首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ralstonia solanacearum, a widely distributed and economically important plant pathogen, invades the roots of diverse plant hosts from the soil and aggressively colonizes the xylem vessels, causing a lethal wilting known as bacterial wilt disease. By examining bacteria from the xylem vessels of infected plants, we found that R. solanacearum is essentially nonmotile in planta, although it can be highly motile in culture. To determine the role of pathogen motility in this disease, we cloned, characterized, and mutated two genes in the R. solanacearum flagellar biosynthetic pathway. The genes for flagellin, the subunit of the flagellar filament (fliC), and for the flagellar motor switch protein (fliM) were isolated based on their resemblance to these proteins in other bacteria. As is typical for flagellins, the predicted FliC protein had well-conserved N- and C-terminal regions, separated by a divergent central domain. The predicted R. solanacearum FliM closely resembled motor switch proteins from other proteobacteria. Chromosomal mutants lacking fliC or fliM were created by replacing the genes with marked interrupted constructs. Since fliM is embedded in the fliLMNOPQR operon, the aphA cassette was used to make a nonpolar fliM mutation. Both mutants were completely nonmotile on soft agar plates, in minimal broth, and in tomato plants. The fliC mutant lacked flagella altogether; moreover, sheared-cell protein preparations from the fliC mutant lacked a 30-kDa band corresponding to flagellin. The fliM mutant was usually aflagellate, but about 10% of cells had abnormal truncated flagella. In a biologically representative soil-soak inoculation virulence assay, both nonmotile mutants were significantly reduced in the ability to cause disease on tomato plants. However, the fliC mutant had wild-type virulence when it was inoculated directly onto cut tomato petioles, an inoculation method that did not require bacteria to enter the intact host from the soil. These results suggest that swimming motility makes its most important contribution to bacterial wilt virulence in the early stages of host plant invasion and colonization.  相似文献   

2.
Li ZG  He F  Zhang Z  Peng YL 《Amino acids》2012,42(6):2363-2371
Ralstonia solanacearum is a devastating bacterial pathogen that has an unusually wide host range. R. solanacearum, together with Arabidopsis thaliana, has become a model system for studying the molecular basis of plant-pathogen interactions. Protein-protein interactions (PPIs) play a critical role in the infection process, and some PPIs can initiate a plant defense response. However, experimental investigations have rarely addressed such PPIs. Using two computational methods, the interolog and the domain-based methods, we predicted 3,074 potential PPIs between 119 R. solanacearum and 1,442 A. thaliana proteins. Interestingly, we found that the potential pathogen-targeted proteins are more important in the A. thaliana PPI network. To facilitate further studies, all predicted PPI data were compiled into a database server called PPIRA (http://protein.cau.edu.cn/ppira/). We hope that our work will provide new insights for future research addressing the pathogenesis of R. solanacearum.  相似文献   

3.
Burkholderia pseudomallei, the causative agent of melioidosis, exploits the Bsa type III secretion system (T3SS) to deliver effector proteins into host cells. These effectors manipulate host cell functions; thus, contributing to the ability of the bacteria to evade the immune response and cause disease. Only two Bsa-secreted effectors have been conclusively identified to date. Here, we report the identification of the third B. pseudomallei type III secreted effector protein, designated BopC. BopC is encoded by the bpss1516 gene abutting bpss1517, which encodes its putative chaperone. The genes are located in the close proximity to the bsa T3SS gene cluster of B. pseudomallei K96243 (Fig. 1). BopC was secreted into culture supernatant by the wild-type B. pseudomallei strain, but its secretion was abolished in the bsaZ T3SS mutant. Using pull down and co-purification assays, we confirmed that BopC interacts with its putative chaperone, BPSS1517, in vitro. Furthermore, the first 20 N-terminal amino acids of BopC were found to be sufficient to mediate the T3SS-dependent translocation of a reporter protein from a heterologous enteropathogenic Escherichia coli host into mammalian cells. Finally, bopC mutant was found to be less invasive than the wild-type strain in the epithelial cells.  相似文献   

