首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The question of what signal, if any, appears in the pollen record when trees are present in the vegetation without producing pollen or with no pollen being recorded, is addressed. Four scenarios are envisaged: (i) the number of trees in the landscape are very few and scattered, (ii) the trees are too young to produce pollen, (iii) climate conditions are unfavourable for the trees to produce pollen and (iv) the trees are cut or damaged so that they do not flower. Each of these is considered in terms of pollen accumulation rates (PARs) and present theories and models of pollen dispersal. Examples are provided for the forest limit areas of the northern boreal trees in Finnish Lapland using data of pollen deposition monitored by pollen traps and results from the high temporal resolution (near annual) analyses of peat profiles. The relevance of the results to questions such as finds of spruce macrofossils in the Swedish mountains, the 8200 cal b.p. cold event, the migration of species/vegetation succession, and widespread damage to trees are all considered. It is concluded that although these situations are sometimes ‘invisible’ or misrepresented when pollen assemblages are expressed in the traditional percentage manner, they are often revealed by PARs. The fact that the pollen assemblage reflects a much wider regional area than is often understood can strengthen signals which have a regional impact, such as those which are climate induced, but may obscure events which affect only a limited spatial area or occur as small patches in the landscape.Communicated by Pim van der Knaap  相似文献   

2.
Pinus sylvestris L., Abies alba Mill. and Fagus sylvatica L.—the significant forest forming tree species in Europe are important for palaeoecological interpretations based on the results of pollen analysis of fossil deposits. The potential pollen loading for Pinus sylvestris, Abies alba and Fagus sylvatica was modelled using simulated and actual vegetation maps, measured fall-speed values and pollen productivity estimates from the literature. The influx of fir pollen drops sharply with distance from the pollen source due to the high fall speed and moderate pollen productivity. The vast majority of Abies alba pollen is deposited within less than 50 m of the sampling site and a major proportion within 100 m. For beech the corresponding numbers would be 300 and 1,800 m, and for pine 1,000 and 4,500 m. The observed mean pollen accumulation rate (PAR) values for Pinus and Fagus were ca. 5,800 and 1,100 grains cm−2 year−1, respectively. In the case of Abies, the mean annual PAR for the whole region is ca. 700 grains cm−2 year−1. In SE Poland the regional signal is represented by PARs of Abies alba <200 grains cm−2 year−1 and of Fagus sylvatica <500 grains cm−2 year−1. The local presence/absence threshold values for Abies alba, Fagus sylvatica and Pinus sylvestris are >1,000 grains cm−2 year−1, >2,000 grains cm−2 year−1 and >3,500 grains cm−2 year−1 respectively.  相似文献   

3.
Fens are important components of Canada’s western boreal forests, occupying about 63% of the total peatland area and storing about 65% of the peatland carbon. Rich fens, dominated by true moss-dominated ground layers, make up more than half of the fens in the region. We studied organic matter accumulation in three rich fens that represent the diversity in structural types. We used in situ decomposition socks, a new method that examines actual decomposition throughout the upper peat profile over an extended period of time. We coupled our carbon loss data with macrofossil analyses and dated peat profiles using 210Pb. Across the three rich fens and in the top 39 cm of the peat column, dry mass increases on average 3.1 times. From our dry mass loss measurements, we calculate that annual mass loss from the top 39 cm varies from 0.52 to 1.08 kg m2. Vertical accumulation during the past 50 years has varied from 16 to 32 cm and during these 50 years, organic matter accumulation has averaged 174 g m−2 y−1 compared to 527 g m2 y−1 dry mass loss, with additional mass losses of 306 g m2 y−1 from peat between 50 and 150 years of age. Organic matter accumulation from our rich fens compares well with literature values from boreal bogs, whereas peat bulk densities increase about three times within the uppermost 40 cm, much more than in bogs. Hence, rich fens accumulate peat not because the plant material is especially hard to decompose, is acidic, or has the catotelm especially close to the surface, but because dense, rapidly produced inputs outweigh the relatively rapid decomposition process of the upper peat column. Author Contributions: DHV conceived study; KS, KW, SF, & DHV performed research; DHV, KW analyzed data; DHV, KW contributed new methods; DHV, KW wrote the paper.  相似文献   

