3 was found to have been increased by AA-I in a concentration-dependent manner. However, AQP1 RNA interference provided protection against injury in cells treated with AA-I (40 μM) for 24 h and attenuated the number of apoptotic cells. These results suggested that AQP1 plays an important role in AA-I-induced apoptosis and that inhibition of AQP1 expression may protect HK-2 cells from AA-I-induced apoptotic damage.  相似文献   

12.
The molecular mechanisms underlying hypoxic responses in pulmonary and systemic arteries remain obscure. Here we for the first time report that acute hypoxia significantly increased total PKC and PKCepsilon activity in pulmonary, but not mesenteric arteries, while these two tissues showed comparable PKCepsilon protein expression and activation by the PKC activator phorbol 12-myristate 13-acetate. Hypoxia induced an increase in intracellular reactive oxygen species (ROS) generation in isolated pulmonary artery smooth muscle cells (PASMCs), but not in mesenteric artery SMCs. Inhibition of mitochondrial ROS generation with rotenone, myxothiazol, or glutathione peroxidase-1 overexpression prevented hypoxia-induced increases in total PKC and PKCepsilon activity in pulmonary arteries. The inhibitory effects of rotenone were reversed by exogenous hydrogen peroxide. A PKCepsilon translocation peptide inhibitor or PKCepsilon gene deletion decreased hypoxic increase in [Ca(2+)](i) in PASMCs, whereas the conventional PKC inhibitor GO6976 had no effect. These data suggest that acute hypoxia may specifically increase mitochondrial ROS generation, which subsequently activates PKC, particularly PKCepsilon, contributing to hypoxia-induced increase in [Ca(2+)](i) and contraction in PASMCs.  相似文献   

13.
Megalin, a family of endocytic receptors related to the low-density lipoprotein (LDL) receptor, is a major pathway for proximal tubular aminoglycoside accumulation. We previously reported that aminoglycoside antibiotics reduce SGLT1-dependent glucose transport in pig proximal tubular epithelial LLC-PK1 cells in parallel with the order of their nephrotoxicity. In this study, using a model of gentamicin C (GMC)-induced reduction in SGLT1 activity, we examined whether ligands for megalin protect LLC-PK1 cells from the GMC-induced reduction in SGLT1 activity. We employed apolipoprotein E3 (apoE3) and lactoferrin as ligands for megalin. Then the cells were treated with various concentrations of apoE3, lactoferrin and bovine serum albumin with or without 100 microg/ml of GMC, and the SGLT1-dependent methyl alpha-D-glucopyranoside (AMG) uptake and levels of SGLT1 expression were determined. As a result, we demonstrated that the apoE3 significantly protects these cells from GMC-induced reduction in AMG uptake, but neither lactoferrin nor albumin does. In accord with a rise in AMG uptake activity, the mRNA and protein levels of SGLT1 were apparently up-regulated in the presence of apoE3. Furthermore, we found that the uptake of [3H] gentamicin is decreased by apoE3, and that apoE3 showed obvious protection against the GMC-dependent N-acetyl-beta-D-glucosamidase (NAG) release from LLC-PK1 cells. Thus, these results indicate that apoE3 could be a valuable tool for the prevention of aminoglycoside nephrotoxicity.  相似文献   

14.
Phosphatase and tensin homology deleted on chromosome ten (PTEN) is a negative regulator of PI3K/Akt pathway, and here we investigated the effect of PTEN on lipogenesis in diabetic rats and high glucose-stimulated human renal proximal tubular cell line (HKC). Decreased PTEN and increased phospho-Akt were found in kidney of diabetic rats, and in vitro research revealed that high glucose attenuated PTEN expression in a time-dependent manner, concomitant with activation of Akt. Again, expression of PTEN significantly inhibited high glucose-caused increased phospho-Akt and lipogenic genes including SREBP-1, fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC). Furthermore, we confirmed inhibition of TGF-β1 pathway with SB431542 blocked the effect of high glucose on PTEN down-regulation, an increase in phospho-Akt and lipogenesis. These above data suggest that decreased PTEN mediates high glucose-induced lipogenesis in renal proximal tubular cells and TGF-β1 might be involved in PTEN down-regulation.  相似文献   