4.
Bacterial wilt, caused by Ralstonia solanacearum, is one of the most serious diseases of tomato (Solanum lycopersicum). Concomitant infection of R. solanacearum and root‐knot nematode Meloidogyne incognita increases the severity of bacterial wilt in tomato, but the role of this nematode in disease complexes involving bacterial pathogens is not completely elucidated. Although root wounding by root‐knot nematode infection seems to play an important role, it might not entirely explain the increased susceptibility of plants to R. solanacearum. In the present study, green fluorescent protein (GFP)‐labelled R. solanacearum distribution was observed in the root systems of the tomato cultivar Momotaro preinoculated with root‐knot nematode or mock‐inoculated with tap water. Fluorescence microscopy revealed that GFP‐labelled R. solanacearum mainly colonized root‐knot nematode galls, and little or no green fluorescence was observed in nematode‐uninfected roots. These results suggest that the gall induced by the nematode is a suitable location for the growth of R. solanacearum. Thus, it is crucial to control both R. solanacearum and root‐knot nematode in tomato production fields to reduce bacterial wilt disease incidence and effects.  相似文献   

5.
目的:利用Tn5转座诱变荧光假单胞菌PF20001,研究所获得的突变株对青枯病的生防效果。方法:利用三亲本杂交方式,将带有转座子Tn5的Tn5-102(含luxAB)的质粒pTR102成功地转入PF20001,利用平板相互拮抗法分析突变株对青枯病致病菌的拮抗作用。结果:通过诱导Tn5转座,得到荧光假单胞菌PF20001的Tn5插入突变库。经平板相互拮抗实验发现,菌株PF20001-lux-48拮抗圈明显大于野生型(半径达0.35cm)。用Tn5-lux特异引物进行PCR扩增,结果显示只有以该突变株的DNA为模板才能得到300bp的扩增产物,证实该菌株基因组中有Tn5插入。结论:Tn5的插入使菌株PF20001对青枯病生物防治能力增强。  相似文献   

6.
The root‐knot nematode Meloidogyne incognita is known to increase the severity of bacterial wilt in many solanaceous crops. In Japan, several bacterial wilt‐resistant rootstocks that have the M. incognita resistance (Mi) gene in their genome have been developed for tomatoes. In this study, we aimed to examine whether the presence of Mi gene‐breaking M. incognita population affects the development of bacterial wilt in bacterial‐wilt‐resistant tomato rootstocks with Mi in their genetic background. We also aimed to examine the possibility of using high‐grafted tomatoes to control bacterial wilt in plants infected by M. incognita. Our results indicate that the resistance to bacterial wilt was easy to break in usual‐grafted tomato plants infected with M. incognita and that M. incognita enhanced the vertical movement of Ralstonia solanacearum in the bacterial‐wilt‐resistant tomato rootstocks. In addition, our results suggest that high grafting led to significantly less wilting in the plants infected by M. incognita than did usual grafting.  相似文献   

7.
8.

Background

Ralstonia solanacearum is a vascular soil-borne plant pathogen with an unusually broad host range. This economically destructive and globally distributed bacterium has thousands of distinct lineages within a heterogeneous and taxonomically disputed species complex. Some lineages include highly host-adapted strains (ecotypes), such as the banana Moko disease-causing strains, the cold-tolerant potato brown rot strains (also known as R3bv2) and the recently emerged Not Pathogenic to Banana (NPB) strains.

Results

These distinct ecotypes offer a robust model to study host adaptation and the emergence of ecotypes because the polyphyletic Moko strains include lineages that are phylogenetically close to the monophyletic brown rot and NPB strains. Draft genomes of eight new strains belonging to these three model ecotypes were produced to complement the eleven publicly available R. solanacearum genomes. Using a suite of bioinformatics methods, we searched for genetic and evolutionary features that distinguish ecotypes and propose specific hypotheses concerning mechanisms of host adaptation in the R. solanacearum species complex. Genome-wide, few differences were identified, but gene loss events, non-synonymous polymorphisms, and horizontal gene transfer were identified among type III effectors and were associated with host range differences.