4.
Considering the complexity of real-world pollen dispersal, a single set of parameters may be inadequate to model pollen dispersal, especially as dispersal occurs on both local and regional scales. Here we combine more than one dispersal function into a composite dispersal function (CDF). The function incorporates multiple parameters and different modes of pollen transportation, and thus has the potential to better simulate the relationship between deposited pollen and the surrounding vegetation than would otherwise be possible. CDFs based on different dispersal functions and combinations of dispersal functions were evaluated using a pollen-trap dataset from the Swiss Alps. Absolute pollen productivity (APP) was estimated at 7,700 ± 2,000 grains cm−2 year−1 for Larix decidua, 13,500 ± 1,900 grains cm−2 year−1 for Picea abies and 95,600 ± 17,700 grains cm−2 year−1 for Pinus cembra (with 95% confidence level). The results are consistent with previous APP estimates made from the same dataset using different methods.  相似文献   

5.
The distribution of pollen in marine sediments is used to record vegetation changes over the past 30,000 years on the adjacent continent. A transect of marine pollen sequences from the mouth of the river Congo (∼5°S) to Walvis Bay and Lüderitz (∼25°S) shows vegetation changes in Congo, Angola and Namibia from the last glacial period into the Holocene. The comparison of pollen records from different latitudes provides information about the latitudinal shift of open forest and savannahs (Poaceae pollen), the extension of lowland forest (rain forest pollen) and Afromontane forest (Podocarpus pollen), and the position of the desert fringe (pollen of Caryophyllaceae, Chenopodiaceae and Amaranthaceae). High Cyperaceae pollen percentages in sediments from the last glacial period off the mouth of the river Congo suggest the presence of open swamps rather than savannah vegetation in the Congo Basin. Pollen from Restionaceae in combination with Stoebe-type pollen (probably from Elytropappus) indicates a possible northwards extension of winter rain vegetation during the last glacial period. The record of Rhizophora (mangrove) pollen is linked to erosion of the continental shelf and sea-level rise. Pollen influx is highest off river mouths (10–2000 grains year−1 cm−2), close to the coast (300–6000 grains year−1 cm−2), but is an order of magnitude lower at sites situated far from the continent (<10 grains year−1 cm−2).  相似文献   

6.
Pollen data are presented for the pine forest region around Lake Inari in eastern Finnish Lapland. The region has traditionally been the home of the Saami people who, until the 19th century, followed a seasonally nomadic way of life with an economy based on hunting, fishing and gathering. Although the Saami had no permanent centres of settlement, they did gather together at specific sites every winter, revisiting them year after year over several decades. A pollen diagram is presented from a peat area adjacent to one such winter village, Einehlammet. This shows a clear interference phase characterized by a peak in Ericales followed by a small but distinct peak in Poaceae and the slight, sporadic occurrence of pollen types that can be shown to be connected with human presence. At the same time Pinus values fall and, at the end of the phase, there is a strong increase in Betula pollen. This evidence is compared with that from actually within a dwelling (kota) at another winter village, Nukkumajoki, and is seen to follow exactly the same pattern. Such changes in forest composition in this situation could not be attributed to climatic change. The results demonstrate that, peoples pursuing a purely hunting and gathering economy and moving in the forests in a manner designed to preserve rather than destroy their environment can, nevertheless, cause vegetation changes that are discernable by pollen analysis within a distance of 50 m.  相似文献   

7.
Aim To understand better the representation of arctic tundra vegetation by pollen data, we analysed pollen assemblages and pollen accumulation rates (PARs) in the surface sediments of lakes. Location Modern sediment samples were collected from seventy‐eight lakes located in the Arctic Foothills and Arctic Coastal Plain regions of northern Alaska. Methods For seventy of the lakes, we analysed pollen and spores in the upper 2 cm of the sediment and calculated the relative abundance of each taxon (pollen percentages). For eleven of the lakes, we used 210Pb analysis to determine sediment accumulation rates, and analysed pollen in the upper 10–15 cm of the sediment to estimate modern PARs. Using a detailed land‐cover map of northern Alaska, we assigned each study site to one of five tundra types: moist dwarf‐shrub tussock‐graminoid tundra (DST), moist graminoid prostrate‐shrub tundra (PST) (coastal and inland types), low‐shrub tundra (LST) and wet graminoid tundra (WGT). Results Mapped pollen percentages and multivariate comparison of the pollen data using discriminant analysis show that pollen assemblages vary along the main north–south vegetational and climatic gradients. On the Arctic Coastal Plain where climate is cold and dry, graminoid‐dominated PST and WGT sites were characterized by high percentages of Cyperaceae and Poaceae pollen. In the Arctic Foothills where climate is warmer and wetter, shrub‐dominated DST, PST and LST were characterized by high percentages of Alnus and Betula pollen. Small‐scale variations in tundra vegetation related to edaphic variability are also represented by the pollen data. Discriminant analysis demonstrated that DST sites could be distinguished from foothills PST sites based on their higher percentages of Ericales and Rubus chamaemorus pollen, and coastal PST sites could be distinguished from WGT sites based on their higher percentages of Artemisia. PARs appear to reflect variations in overall vegetation cover, although the small number of samples limits our understanding of these patterns. For coastal sites, PARs were higher for PST than WGT, whereas in the Arctic Foothills, PARs were highest in LST, intermediate in DST, and lowest in PST. Main conclusion Modern pollen data from northern Alaska reflect patterns of tundra vegetation related to both regional‐scale climatic gradients and landscape‐scale edaphic heterogeneity.  相似文献   

