首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Dextran sulfate (DS) was previously shown to inhibit phagosome-lysosome (P-L) fusion whereas dextran (D) of equivalent size was ineffective. The uptake and interiorization of DS were examined with a tritiated product over the course of 4 d in culture. The exposure of macrophages to 20 micrograms/ml of 3H-DS led to linear uptake for 4 d, at which time fusion was inhibited. Macrophage interiorization of 3H-DS was greatly increased by forming insoluble complexes with either serum lipoproteins or purified human low density lipoproteins (LDL). Under these conditions fusion was inhibited within 4 h. The uptake of large quantities of acetylated LDL in the absence of DS was not associated with the inhibition of fusion. Lipoproteins therefore served as the DS carriers and were not themselves inhibitory. The intralysosomal pH of control and D-treated macrophages was 4.76 (+/-0.06) and 4.68 (+/-0.02), respectively. Storage of DS was associated with a decreased pH to 4.36 (+/-0.14). Increasing the intralysosomal pH with either NH4Cl or chloroquine failed to modify inhibited P-L fusion. Hydrogen ion concentration was therefore not an important factor in DS inhibition. Secondary lysosomes were isolated from D- and DS-loaded cells and exhibited excellent latency. These lysosomes were exposed to the membrane probes, alpha- and Beta-parinaric acid, and compared in fluorescence polarization measurements. The results with the Beta isomer consistently indicated that the membranes of DS lysosomes were more rigid than the D samples. It is suggested that high intralysosomal concentrations of DS interact directly with either lipid and/or polypeptide moieties of the luminal face of the membrane, thereby decreasing its fluidity and fusibility.  相似文献   

2.
Chinese hamster ovary cell lysosomes rapidly exchange contents   总被引:11,自引:7,他引:4       下载免费PDF全文
《The Journal of cell biology》1987,105(6):2703-2712
We have used cell fusion to address the question of whether macromolecules are rapidly exchanged between lysosomes. Donor cell lysosomes were labeled by the long-term internalization of the fluid- phase pinocytic markers, invertase (sucrase), Lucifer Yellow, FITC- conjugated dextran, or Texas red-conjugated dextran. Recipient cells contained lysosomes swollen by long-term internalization of dilute sucrose or marked by an overnight FITC-dextran uptake. Cells were incubated for 1 or 2 h in marker-free media before cell fusion to clear any marker from an endosomal compartment. Recipient cells were infected with vesicular stomatitis virus as a fusogen. Donor and recipient cells were co-cultured for 1 or 2 h and then fused by a brief exposure to pH 5. In all cases, extensive exchange of content between donor and recipient cell lysosomes was observed at 37 degrees C. Incubation of cell syncytia at 17 degrees C blocked lysosome/lysosome exchange, although a "priming" process(es) appeared to occur at 17 degrees C. The kinetics of lysosome/lysosome exchange in fusions between cells containing invertase-positive lysosomes and sucrose-positive lysosomes indicated that lysosome/lysosome exchange was as rapid, if not more rapid, than endosome/lysosome exchange. These experiments suggest that in vivo the lysosome is a rapidly intermixing organellar compartment.  相似文献   

3.
We have investigated the effects of the lysosomotropic amines, ammonium chloride and chloroquine, on the delivery of fluid-phase pinocytic tracers to lysosomes in Chinese hamster ovary (CHO) cells. In preliminary experiments, 15 mM ammonium chloride and 0.1 mM chloroquine were found to be sufficient to give maximal protection of endocytosed material from digestion in a lysosome. In the presence of either amine at these concentrations, the generation time of CHO cells was depressed by less than 30% even though selective depletion of lysosomal hydrolases was observed. For cells treated with either amine for 1 or 6 days the amount of horseradish peroxidase (HRP) internalized in a 1-h pulse was approximately 50-70% of that of control. By cell fractionation, cells treated with amine for 2 or 6 days were found to accumulate fluorescein-dextran or HRP in lysosomes. HRP accumulation in lysosomes in amine-treated cells was also observed by electron microscopy. Little exocytosis of lysosomal HRP into the media was observed under any condition. We conclude that in long-term amine-treated CHO cells endocytic vesicle traffic is maintained.  相似文献   