Conclusions

This extensive comparative genomics analysis uncovered relatively few divergent features among closely related strains with contrasting biological characteristics; however, several virulence factors were associated with the emergence of Moko, NPB and brown rot and could explain host adaptation.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1474-8) contains supplementary material, which is available to authorized users.  相似文献   

9.
Resistance against a Ralstonia solanacearum race 3-phylotype II strain JT516 was assessed in a F2:3 and a population of inbred lines (RIL), both derived from a cross between L. esculentum cv. Hawaii 7996 (partially resistant) and L. pimpinellifolium WVa700 (susceptible). Resistance criteria used were the percentage of wilted plants to calculate the AUDPC value, and bacterial colonization scores in roots and stem (hypocotyl and epicotyl) assessed in two independent greenhouse experiments conducted during the cool and hot seasons in Réunion Island, France. Symptoms were more severe during the cool season trials. Heritability estimates in individual seasons ranged from 0.82 to 0.88, depending on resistance criterion. A set of 76 molecular markers was used for quantitative trait loci (QTL) mapping using the single- and composite- interval mapping methods, as well as ANOVA. Four QTLs, named Bwr- followed by a number indicating their map location, were identified. They explained from 3.2 to 29.8% of the phenotypic variation, depending on the resistance criterion and the season. A major QTL, Bwr-6, and a minor one, Bwr-3, were detected in each season for all resistance criteria. Both QTLs showed stronger effects in the hot season than in the cool one. Their role in resistance to R. solanacearum race 3-phylotype II was subsequently confirmed in the RIL population derived from the same cross. Two other QTLs, Bwr-4 and Bwr-8, with intermediate and minor effects, respectively, were only detected in the hot season, demonstrating that environmental factors may strongly influence the expression of resistance against the race 3-phylotype II strain JT516. These QTLs were compared with those detected in the RIL population against race 1-phylotype I strain JT519 as well as those detected in other previous studies in the same genetic background against other race 1-phylotype I and II strains. This comparison revealed the possible occurrence of some phylotype-specific resistance QTLs in Hawaii 7996.  相似文献   

10.
The plant pathogen Ralstonia solanacearum uses plant resources to intensely proliferate in xylem vessels and provoke plant wilting. We combined automatic phenotyping and tissue/xylem quantitative metabolomics of infected tomato plants to decipher the dynamics of bacterial wilt. Daily acquisition of physiological parameters such as transpiration and growth were performed. Measurements allowed us to identify a tipping point in bacterial wilt dynamics. At this tipping point, the reached bacterial density brutally disrupts plant physiology and rapidly induces its death. We compared the metabolic and physiological signatures of the infection with drought stress, and found that similar changes occur. Quantitative dynamics of xylem content enabled us to identify glutamine (and asparagine) as primary resources R. solanacearum consumed during its colonization phase. An abundant production of putrescine was also observed during the infection process and was strongly correlated with in planta bacterial growth. Dynamic profiling of xylem metabolites confirmed that glutamine is the favoured substrate of R. solanacearum. On the other hand, a triple mutant strain unable to metabolize glucose, sucrose and fructose appears to be only weakly reduced for in planta growth and pathogenicity.  相似文献   

11.
Ralstonia solanacearum gram-negative phytopathogenic bacterium exerts its virulence through a type III secretion system (T3SS) that translocates type III effectors (T3Es) directly into the host cells. T3E secretion is finely controlled at the posttranslational level by helper proteins, T3SS control proteins, and type III chaperones. The HpaP protein, one of the type III secretion substrate specificity switch (T3S4) proteins, was previously highlighted as a virulence factor on Arabidopsis thaliana Col-0 accession. In this study, we set up a genome-wide association analysis to explore the natural diversity of response to the hpaP mutant of two A. thaliana mapping populations: a worldwide collection and a local population. Quantitative genetic variation revealed different genetic architectures in both mapping populations, with a global delayed response to the hpaP mutant compared to the GMI1000 wild-type strain. We have identified several quantitative trait loci (QTLs) associated with the hpaP mutant inoculation. The genes underlying these QTLs are involved in different and specific biological processes, some of which were demonstrated important for Rsolanacearum virulence. We focused our study on four candidate genes, RKL1, IRE3, RACK1B, and PEX3, identified using the worldwide collection, and validated three of them as susceptibility factors. Our findings demonstrate that the study of the natural diversity of plant response to a Rsolanacearum mutant in a key regulator of virulence is an original and powerful strategy to identify genes directly or indirectly targeted by the pathogen.  相似文献   