8.
As much as 10% of the total carbon stored in peatlands occurs in the tropics. Although tropical peatlands are poorly understood scientifically, they are increasingly exploited for a variety of human uses. Our objective was to measure baseline carbon cycling data in one type of tropical peatland in order to understand better how peat accumulates in these ecosystems. Average plant production for two study sites on the island of Kosrae in the Federated States of Micronesia over 2 year was 1122 g C m−2 year−1, of which 1058 g C m−2 year−1 was aboveground plant production (bole, buttress and litterfall). Although leaves contributed a high proportion of total plant productivity, their rapid decomposition left little carbon for peat accumulation. In contrast, fine roots only contributed 10% to plant productivity, but their slow decomposition allowed them to accumulate as peat. Wood (branches and stems) probably contributed the most carbon to the formation of peat. Despite being on the soil surface, small branches decomposed more slowly than leaves because of their high C:N and lignin:N ratios. In summary, we suggest that tropical peatlands in Micronesia accumulate peat not because of high plant production but rather because of slow decomposition of roots and wood under anaerobic conditions that result from nearly constant high water levels.  相似文献   

9.
Soil surface CO2 flux was measured in hollow and hummock microhabitats in a peatland in north central Minnesota from June to October in 1991. We used a closed infrared gas exchange system to measure soil CO2 flux. The rates of CO2 evolution from hummocks (9.8 ± 3.5 g m−2 d−1, [mean ± SE]) were consistently higher than those from hollows (5.4 ± 2.9 g m−2 d−1) (the hummock values included the contribution of moss dark respiration, which may account for 10–20% of the total measured flux). The soil CO2 flux was strongly temperature-dependent (Q10 ≈ 3.7) and appeared to be linearly related to changes in water table depth. An empirical multiplicative model, using peat temperature and water table depth as independent variables, explained about 81% of the variance in the CO2 flux data. Using the empirical model with measurements of peat temperature and estimates of hollow/hummock microtopographic distribution (relative to water table elevation), daily rates of “site-averaged” CO2 evolution were calculated. For the six-month period (May–October), the total soil CO2 released from this ecosystem was estimated to be about 1340 g CO2 m−2. Published as Paper No. 9950, Journal Series, Nebraska Agricultural Research Division, University of Nebraska, Lincoln, NE, USA.  相似文献   

10.
It has long been assumed that the peat underlying tropical peat swamp forests accumulates because the extreme conditions (water logged, nutrient poor, anaerobic and acidic—pH 2.9–3.5) impede microbial activity. Litterbag studies in a tropical Malaysian peat swamp (North Selangor peat swamp forest) showed that although the sclerophyllous, toxic leaves of endemic peat forest plants (Macaranga pruinosa, Campnosperma coriaceum, Pandanus atrocarpus, Stenochlaena palustris) were barely decomposed by bacteria and fungi (decay rates of only 0.0006–0.0016 k day−1), leaves of M. tanarius, a secondary forest species were almost completely decomposed (decay rates of 0.0047–0.005 k day−1) after 1 year. Thus it is intrinsic properties of the leaves (that are adaptations to deter herbivory in the nutrient poor environment) that impede microbial breakdown. The water of the peat swamp was very high in dissolved organic carbon (70–84 mg l−1 DOC). Laboratory studies revealed initial rapid leaching of DOC from leaves (up to 1,720 mg l−1 from 4 g of leaves in 7 days), but the DOC levels then fell rapidly. The leaching of DOC resulted in weight loss but the physical structure of the leaves remained intact. It is suggested that the DOC is used as a substrate for microbial growth hence lowering the concentration of DOC in the water and transferring energy from the leaves to other trophic levels. This would explain how nutrient poor tropical peatswamps support diverse, abundant flora and fauna despite low nutrient levels and lack of rapid litter cycling such as occurs in other types of tropical rainforests.  相似文献   