15.
Antioxidant phytochemicals are investigated as novel treatments for supportive therapy in β-thalassemia. The dietary indicaxanthin was assessed for its protective effects on human β-thalassemic RBCs submitted in vitro to oxidative haemolysis by cumene hydroperoxide. Indicaxanthin at 1.0-10 μM enhanced the resistance to haemolysis dose-dependently. In addition, it prevented lipid and haemoglobin (Hb) oxidation, and retarded vitamin E and GSH depletion. After ex vivo spiking of blood from thalassemia patients with indicaxanthin, the phytochemical was recovered in the soluble cell compartment of the RBCs. A spectrophotometric study showed that indicaxanthin can reduce perferryl-Hb generated in solution from met-Hb and hydrogen peroxide (H2O2), more effectively than either Trolox or vitamin C.

Collectively our results demonstrate that indicaxanthin can be incorporated into the redox machinery of β-thalassemic RBC and defend the cell from oxidation, possibly interfering with perferryl-Hb, a reactive intermediate in the hydroperoxide-dependent Hb degradation. Opportunities of therapeutic interest for β-thalassemia may be considered.  相似文献   

16.
Beauvericin, a cyclic hexadepsipeptide, is a mycotoxin that can induce cell death in human lymphoblastic leukemia CCRF-CEM cells. Our previous data have shown that beauvericin induces cell death in CCRF-CEM cells in a dose- and time-dependent manner, and that this beauvericin-induced cell death can be prevented by administration of intracellular calcium chelator-BAPTA. Therefore, the intracellular Ca2+ concentration ([Ca2+]i) may play an important role in beauvericin-induced cell death in CCRF-CEM cells. In this study, the effect of beauvericin on [Ca2+]i and the possible mechanism responsible for the changes of [Ca2+]i in CCRF-CEM cells were investigated. Beauvericin caused a rapid and sustained [Ca2+]i rise in a dose-dependent manner. Excess extracellular Ca2+ facilitated beauvericin-induced [Ca2+]i rise by adding 1 mM CaCl2 in the bathing medium. On the other hand, beauvericin-induced [Ca2+]i rise was prevented in Ca2+-free Tyrode's solution by 200 microM EGTA. In addition, beauvericin-induced [Ca2+]i rise was also attenuated by intracellular Ca2+ chelator-BAPTA/AM. It is worthy to note that neither the voltage-dependent Ca2+ channel blocker, nimodipine, nor depletion of intracellular Ca2+ with thapsigargin, an endoplasmic reticulum Ca2+ pump inhibitor, has any effect on beauvericin-induced [Ca2+]i rise. The data from present study indicate that beauvericin acts as a potent Ca2+ mobilizer by stimulating extracellular Ca2+ influx CCRF-CEM cells.  相似文献   

17.
Hydroxytyrosol (2-(3′,4′-dihydroxyphenyl)ethanol; HT), the most active ortho-diphenolic compound, present either in free or esterified form in extravirgin olive oil, is extensively metabolized in vivo mainly to O-methylated, O-sulfated and glucuronide metabolites. We investigated the capacity of three glucuronide metabolites of HT, 3′-O-β-d-glucuronide and 4′-O-β-d-glucuronide derivatives and 2-(3′,4′-dihydroxyphenyl)ethanol-1-O-β-d-glucuronide, in comparison with the parent compound, to inhibit H2O2 induced oxidative damage and cell death in LLC-PK1 cells, a porcine kidney epithelial cell line. H2O2 treatment exerted a toxic effect inducing cell death, interacting selectively within the pro-death extracellular-signal relate kinase (ERK 1/2) and the pro-survival Akt/PKB signaling pathways. It also produced direct oxidative damage initiating the membrane lipid peroxidation process. None of the tested glucuronides exhibited any protection against the loss in renal cell viability. They also failed to prevent the changes in the phosphorylation states of ERK and Akt, probably reflecting their inability to enter the cells, while HT was highly effective. Notably, pretreatment with glucuronides exerted a protective effect at the highest concentration tested against membrane oxidative damage, comparable to that of HT: the formation of malondialdehyde, fatty acid hydroperoxides and 7-ketocholesterol was significantly inhibited.  相似文献   