4.
Effects of biologically active compounds bilirubin (BR), farmorubicin (FR), and chelerythrine (CR) on phagosome-lysome (P-L) fusion in mouse peritoneal macrophages were studied using fluorescent dye acridine orange as lysosomal labelling and yeast cells as target. It was found that all three compounds tested enhanced P-L fusion. To investigate mechanisms of these effects, changes in fluidity of rat liver lysosomal membranes under influence of BR, FR and CR were studied by measuring fluorescence intensity, lifetime, and polarization of DPH or TMA-DPH incorporated in isolated rat liver lysosomes. In order to characterize the cytoskeleton changes under the action of these biologically active compounds F-actin content in peritoneal macrophages of mice was determined. Our results demonstrate that BR action induces a decrease in DPH and TMA-DPH polarization, FR increases DPH and TMA-DPH polarization, and CR causes only an increase in TMA-DPH polarization in lysosomal membranes. All three compounds tested increase F-actin content in peritoneal macrophages. Thus, the effect of BR on P-L fusion is connected with increasing fluidity of lysosomal membranes and the cytoskeleton changes. The enhancement of P-L fusion under the action of FR and CR can most likely be explained by changes of the cytoskeleton state.  相似文献   

5.
Intracellular degradation of exogenous (serum) proteins provides a source of amino acids for cellular protein synthesis. Pinocytosis serves as the mechanism for delivering exogenous protein to the lysosomes, the major site of intracellular degradation of exogenous protein. To determine whether the availability of extracellular free amino acids altered pinocytic function, we incubated monolayers of pulmonary alveolar macrophages with the fluid-phase marker, [14C]sucrose, and we dissected the pinocytic process by kinetic analysis. Additionally, intracellular degradation of endogenous and exogenous protein was monitored by measuring phenylalanine released from the cell monolayers in the presence of cycloheximide. Results revealed that in response to a subphysiological level of essential amino acids or to amino acid deprivation, (a) the rate of fluid-phase pinocytosis increased in such a manner as to preferentially increase both delivery to and size of an intracellular compartment believed to be the lysosomes, (b) the degradation of exogenously supplied albumin increased, and (c) the fraction of phenylalanine derived from degradation of exogenous albumin and reutilized for de novo protein synthesis increased. Thus, modulation of the pinosome-lysosome pathway may represent a homeostatic mechanism sensitive to the availability of extracellular free amino acids.  相似文献   

6.
Although recent data from our laboratory have established the occurrence of receptor-mediated endocytosis in intrahepatic bile duct epithelial cells (IBDEC) isolated from normal rat liver, no studies have assessed the role of isolated IBDEC in fluid-phase endocytosis. Therefore, to determine if IBDEC participate in fluid-phase endocytosis, we incubated morphologically polar doublets of IBDEC isolated from normal rat liver with horseradish peroxidase (HRP, 5 mg/ml), a protein internalized by fluid-phase endocytosis, and determined its intracellular distribution by electron microscopic cytochemistry. Pulse-chase studies using quantitative morphometry were also performed to assess the fate of HRP after internalization. After incubation at 37 degrees C, IBDEC internalized HRP exclusively at the apical (i.e., luminal) domain of their plasma membrane; internalization was completely blocked at 4 degrees C. After internalization, HRP was seen in acid phosphatase-negative vesicles and in acid phosphatase-positive multivesicular bodies (i.e., secondary lysosomes). Small acid phosphatase-negative vesicles containing HRP moved progressively from the apical to the basal domain of IBDEC. Pulse-chase studies showed that HRP was then discharged by exocytosis at the basolateral cell surface. These results demonstrate that IBDEC prepared from normal rat liver participate in fluid-phase endocytosis. After internalization, HRP either is routed to secondary lysosomes or undergoes exocytosis after transcytosis from the luminal to the basolateral cell surface. Our results suggest that IBDEC modify the composition of bile by internalizing both biliary proteins and fluid via endocytic mechanisms.  相似文献   

7.
Sulfated polyanions can be used to rapidly induce and maintain single-cell suspensions of BTI-TN5B1-4 insect cells, a cell line which clumps in suspension. Elimination of cell clumping results in a significant increase in volumetric yield of the baculovirus expression vector system. Sulfated polyanions, however, inhibited baculovirus infection of BTI-TN5B1-4. Data from binding studies and fusion assays suggest that the inhibition of infection was not due to the observed reduction in viral attachment rate but to inhibition of viral membrane fusion in the endosome.The three most effective polyanions for inducing single cells are dextran sulfate, pentosan sulfate, and polyvinyl sulfate. At concentrations required for single-cell formation, dextran sulfate and pentosan sulfate did not affect viral infection at multiplicities of infection greater than one plaque forming unit per cell. In contrast, polyvinyl sulfate blocked viral infection even at a high multiplicity of infection of 20 plaque-forming units per cell. To bypass this inhibition, polyvinyl sulfate can be removed by resuspending the cells in fresh medium before virus addition, and then added back to the cell suspension after a substantial amount of virus has been internalized. Alternatively, polyvinyl sulfate can be neutralized with a polycation before virus addition, and an equivalent amount of polyvinyl sulfate added back after most of the virus has been internalized. We present a simple mathematical model of the attachment and entry of baculovirus in BTI-TN5B1-4, which can be used to design appropriate infection regimens. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 206-220, 1997.  相似文献   