11.
Spatiotemporal variations in microbial gene abundances were investigated to identify potential zones of methanotroph and methanogen biomass in a peat bog in Sarobetsu-genya wetland. The abundances of the bacterial and archaeal 16S rRNA genes, pmoA, and mcrA were 107–109, 107–108, 104–106, and 104–107 copies g−1 dry peat, respectively. Correlation analysis based on microbial gene abundances and environmental factors showed that the spatiotemporal distributions of the abundances of the four microbial genes in peat layers were similar. The mcrA abundance showed a significant negative correlation with the dissolved organic carbon content and a significant positive correlation with the peat temperature. The pmoA abundance was not detectable during the spring thaw when the lowest peat temperature at a depth of 50 cm was recorded. At a depth of 200 cm, the peat temperature exceeded 6°C throughout the year, and the mcrA abundance exceeded 104 copies g−1 dry peat. These results indicate that the seasonal microbial activity related to methane should be evaluated in not only the shallow but also the deep peat layers in order to elucidate the methane dynamics in boreal wetlands.  相似文献   

12.
Ecosystem respiration (ER) is an important but poorly understood part of the carbon (C) budget of peatlands and is controlled primarily by the thermal and hydrologic regimes. To establish the relative importance of these two controls for a large ombrotrophic bog near Ottawa, Canada, we analyzed ER from measurements of nighttime net ecosystem exchange of carbon dioxide (CO2) determined by eddy covariance technique. Measurements were made from May to October over five years, 1998 to 2002. Ecosystem respiration ranged from less than 1 μmol CO2 m−2 s−1 in spring (May) and fall (late October) to 2–4 μmol CO2 m−2 s−1 during mid-summer (July-August). As anticipated, there was a strong relationship between ER and peat temperatures (r2 = 0.62). Q10 between 5° to 15°C varied from 2.2 to 4.2 depending upon the choice of depth where temperature was measured and location within a hummock or hollow. There was only a weak relationship between ER and water-table depth (r2 = 0.11). A laboratory incubation of peat cores at different moisture contents showed that CO2 production was reduced by drying in the surface samples, but there was little decrease in production due to drying from below a depth of 30 cm. We postulate that the weak correlation between ER and water table position in this peatland is primarily a function of the bog being relatively dry, with water table varying between 30 and 75 cm below the hummock tops. The dryness gives rise to a complex ER response to water table involving i) compensations between production of CO2 in the upper and lower peat profile as the water table falls and ii) the importance of autotrophic respiration, which is relatively independent of water-table position.  相似文献   

13.
Tertiary-relict plants are survivors from the pre-Quaternary periods. Today, most European Tertiary relicts are confined to small, isolated stands distributed in the Mediterranean and Black Sea regions. In the past, however, the fossil record indicates that these species were probably distributed over large parts of the European continent and may have been important constituents of the vegetation. Little is known about their pollen representation, which limits our ability to reconstruct this past vegetation with any accuracy. This paper draws on the results of pollen trapping experiments in Bulgaria and Georgia, where relict stands of Aesculus hippocastanum, Cercis siliquastrum, Fagus orientalis, Juglans regia and Pterocarya fraxinifolia are still in existence. We compared average pollen accumulation rates (PAR) to vegetation data from around the trapping locations to derive estimates of absolute pollen productivity using various pollen dispersal functions. Composite dispersal functions that model pollen components carried above the vegetation canopy and falling as rain provided better relationships between PAR and plant abundance than functions that consider only a single component or the ‘trunk-space’ component carried under the canopy. A composite dispersal function with a simple model for regional pollen and the best overall correlation statistics gave the following estimates of absolute pollen productivity (grains cm−2 yr−1 with 1 SE intervals): Carpinus betulus 19,000–28,700; Fagus orientalis 15,600–20,400; Juglans regia 27,200–36,200; Pterocarya fraxinifolia 182,000–192,600; Quercus spp. 21,700–24,800; Tilia begoniifolia 51,600–68,300; and T. tomentosa 14,700–18,200. These estimates were applied to fossil data from the Black Sea coast to reconstruct palaeovegetation using absolute and relative methods.  相似文献   