18.
Lactate dehydrogenase enzyme present in quail seminal plasma has been characterized. Polyacrylamide gel electrophoresis and subsequently with LDH specific staining of seminal plasma revealed a single isozyme in quail semen. Studies on substrate inhibition, pH for optimum activity and inhibitor (urea) indicated the isozyme present in the quail semen has catalytic properties like LDH-1 viz. H-type. Furthermore, unlike other mammalian species, electrophoretic and kinetic investigations did not support the existence of semen specific LDH-X isozyme in quail semen. The effect of exogenous lactate and pyruvate on sperm metabolic activity was also studied. The addition of 1 mM lactate or pyruvate to quail semen increased sperm metabolic activity. Our results suggested that both pyruvate and lactate could be used by quail spermatozoa to maintain their basic functions. Since the H-type isozyme is important for conversion of lactate to pyruvate under anaerobic conditions it was postulated that exogenous lactate being converted into pyruvate via LDH present in semen may be used by sperm mitochondria to generate ATP. During conversion of lactate to pyruvate NADH is being generated that may be useful for maintaining sperm mitochondrial membrane potential.  相似文献   

19.
20.
We studied the effects of SEB on [14C]-choline transport and metabolism of choline containing phospholipids in cultured human kidney proximal tubular (PT) cells. SEB increased the uptake of [14C]-choline in PT cells as a function of toxin concentration, incubation time, and pH. The maximum increase in uptake (3.5–5-fold compared to control) was observed at a toxin concentration of 10 ug/104 cells, at 4 h and at pH 7.4. Two toxins structurally related to SEB, Staphylococcal enterotoxin-A and toxic shock toxin (TST-1) failed to alter [14C]-choline uptake in PT cells, a finding which indicates that SEB-mediated alteration in choline uptake in PT cells has high specificity.We found that SEB markedly and significantly increased the incorporation of [14C]-choline into phosphatidylcholine, Iysophosphatidylcholine and sphingomyelin, but not into phosphatidylethanolamine. Maximum increase in the incorporation of [14C]-choline into phosphatidlycholine (3-fold compared to control) was observed at 4 h after incubation with toxin. In contrast, SEB did not alter the incorporation of [14C]-choline in phosphatidylethanolamine. The cellular level of phosphatidylcholine was also increased (2-fold compared to control) in PT cells incubated with SEB. This was accompanied by a 3-to-4-fold increase in CTP: phosphocholine, cytidyltransferase activity.In sum, SEB specifically stimulates phosphatidylcholine synthesis in PT cells by increasing choline uptake or by activating CTP: phosphocholine, cytidyltransferase, or both. We believe this is the first-ever report indicating that a toxin can increase phosphatidylcholine synthesis. This high order of specificity may be in part due to the presence of a glycosphingolipid receptor in PT cells that specifically binds SEB but not SEA or TST-1. Accordingly, it is tempting to speculate that the receptor may somehow be involved in the SEB-mediated regulation of phosphatidylcholine synthesis.Abbreviations SEB Staphylococcal entertoxin-B - SEA Staphylococcal enterotoxin-A - TST-1 Toxic shock syndrome toxin-1 - PT Proximal tubular - PC Phosphatidylcholine - SM Sphingomyelin - LPC Lysophosphatidyl-choline - CT Cytidyltransferase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号