8.
Endosome-lysosome fusion at low temperature   总被引:5,自引:0,他引:5  
Based on an initial study (Dunn, W. A., Hubbard, A. L., and Aronson, Jr., N. N. (1980) J. Biol. Chem. 255, 5971-5978), low temperature is often used to selectively inhibit fusion between endosomes and lysosomes. Here we have tried to characterize the nature of this inhibition. In addition to endocytic contents markers, we have used a covalent membrane marker to measure the interaction between endosomes and lysosomes over extended periods of time at low temperature. Mouse macrophage cells (P388D1) and human skin fibroblasts were enzymatically labeled with radioactive galactose to provide a covalent marker for plasma-membrane glycoconjugates. Subsequent endocytic membrane traffic for 24 h at 16 degrees C resulted in a significant transfer of membrane marker, as well as of endocytic contents marker, to high density lysosomes, as observed by subcellular fractionation. The kinetics of this transfer have been analyzed for macrophages using the membrane marker, horseradish peroxidase as fluid-phase, and iodinated acetyl low density lipoprotein as receptor-mediated endocytic contents marker. Transfer to lysosomes occurred only about 6 h after application of the respective marker at 16 degrees C. When transfer to lysosomes was initiated by 15 min preincubation at 37 degrees C, subsequent cooling to 16 degrees C did not inhibit ongoing transfer which continued with the same kinetics as when observed after the lag phase. These results show that low temperature delays an unidentified pre-fusion step, but does not inhibit endosome-lysosome fusion as such.  相似文献   

9.
Cytosolic free calcium ([Ca2+]i) and fusion of secondary granules with the phagosomal membrane (phagosome-lysosome fusion, P-L fusion) were assessed in single adherent human neutrophils during phagocytosis of C3bi-opsonized yeast particles. Neutrophils were loaded with the fluorescent dye fura2/AM and [Ca2+]i was assessed by dual excitation microfluorimetry. Discharge of lactoferrin, a secondary granule marker into the phagosome was verified by immunostaining using standard epifluorescence, confocal laser scanning and electron microscopy. In Ca2(+)-containing medium, upon contact with a yeast particle, a rapid rise in [Ca2+]i was observed, followed by one or more Ca2+ peaks (maximal value 1,586 nM and median duration 145 s): P-L fusion was detected in 80% of the cells after 5-10 min. In Ca2(+)-free medium the amplitude, frequency and duration of the [Ca2+]i transients were decreased (maximal value 368 nM, mostly one single Ca2+ peak and median duration 75 s): P-L fusion was decreased to 52%. Increasing the cytosolic Ca2+ buffering capacity by loading the cells with MAPT/AM led to a dose-dependent inhibition both of [Ca2+]i elevations and P-L fusion. Under conditions where basal [Ca2+]i was reduced to less than 20 nM and intracellular Ca2+ stores were depleted, P-L fusion was drastically inhibited while the cells ingested yeast particles normally. P-L fusion could be restored in Ca2(+)-buffered cells containing ingested particles by elevating [Ca2+]i with the Ca2(+)-ionophore ionomycin. The present findings directly indicate that although the ingestion step of phagocytosis is a Ca2(+)-independent event, [Ca2+]i transients triggered upon contact with opsonized particles are necessary to control the subsequent fusion of secondary granules with the phagosomal membrane.  相似文献   

10.
SYNOPSIS. When the structures involved in digestive events in T. pyriformis are examined at the electron microscope level, some information is added to that long known from light microscopy. The food trapping mechanism consists of the three membranelles, undulating membrane, oral ribs, and a “valve” apparently closing the opening to the cytopharynx. Both of the latter structures are supported by microtubules. Fibers extend internally from the cytopharynx and are closely associated with the food vacuole as it forms. Clear vacuoles resembling pinocytic vacuoles appear to arise from differentiated areas of the pellicle and plasma membrane. These vacuoles may fuse with primary lysosomes. Hydrolases are thus contributed to the pinocytic vacuoles which may then fuse with food vacuoles. When first formed food vacuoles contain no hydrolases but may acquire them directly, from primary lysosomes or from pinocytic vacuoles. Digestion proceeds to completion in the food vacuole, at which time soluble food products are released to the cytoplasm. Undigested materials are lost through the cytopyge. In stationary growth phase cells autophagic vacuoles form containing mitochondria and other cellular particulates. Such vacuoles probably contain hydrolases when formed and they may receive others by fusion with primary lysosomes.  相似文献   