12.
Marker exchange mutagenesis is a fundamental approach to understanding gene function at a molecular level in bacteria. New plasmids carrying a kanamycin resistance gene or a trimethoprim resistance gene were constructed to provide antibiotic resistance cassettes for marker exchange mutagenesis in Ralstonia solanacearum and many antibiotic-resistant Burkholderia spp. Insertion sequences present in the flanking sequences of the antibiotic resistance cassette were removed to prevent aberrant gene replacement and polar mutation during mutagenesis in wild-type bacteria. Plasmids provided in this study would be convenient for use in gene cassettes for gene replacement in other Gram-negative bacteria.  相似文献   

13.
14.
We investigated the genetic diversity, extent of recombination, natural selection, and population divergence of Ralstonia solanacearum samples obtained from sources worldwide. This plant pathogen causes bacterial wilt in many crops and constitutes a serious threat to agricultural production due to its very wide host range and aggressiveness. Five housekeeping genes, dispersed around the chromosome, and three virulence-related genes, located on the megaplasmid, were sequenced from 58 strains belonging to the four major phylogenetic clusters (phylotypes). Whereas genetic variation is high and consistent for all housekeeping loci studied, virulence-related gene sequences are more diverse. Phylogenetic and statistical analyses suggest that this organism is a highly diverse bacterial species containing four major, deeply separated evolutionary lineages (phylotypes I to IV) and a weaker subdivision of phylotype II into two subgroups. Analysis of molecular variations showed that the geographic isolation and spatial distance have been the significant determinants of genetic variation between phylotypes. R. solanacearum displays high clonality for housekeeping genes in all phylotypes (except phylotype III) and significant levels of recombination for the virulence-related egl and hrpB genes, which are limited mainly to phylotype strains III and IV. Finally, genes essential for species survival are under purifying selection, and those directly involved in pathogenesis might be under diversifying selection.  相似文献   

15.
Evolutionary dynamics of Ralstonia solanacearum   总被引:2,自引:0,他引:2  
We investigated the genetic diversity, extent of recombination, natural selection, and population divergence of Ralstonia solanacearum samples obtained from sources worldwide. This plant pathogen causes bacterial wilt in many crops and constitutes a serious threat to agricultural production due to its very wide host range and aggressiveness. Five housekeeping genes, dispersed around the chromosome, and three virulence-related genes, located on the megaplasmid, were sequenced from 58 strains belonging to the four major phylogenetic clusters (phylotypes). Whereas genetic variation is high and consistent for all housekeeping loci studied, virulence-related gene sequences are more diverse. Phylogenetic and statistical analyses suggest that this organism is a highly diverse bacterial species containing four major, deeply separated evolutionary lineages (phylotypes I to IV) and a weaker subdivision of phylotype II into two subgroups. Analysis of molecular variations showed that the geographic isolation and spatial distance have been the significant determinants of genetic variation between phylotypes. R. solanacearum displays high clonality for housekeeping genes in all phylotypes (except phylotype III) and significant levels of recombination for the virulence-related egl and hrpB genes, which are limited mainly to phylotype strains III and IV. Finally, genes essential for species survival are under purifying selection, and those directly involved in pathogenesis might be under diversifying selection.  相似文献   

