首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infection of cells by human papillomaviruses (HPVs) associated with malignant genital lesions has not been studied because of the lack of an in vitro system and the unavailability of virions. We have now used virus-like particles (VLPs) of HPV type 33 to analyze the initial events in the interaction of the HPV capsid with cell lines. Binding of VLPs to HeLa cells was observed in biochemical assays and by immunofluorescence. VLP binding was inhibited by antisera raised against VLPs but not by monoclonal antibodies recognizing either L1 or L2 epitopes accessible on VLPs. Under saturating conditions, approximately 2 x 10(4) VLPs were bound per cell, with a dissociation constant of about 100 pM. VLPs composed of L1 alone bound as well as VLPs composed of both capsid proteins, indicating that L2 is not required for initial binding. VLPs dissociated into capsomers did not bind, demonstrating that intercapsomer contacts are required. Neither capsomers nor simian virus 40 virions competed with VLP binding. Uptake of VLPs by small and smooth endocytic vesicles was demonstrated by immunoelectron microscopy. Cellular binding of VLPs was sensitive to trypsin but not to sialidase, N-glycosidase, or octyl-beta-D-glycopyranoside treatment, suggesting that a cell surface protein is involved in the VLP binding. Cell lines originating from a variety of tissues and organisms as distantly related as insects and humans bound VLPs with similar efficiency and specificity. Therefore, the putative receptor mediating VLP attachment should be highly conserved and cannot be responsible for the species and tissue specificity of HPVs.  相似文献   

2.
3.
Infections with human papillomavirus type 16 (HPV-16) are closely associated with the development of human cervical carcinoma, which is one of the most common causes of cancer death in women worldwide. At present, the most promising vaccine against HPV-16 infection is based on the L1 major capsid protein, which self-assembles in virus-like particles (VLPs). In this work, we used a lactose-inducible system based on the Lactobacillus casei lactose operon promoter (plac) for expression of the HPV-16 L1 protein in L. casei. Expression was confirmed by Western blotting, and an electron microscopy analysis of L. casei expressing L1 showed that the protein was able to self-assemble into VLPs intracellularly. The presence of conformational epitopes on the L. casei-produced VLPs was confirmed by immunofluorescence using the anti-HPV-16 VLP conformational antibody H16.V5. Moreover, sera from mice that were subcutaneously immunized with L. casei expressing L1 reacted with Spodoptera frugiperda-produced HPV-16 L1 VLPs, as determined by an enzyme-linked immunosorbent assay. The production of L1 VLPs by Lactobacillus opens the possibility for development of new live mucosal prophylactic vaccines.  相似文献   

4.
The full-length human papillomavirus 16 major capsid protein L1 is expressed in Saccharomyces cerevisiae as virus-like particles (VLPs). However, yeast-expressed human papillomavirus 16 particles are irregular in shape and are prone to aggregate. When disassembled and reassembled, the resulting particles have improved stability and solubility. We have examined VLP dissociation and reassembly to define the important features of the assembly mechanism. We found that the VLPs rapidly disassemble at pH 8.2 and low ionic strength in the presence of low concentrations of reducing agents. The pH dependence of assembly kinetics and extent of assembly under reducing conditions were differentially sensitive to ionic strength. Assembly at pH 5.2 was very fast and led to heavily aggregated particles. This sort of kinetic trap is expected for overinitiated assembly. We observed that reassembly at pH 6.2, 7.2, and 8.2 yielded regular particles over a broad range of ionic strength. At these three pH values, assembly was quantitative at 1 M NaCl. At pH 7.2, much more than at pH 6.2 or pH 8.2, assembly decreased monotonically with ionic strength. The free energy of association ranged from − 8 to − 10 kcal/mol per pentamer. The effect of pH on assembly was further investigated by examining dissociation of reassembled particles. Though indistinguishable by negative stain electron microscopy, particles assembled at pH 7.2 disassembled slower than pH 5.2, 6.2, or 8.2 VLPs. We hypothesize that pH 7.2 assembly reactions lead to formation of particles with conformationally different interactions.  相似文献   

5.
To enhance the immunogenicity of human papillomavirus 16 (HPV 16) virus-like particles (VLPs), the modified adjuvant, mLTK63, was fused to the C-terminus of HPV 16 L2 protein. Coexpression of HPV 16 L1 and L2-mLTK63 proteins in insect cells led to the efficient assembly of HPV 16 L1/L2-mLTK63 chimeric VLPs (cVLPs), which combined the antigen and adjuvant as a unit. Compared with HPV 16 L1/L2 VLPs, the HPV 16 L1/L2-mLTK63 cVLPs had similar structural biology characteristics and binding activities with the cell surface receptors and HPV 16-specific neutralizing monoclonal antibodies. Intramuscular immunization of BALB/c mice with the HPV 16 L1/L2-mLTK63 cVLPs could induce higher titers of HPV 16-specific long-lasting neutralizing serum antibodies and stronger splenocyte proliferation, Th1- and Th2-type cytokines and CD4(+) Th responses than HPV 16 L1/L2 VLPs. The results suggested that it is possible to enhance the immunogenicity of HPV VLP vaccines via a strategy of fusing effective adjuvant protein into cVLPs.  相似文献   