11.
In rat yolk sacs incubated in vitro, the rates of degradation of endogenous [3H]leucine-labelled proteins and of pinocytically ingested 125I-labelled bovine serum albumin were both decreased in the presence of either ammonium, methylammonium or ethylammonium ions (0-20 mM) or much lower concentrations of chloroquine (0-500 microM). These effects were also accompanied by an inhibition of pinocytosis, as measured by the rate of uptake of 125I-labelled polyvinylpyrrolidone, and by a fall in the [ATP]/[ADP] ratio within the tissue. Re-incubation in inhibitor-free medium of yolk sacs previously exposed to a weak base restored pinocytic and proteolytic capacities, except for tissues exposed to chloroquine at concentrations above 0.1 mM (these appeared to be cytotoxic); an attendent rise in [ATP]/[ADP] ratios to near normal values was also observed. Weak bases, at concentrations that fully arrested the breakdown of 125I-labelled albumin, failed to inhibit by more than 45% the degradation of [3H]leucine-labelled endogenous proteins. Since 125I-labelled bovine serum albumin has been shown to be degraded entirely intralysosomally by yolk sacs, this suggests either that the hydrolysis of endogenous proteins is shared between lysosomes and some other site or that, unlike 125I-labelled albumin, some endogenous proteins can be degraded within lysosomes at abnormally high pH.  相似文献   

12.
The major cell surface proteins of Chinese hamster ovary (CHO) cells have been investigated after reacting cells at 4 degrees C with the membrane-impermeant reagent, trinitrobenzenesulfonate (TNBS). Immunoprecipitation and subsequent two-dimensional, sodium-dodecyl sulfate, polyacrylamide gel electrophoresis (SDS-PAGE) of proteins from derivatized cells that had been labelled previously with [3H]D-glucosamine or [3H]L-leucine showed that TNBS reacted with most of the high molecular weight (HMW) acidic glycoproteins that became labelled with iodine by the lactoperoxidase technique and that bind the lectin, wheat germ agglutinin (WGA). After warming the cells to allow endocytosis to proceed, molecules haptenized with trinitrophenol (TNP) groups were followed radiochemically by means of [125I]anti-DNP antibodies. The half-life for internalization of proteins tagged with either [125I]anti-DNP IgG or Fab averaged about 5 min. A similar result was obtained when a monoclonal antibody directed against a single plasma membrane glycoprotein was used, or when the rate of surface loss of TNP groups unoccupied by antibodies was measured. Within 15 min at 37 degrees C, a steady-state between surface and cytoplasmic label was reached, with about 65% of the hapten located internally. Recycling of internalized TNP groups back to the cell surface also occurred rapidly (t 1/2 approximately 5 min). Most of the intracellular radioactivity was associated with a membrane fraction of density similar to that of the plasma membrane. Over a 4-h period, there was no significant entry of labeled molecules into lysosomes. By contrast, the fluid-phase marker, horseradish peroxidase, became associated with the lysosomes within 1 h. Our results are consistent with the view that the majority of plasma membrane glycoproteins are continuously being internalized and recycled at a high rate.  相似文献   

13.
We have assigned the biosynthetic processing steps of cathepsin D to intracellular compartments which are involved in its transport to lysosomes in HepG2 cells. Cathepsin D was synthesized as a 51-kDa proenzyme. After formation of 51-55-kDa intermediates due to processing of N-linked oligosaccharides, procathepsin D was proteolytically processed to an intermediate 44-kDa and the mature 31-kDa enzyme. The intersection of the biosynthetic pathway of cathepsin D with the endocytic pathway was labeled with horseradish peroxidase and monitored biochemically by 3,3'-diaminobenzidine cytochemistry. Horseradish peroxidase was used either as a fluid-phase marker to label the entire endocytic pathway or conjugated to transferrin (Tf) to label endosomes only. Directly after biosynthesis cathepsin D was accessible neither to horseradish peroxidase nor Tf-horseradish peroxidase. Newly synthesized 51-55-kDa species of cathepsin D present in the trans-Golgi reticulum were accessible to both horseradish peroxidase and Tf-horseradish peroxidase. The accessibility of trans-Golgi reticulum to both endocytosed horseradish peroxidase and Tf-horseradish peroxidase was monitored by colocalization with a secretory protein, alpha 1anti-trypsin. The proteolytic processing of 51-55-kDa to 44-kDa cathepsin D occurred in compartments which were fully accessible to fluid-phase horseradish peroxidase. Tf-horseradish peroxidase had access to only 20% of 44-kDa cathepsin D while it had no access to 31-kDa cathepsin D. In contrast, the 31-kDa species was completely accessible to fluid-phase horseradish peroxidase. We conclude that proteolytic processing of 51-55-kDa to 44-kDa cathepsin D occurs in endosomes, whereas the processing of 44-31-kDa cathepsin D takes place in lysosomes.  相似文献   