16.
A total of 82 endophytic bacteria of tomato and chilli was isolated from different locations of tropical Islands of Andaman and Nicobar, India. Based on in vitro screening, 16 bacterial isolates that effectively inhibited Ralstonia solanacearum (a bacterial wilt pathogen) were characterised for their diversity and identified through Microbial Identification System (Biolog). Diversity analysed through BOX-PCR showed low similarity index among the antagonistic bacteria. Based on the in vitro antagonistic activities, the selected isolates were further characterised for siderophore, indole acetic acid production, phosphate solubilisation and other extracellular enzymes; it is found that most of the isolates were positive for these properties. The production of these metabolites may be responsible for the inhibition of the pathogen R. solanacearum. The isolates BECS3, BECS6 and BECS7 showed multiple attributes and demonstrated plant growth promotion properties through tomato- and chilli-based bioassay under greenhouse conditions. These bacterial inoculations were found to result in significant increase in root, shoot and biomass of both tomato and chilli. Hence, these isolates can be further formulated and used for field application.  相似文献   

17.
Milling A  Babujee L  Allen C 《PloS one》2011,6(1):e15853
Ralstonia solanacearum, which causes bacterial wilt of diverse plants, produces copious extracellular polysaccharide (EPS), a major virulence factor. The function of EPS in wilt disease is uncertain. Leading hypotheses are that EPS physically obstructs plant water transport, or that EPS cloaks the bacterium from host plant recognition and subsequent defense. Tomato plants infected with R. solanacearum race 3 biovar 2 strain UW551 and tropical strain GMI1000 upregulated genes in both the ethylene (ET) and salicylic acid (SA) defense signal transduction pathways. The horizontally wilt-resistant tomato line Hawaii7996 activated expression of these defense genes faster and to a greater degree in response to R. solanacearum infection than did susceptible cultivar Bonny Best. However, EPS played different roles in resistant and susceptible host responses to R. solanacearum. In susceptible plants the wild-type and eps(-) mutant strains induced generally similar defense responses. But in resistant Hawaii7996 tomato plants, the wild-type pathogens induced significantly greater defense responses than the eps(-) mutants, suggesting that the resistant host recognizes R. solanacearum EPS. Consistent with this idea, purified EPS triggered significant SA pathway defense gene expression in resistant, but not in susceptible, tomato plants. In addition, the eps(-) mutant triggered noticeably less production of defense-associated reactive oxygen species in resistant tomato stems and leaves, despite attaining similar cell densities in planta. Collectively, these data suggest that bacterial wilt-resistant plants can specifically recognize EPS from R. solanacearum.  相似文献   

18.
Transposon mutagenesis of Mycoplasma gallisepticum   总被引:1,自引:0,他引:1  
There are few systems available for studying the genetics of the important avian respiratory pathogen, Mycoplasma gallisepticum. These techniques are needed to develop a mechanism to study the molecular pathogenesis of M. gallisepticum. Tn916 has the ability to transpose into the M. gallisepticum genome by both transformation and conjugation. In this study, PEG-mediated transformation was employed for the transfer of Tn916 into M. gallisepticum and create a transposon mutant library. Transformants were obtained at a frequency of approximately 5 x 10(-8) per recipient CFU. A total of 424 MG/Tn916 mutants were constructed and sequence data from the transposon junctions of 71 mutants was obtained and used to identify transposon insertion sites. Insertions were found throughout the genome in nearly all of the major gene categories, making this the first extensive characterization of a transposon mutant library of M. gallisepticum. Transposon stability was also examined, and it was determined that for two mutants the element was stably maintained in vivo in the absence of selective pressure.  相似文献   

19.
20.
Lipopolysaccharides (LPSs) from four strains of Ralstonia solanacearum belonging to biovar I (ICMP 6524, 8115, 5712, and 8169) were isolated and investigated. The structural components of the LPS molecule, such as lipid A, the core oligosaccharide, and O-specific polysaccharide (O-PS), were obtained after mild acid hydrolysis of the LPS preparations. In lipid A from all the LPS samples studied, 3-hydroxytetradecanoic, 2-hydroxyhexadecanoic, tetradecanoic, and hexadecanoic fatty acids prevailed. The dominant monosaccharides of the core oligosaccharides of all of the strains studied were rhamnose, glucose, glucosamine, 2-keto-3-deoxyoctulosonic acid, and heptose. However, individual strains varied in the content of galactose, ribose, xylose, and arabinose. Three types of the O-PS structure were established, which differed in their configuration ( or ), as well as in the type of the bond between glucosamine and rhamnose residues (1 2 or 1 3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号