6.
Two human papillomavirus (HPV) prophylactic vaccines are currently available in the market: Gardasil and Cervarix. These two vaccines work against tumor high-risk subtypes HPV 16 and HPV 18. However, they do not include other high-risk subtypes such as HPV 58. Epidemiological research in China shows that HPV 58 is a prevalent high-risk subtype, second only to HPV 16 and HPV 18. Thus, for cervical cancer prevention in China, developing a vaccine against HPV 58 is necessary. In this study, HPV 58 virus-like particles (VLPs) were expressed in the Pichia pastoris, and subsequently purified through pretreatment and a three-step purification process consisting of strong cation exchange chromatography, size-exclusion chromatography, and hydroxyapatite chromatography. The highly purified HPV 58 VLPs were confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis, electron microscopy, dynamic laser scattering, and ultracentrifugation. The purified VLPs were used to immunize mice to test their ability to induce humoral immunity. Enzyme-linked immunosorbent assays were performed on the sera of the immunized mice and significantly high anti-HPV 58 VLP antibody titers were observed. The immunogenicity study demonstrates that the purified HPV 58 VLPs are HPV vaccine candidates.  相似文献   

7.
The use of chimeric virus-like particles represents a new strategy for delivering tumor antigens to the immune system for the initiation of antitumor immune responses. Immunization of DBA/2 mice with the P1A peptide derived from the P815 tumor-associated antigen P1A induced specific T-cell tolerance, resulting in progression of a regressor P815 cell line in all animals. However, immunization with a human papillomavirus type 16 L1 virus-like particle containing the P1A peptide in the absence of adjuvant induced a protective immune response in mice against a lethal tumor challenge with a progressor P815 tumor cell line. Additionally, we demonstrated that these chimeric virus-like particles could be used therapeutically to suppress the growth of established tumors, resulting in a significant survival advantage for chimeric virus-like particle-treated mice compared with untreated control mice. Chimeric virus-like particles can thus be used as a universal delivery vehicle for both tolerizing and antigenic peptides to induce a strong protective and therapeutic antigen-specific antitumor immune response.  相似文献   

8.
Kang SM  Yao Q  Guo L  Compans RW 《Journal of virology》2003,77(18):9823-9830
To enhance the efficiency of antigen uptake at mucosal surfaces, CTB was conjugated to simian immunodeficiency virus (SIV) virus-like particles (VLPs). We characterized the immune responses to the Env and Gag proteins after intranasal administration. Intranasal immunization with a mixture of VLPs and CTB as an adjuvant elicited higher levels of SIV gp160-specific immunoglobulin G (IgG) in sera and IgA in mucosae, including saliva, vaginal-wash samples, lung, and intestine, as well as a higher level of neutralization activities than immunization with VLPs alone. Conjugation of CTB to VLPs also enhanced the SIV VLP-specific antibodies in sera and in mucosae to similar levels. Interestingly, CTB-conjugated VLPs showed higher levels of cytokine (gamma interferon)-producing splenocytes and cytotoxic-T-lymphocyte activities of immune cells than VLPs plus CTB, as well as an increased level of both IgG1 and IgG2a serum antibodies, which indicates enhancement of both Th1- and Th2-type cellular immune responses. These results demonstrate that CTB can be an effective mucosal adjuvant in the context of VLPs to induce enhanced humoral, as well as cellular, immune responses.  相似文献   

9.
The papillomavirus major late protein, L1, forms the pentameric assembly unit of the viral shell. Recombinant HPV16 L1 pentamers assemble in vitro into capsid-like structures, and truncation of ten N-terminal residues leads to a homogeneous preparation of 12-pentamer, icosahedral particles. X-ray crystallographic analysis of these particles at 3.5 A resolution shows that L1 closely resembles VP1 from polyomaviruses. Surface loops contain the sites of sequence variation among HPV types and the locations of dominant neutralizing epitopes. The ease with which small virus-like particles may be obtained from L1 expressed in E. coli makes them attractive candidate components of a papillomavirus vaccine. Their crystal structure also provides a starting point for future vaccine design.  相似文献   