14.
Recent warming at high-latitudes has accelerated permafrost thaw in northern peatlands, and thaw can have profound effects on local hydrology and ecosystem carbon balance. To assess the impact of permafrost thaw on soil organic carbon (OC) dynamics, we measured soil hydrologic and thermal dynamics and soil OC stocks across a collapse-scar bog chronosequence in interior Alaska. We observed dramatic changes in the distribution of soil water associated with thawing of ice-rich frozen peat. The impoundment of warm water in collapse-scar bogs initiated talik formation and the lateral expansion of bogs over time. On average, Permafrost Plateaus stored 137 ± 37 kg C m−2, whereas OC storage in Young Bogs and Old Bogs averaged 84 ± 13 kg C m−2. Based on our reconstructions, the accumulation of OC in near-surface bog peat continued for nearly 1,000 years following permafrost thaw, at which point accumulation rates slowed. Rapid decomposition of thawed forest peat reduced deep OC stocks by nearly half during the first 100 years following thaw. Using a simple mass-balance model, we show that accumulation rates at the bog surface were not sufficient to balance deep OC losses, resulting in a net loss of OC from the entire peat column. An uncertainty analysis also revealed that the magnitude and timing of soil OC loss from thawed forest peat depends substantially on variation in OC input rates to bog peat and variation in decay constants for shallow and deep OC stocks. These findings suggest that permafrost thaw and the subsequent release of OC from thawed peat will likely reduce the strength of northern permafrost-affected peatlands as a carbon dioxide sink, and consequently, will likely accelerate rates of atmospheric warming.  相似文献   

15.
A biofiltration process was developed for styrene-containing off-gases using peat as filter material. The average styrene reduction ratio after 190 days of operation was 70% (max. 98%) and the mean styrene elimination capacity was 12 g m−3 h−1 (max. 30 g m−3 h−1). Efficient styrene degradation required addition of nutrients to the peat, adjustment of the pH to a neutral level and efficient control of the humidity. Maintenance of the water balance was easier in a down-flow than in an up-flow process, the former consequently resulting in much better filtration efficiency. The optimum operation temperature was around 23 °C, but the styrene removal was still satisfactory at 12 °C. Seven different bacterial isolates belonging to the genera Tsukamurella, Pseudomonas, Sphingomonas, Xanthomonas and an unidentified genus in the γ group of the Proteobacteria isolated from the microflora of active peat filter material were capable of styrene degradation. The isolates differed in their capacity to decompose styrene to carbon dioxide and assimilate it to biomass. No toxic intermediate degradation products of styrene were detected in the filter outlet gas or in growing cultures of isolated bacteria. The use of these isolates in industrial biofilters is beneficial at low styrene concentrations and is safe from both the environmental and public health points of view. Received: 30 May 1997 / Received revision: 22 August 1997 / Accepted: 25 August 1997  相似文献   

16.
The Mer Bleue peatland is a large ombrotrophic bog with hummock-lawn microtopography, poor fen sections and beaver ponds at the margin. Average growing-season (May–October) fluxes of methane (CH4) measured in 2002–2003 across the bog ranged from less than 5 mg m−2 d−1 in hummocks, to greater than 100 mg m−2 d−1 in lawns and ponds. The average position of the water table explained about half of the variation in the season average CH4 fluxes, similar to that observed in many other peatlands in Canada and elsewhere. The flux varied most when the water table position ranged between −15 and −40 cm. To better establish the factors that influence this variability, we measured CH4 flux at approximately weekly intervals from May to November for 5 years (2004–2008) at 12 collars representing the water table and vegetation variations typical of the peatland. Over the snow-free season, peat temperature is the dominant correlate and the difference among the collars’ seasonal average CH4 flux is partially dependent on water table position. A third important correlate on CH4 flux is vegetation, particularly the presence of Eriophorum vaginatum, which increases CH4 flux, as well as differences in the potential of the peat profile to produce and consume CH4 under anaerobic and aerobic conditions. The combination of peat temperature and water table position with vegetation cover was able to explain approximately 44% of the variation in daily CH4 flux, based on 1097 individual measurements. There was considerable inter-annual variation in fluxes, associated with varying peat thermal and water table regimes in response to variations in weather, but also by variations in the water level in peripheral ponds, associated with beaver dam activity. Raised water level in the beaver ponds led to higher water tables and increased CH4 emission in the peatland.  相似文献   