10.
Human papillomavirus (HPV) is the cause of most cases of cervical cancer. HPV type 58 (HPV58) is the second most frequent cause of cervical cancer and high-grade squamous intraepithelial lesions (HSIL) in Asia and South / Central America, respectively. However, there is no vaccine against HPV58, although there are commercially available vaccines against HPV16 and 18. In this study, we produced HPV58 L1 protein from Saccharomyces cerevisiae, and investigated its immunogenicity. We first determined the optimum period of culture for obtaining HPV58 L1. We found that a considerable portion of the HPV58 L1 resulting from 48 h culture cannot be recovered by purification, while the HPV58 L1 resulting from 144 h culture is recovered efficiently: the yield of HPV58 L1 finally recovered from 144 h culture was 2.3 times higher than that from 48 h culture, although the production level of L1 protein from 144 h culture was lower than that from 48 h culture. These results indicate that the proportion of functional L1 protein from 144 h-cultured cells is significantly higher than that of 48 h-cultured cells. The HPV58 L1 purified from the 144 h culture was correctly assembled into structures similar to naturally occurring HPV virions. Immunization with the HPV58 L1 efficiently elicited anti-HPV58 neutralizing antibodies and antigen-specific CD4+ and CD8+ T cell proliferations, without the need for adjuvant. Our findings provide a convenient method for obtaining substantial amounts of highly immunogenic HPV58 L1 from S. cerevisiae.  相似文献   

11.
摘要:【目的】 利用大肠杆菌表达系统制备人乳头瘤病毒11型病毒样颗粒(HPV11 VLPs),并对其免疫原性和所诱导中和抗体的型交叉反应性进行研究。 【方法】 在大肠杆菌ER2566中非融合表达HPV11-L1蛋白,并通过离子交换层析,疏水相互作用层析其进行纯化。纯化后的HPV11-L1经体外组装形成病毒样颗粒,通过动态光散射,透射电镜检测其形态,并通过多种HPV型别假病毒中和实验评价HPV11 VLPs的免疫原性及型交叉反应性。 【结果】 HPV11-L1蛋白在大肠杆菌中可以以可溶形式表达。经过硫酸铵沉  相似文献   

12.
Pentameric capsomeres of human papillomavirus capsid protein L1 expressed in Escherichia coli self-assemble into virus-like particles (VLPs) in vitro. A multifactorial experimental design was used to explore a wide range of solution conditions to optimize the assembly process. The degree of assembly was measured using an enzyme-linked immunosorbent assay, and a high-throughput turbidity assay was developed to monitor competing aggregation. The presence of zinc ions in the assembly buffer greatly increased the incidence of aggregation and had to be excluded from the experiment for meaningful analysis. Assembly of VLPs was optimal at a pH of about 6.5, calcium and sodium ions had no measurable effect, and dithiothreitol and glutathione inhibited assembly. Tryptophan fluorescence spectroscopy demonstrated that an increase in urea concentration reduced the rate of VLP formation but had no effect on the final concentration of assembled VLPs. This study demonstrates the use of the hanging-drop vapor-diffusion crystallization method to screen for conditions that promote aggregation and the use of tryptophan fluorescence spectroscopy for real-time monitoring of the assembly process.  相似文献   

13.
14.
High-risk human papillomaviruses are linked to several malignancies including cervical cancer. Because human papillomavirus-infected women do not always mount protective antiviral immunity, we explored the interaction of human papillomavirus with Langerhans cells, which would be the first APCs the virus comes into contact with during infection. We determined that dendritic cells, normally targeted by vaccination procedures and Langerhans cells, normally targeted by the natural virus equally internalize human papillomavirus virus-like particles. However, in contrast to dendritic cells, Langerhans cells are not activated by human papillomavirus virus-like particles, illustrated by the lack of: up-regulating activation markers, secreting IL-12, stimulating T cells in an MLR, inducing human papillomavirus-specific immunity, and migrating from epidermal tissue. Langerhans cells, like dendritic cells, can display all of these characteristics when stimulated by proinflammatory agents. These data may define an intriguing immune escape mechanism used by human papillomavirus and form the basis for designing optimal vaccination strategies.  相似文献   

15.
Chimeric human papillomavirus virus-like particles (HPV cVLP) are immunogens able to elicit potent CTL responses in mice against HPV16-transformed tumors; however, the mechanism of T cell priming has remained elusive. HPV VLP bind to human MHC class II-positive APCs through interaction with FcgammaRIII, and immature dendritic cells (DC) become activated after incubation with HPV VLP; however, it is unclear whether FcgammaR on DC are involved. In mice, FcgammaRII and FcgammaRIII are homologous and bind similar ligands. In this study, we show that binding and uptake of VLP by DC from FcgammaRII, FcgammaRIII, and FcgammaRII/III-deficient mice are reduced by up to 50% compared with wild-type mice. Additionally, maturation of murine DC from FcgammaRII/III-deficient mice by VLP is also reduced, indicating that DC maturation, and thus Ag presentation, is diminished in the absence of expression of FcgammaR. To investigate the in vivo contribution of FcgammaR in the induction of cellular immunity, FcgammaR single- and double-knockout mice were immunized with HPV16 L1/L2-E7 cVLP, and the frequency of E7-specific T cells was analyzed by tetramer binding, IFN-gamma ELISPOT, and cytotoxicity assays. All readouts indicated that the frequency of E7-specific CD4(+) and CD8(+) T cells induced in all FcgammaR-deficient mice after immunization with cVLP was significantly diminished. Based on these results, we propose that the low-affinity FcgammaR contribute to the high immunogenicity of HPV VLP during T cell priming by targeting VLP to DC and inducing a maturation state of the DC that facilitates Ag presentation to and activation of naive T cells.  相似文献   

16.
Elderly humans over 65 years old are at great risk to pathogenesis by influenza virus infection. However, although influenza vaccines provide effective protection in healthy young adults, protection of elderly adults is substantially lower even with a good match between the vaccine and the circulating influenza virus. To gain insight of the underlying mechanism for the reduced immunogenicity of influenza vaccines in the aged population, we investigated immunogenicity of influenza virus-like particle vaccines in aged mice, which represent a useful model for studying aging associated impairment in immune responses. Specifically, we investigated the effect of inhibiting regulatory T cells in aged mice on induction of protective immune responses by influenza vaccines. Our results showed that injecting anti-CD25 antibodies could down-regulate CD25 on the surface of regulatory T cells and significantly increase the levels of antibody responses induced by VLP immunization in aged mice. Further, the profiles of antibody responses were also changed towards Th1 type by regulatory T cell blockage in aged mice. Moreover, aged mice that were treated by anti-CD25 antibodies prior to vaccination were more effectively protected against lethal influenza virus challenge.  相似文献   

17.
BST-2是最近发现的可以抑制成熟HIV-1(human immunodeficiency virus,HIV)病毒颗粒从哺乳动物细胞表面释放的宿主因子,随之发现其也可以抑制多种包膜病毒的释放。本研究采用密码子优化的表达HIV-1 gag和gag-pol蛋白的质粒所形成的病毒样颗粒作为研究对象,观测BST-2对这两种病毒样颗粒(Virus-like particle,VLP)的释放抑制情况及其作用机制。结果发现,瞬时表达和稳定表达的BST-2均可以显著抑制病毒样颗粒从哺乳动物细胞释放,同时发现这两种病毒样颗粒(gag/gag-pol)的释放都可以被BST-2抑制;而且,HIV-1中Vpu蛋白可以拮抗BST-2抑制HIV病毒样颗粒释放的作用,另外,通过化学试剂和酶学方法处理,确证BST-2可以被包装进病毒样颗粒中。  相似文献   

18.
19.
Vaccine potential of Nipah virus-like particles   总被引:1,自引:0,他引:1  
Nipah virus (NiV) was first recognized in 1998 in a zoonotic disease outbreak associated with highly lethal febrile encephalitis in humans and a predominantly respiratory disease in pigs. Periodic deadly outbreaks, documentation of person-to-person transmission, and the potential of this virus as an agent of agroterror reinforce the need for effective means of therapy and prevention. In this report, we describe the vaccine potential of NiV virus-like particles (NiV VLPs) composed of three NiV proteins G, F and M. Co-expression of these proteins under optimized conditions resulted in quantifiable amounts of VLPs with many virus-like/vaccine desirable properties including some not previously described for VLPs of any paramyxovirus: The particles were fusogenic, inducing syncytia formation; PCR array analysis showed NiV VLP-induced activation of innate immune defense pathways; the surface structure of NiV VLPs imaged by cryoelectron microscopy was dense, ordered, and repetitive, and consistent with similarly derived structure of paramyxovirus measles virus. The VLPs were composed of all the three viral proteins as designed, and their intracellular processing also appeared similar to NiV virions. The size, morphology and surface composition of the VLPs were consistent with the parental virus, and importantly, they retained their antigenic potential. Finally, these particles, formulated without adjuvant, were able to induce neutralizing antibody response in Balb/c mice. These findings indicate vaccine potential of these particles and will be the basis for undertaking future protective efficacy studies in animal models of NiV disease.  相似文献   

20.
Virus structures continue to be the basis for mechanistic virology and serve as a paradigm for solutions to problems concerning macromolecular assembly and function in general. The use of X-ray crystallography, electron cryomicroscopy and computational and biochemical methods has provided not only details of the structural folds of individual viral components, but also insights into the structural basis of assembly, nucleic acid packaging, particle dynamics and interactions with cellular molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号