17.
Annual production rates of reproductive organs inFagus crenata forests in the lower area of the species' range were studied using 10 litter traps in 1980–1986. The production rates of dispersed pollen were estimated by multiplying the number of fallen male inflorescences per ha per year by the mean amount of pollen per inflorescence before anthesis. Large annual fluctuations in the production rates of male and female inflorescences were recognized, whereas their annual trends were synchronized with each other. Pollen production rates were within the range 1.0–6900 (mean: 1630)×109ha−1 yr−1, the maximum/minimum ratio attaining 7000.F. crenata was the lowest producer of pollen among seven tree species studied: the number of pollen grains equivalent to a single ovule was in the range 6.0–14×104. Furthermore, the mean dry weight of a single pollen grain (3.77×10−5mg) was higher than for wind-pollinated species. Three factors seemed to cause the low seed fertility ofF. crenata. The dry-matter production rate in the best seed year reached 3252 kg ha−1 yr−1, of which pollen accounted for 259 kg ha−1 yr−1. Unproductive years with less than 10% of the maximum production occurred four times in a 7-yr period. In such years there were fewer male and female inflorescences, and more fruit dropped as a result of insect damage. Lower nut dissemination would play an important role in suppressing any increase in nut predators, and fewer flowers would be produced to avoid wastage of photosynthates in a cool-temperate climate.  相似文献   

18.
Summary A 1984 field experiment tested the effect of inoculation with a vesicular-arbuscular mycorrhizal fungus on yield of onions (Allium cepa L. cv. Balstora) grown under commercial conditions from seedlings raised in peat modules. Roots in commercial blocking compost (M 64) could not be infected, so a modified peat, containing 50% of sterilized clay soil, was used to produce mycorrhizal seedlings. Treatments to seedlings were: uninoculated in M64 compost (K), uninoculated in modified medium (NM) and inoculated withGlomus mosseae in modified medium (M). There were two blocks of plots, one irrigated, one not. At harvest the yields of marketable (>20 mm bulb diameter) onions from M seedlings were generally about twice those from NM seedlings. On non-irrigated plots M seedlings yielded 30.3 tha−1, slightly less than did K seedlings (36.6 t ha−1). On irrigated plots M seedlings yielded 35.3 t ha−1 and K seedlings 34.9 t ha−1, but this difference was not significant. Differences in size of bulbs at harvest were small even though rates of vegetative growth differed markedly between treatments during crop development. Variations in final yield arose largely from differences in numbers of onions that failed to bulb (thicknecks). Irrigation increased mean bulb weight in all treatments but also markedly increased the number of thicknecks. Unexpectedly, the increase in thicknecks was much less in inoculated plants. This effect of mycorrhizal infection did not seem to be related to improved phosphorus nutrition.  相似文献   

19.
Laboratory incubations were used to investigate the influence of soil mixing intensity and waterlogged conditions on nutrient mobilisation from models of cultivated heathland soil. Fragmentation of the peaty surface horizon after different soil cultivation intensities was simulated using four different surface areas of peat organic matter. In well aerated conditions, increased mobilisation of C, NH 4 + −N, PO 4 3− , K+, Ca2+ and Mg2+ was observed with increased mixing intensity and increased surface area of peat. For all nutrients apart from calcium, intensively mixed treatments showed higher mobilisation rates under waterlogging than under well aerated conditions. This was particularly clear for NH 4 −N and PO 4 3− mobilisation. Simple linear regression analysis showed that, under aerated conditions, for four mixing intensities, rates of mobilisation of NH 4 + −N, PO 4 3− , K+, Ca2+ and Mg2+ were approximately constant per unit of peat surface area exposed during soil mixing. Waterlogging was more important than soil mixing intensity in determining nitrogen mobilisation rates in saturated soil.  相似文献   

20.
In the Maujahn peat bog the Slavic period is recorded with a high-resolution pollen diagram in 150 cm of the peat profile. In the upper part of the pollen diagram the time resolution is 3.2 years in the middle and lower part 5.2 years. The Slavic period can be divided into four stages according to different kind of land use and intensity of human influence. The main crop was Secale; less important was the cultivation of Triticum, Panicum, Hordeum, Avena and Pisum. The Slavic period lasted from about a.d. 800–1200. The pollen diagram also displays a final part of the Migration period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号