14.
Membrane flow during pinocytosis. A stereologic analysis   总被引:103,自引:55,他引:48       下载免费PDF全文
HRP has been used as a cytochemical marker for a sterelogic analysis of pinocytic vesicles and secondary lysosomes in cultivated macrophages and L cells. Evidence is presented that the diaminobenzidine technique (a) detects all vaculoes containing encyme and (b) distinguishes between incoming pinocytic vesicles and those which have fused with pre-existing lysosomes to form secondary lososomes. The HRP reactive pinocytic vesicle spaces fills completely within 5 min after exposure to enzyme, while the secondary lysosome compartment is saturated in 45--60 min. The size distribution of sectioned (profile) vaculoe diameters was measured at equilibrium and converted to actual (spherical) dimensions using a technique modified from Dr. S. D. Wicksell. The most important findings in this study have to do with the rate at which pinocytosed fluid and surface membrane move into the cell and on their subsequent fate. Each minute macrophages form at least 125 pinocytic vesicles having a fractional vol of 0.43% of the cell's volume and a fractional area of 3.1% of the cell's surface area. The fractional volume and surface area flux rates for L cells were 0.05% and 0.8% per minute respectively. Macrophages and L cells thus interiorize the equivalent of their cell surface area every 33 and 125 min. During a 3-period, the size of the secondary lysosome compartment remains constant and represents 2.5% of the cell volume and 18% of the surface area. Each hour, therefore, the volume and surface area of incoming vesicles is 10 times greater than the dimensions of the secondary lysosomes in both macrophages and L cells. This implies a rapid reduction in vesicle size during the formation of the secondary lysosome and the egress of pinocytosed fluid from the vacuole and the cell. In addition, we postulate that membrane components of the vacuole are subsequently recycled back to the cell surface.  相似文献   

15.
The anion exchange system of human red blood cells is highly inhibited and specifically labeled by isothiocyano derivatives of benzene sulfonate (BS) or stilbene disulfonate (DS). To learn about the site of action of these irreversibly binding probes we studied the mechanism of inhibition of anion exchange by the reversibly binding analogs p-nitrobenzene sulfonic acid (pNBS) and 4,4'-dinitrostilbene-disulfonic acid (DNDS). In the absence of inhibitor, the self-exchange flux of sulfate (pH 7.4, 25 degrees C) at high substrate concentration displayed self-inhibitory properties, indicating the existence of two anion binding sites: one a high-affinity transport site and the other a low-affinity modifier site whose occupancy by anions results in a noncompetitive inhibition of transport. The maximal sulfate exchange flux per unit area was JA = (0.69 +/- 0.11) X 10(-10) moles . min-1 . cm-2 and the Michaelis-Menten constants were for the transport site KS = 41 +/- 14 mM and for the modifier site Ks' = 653 +/- 242 mM. The addition to cells of either pNBS at millimolar concentrations or DNDS at micromolar concentrations led to reversible inhibition of sulfate exchange (pH 7.4, 25 degrees C). The relationship between inhibitor concentration and fractional inhibition was linear over the full range of pNBS or DNDS concentrations (Hill coefficient n approximately equal to 1), indicating a single site of inhibition for the two probes. The kinetics of sulfate exchange in the presence of either inhibitor was compatible with that of competitive inhibition. Using various analytical techniques it was possible to determine that the sulfate transport site was the target for the action of the inhibitors. The inhibitory constants (Ki) for the transport sites were 0.45 +/- 0.10 microM for DNDS and 0.21 +/- 0.07 mM for pNBS. From the similarities between reversibly and irreversibly binding BS and DS inhibitors in structures, chemical properties, modus operandi, stoichiometry of interaction with inhibitory sites, and relative inhibitory potencies, we concluded that the anion transport sites are also the sites of inhibition and of labeling of covalent binding analogs of BS and DS.  相似文献   

16.
17.
We compared the exocytosis by Chinese hamster ovary (CHO) cells of a set of fluid-phase pinocytic tracers. The tracers were horseradish peroxidase (HRP), a glycoprotein of approximately 40 kDa, lucifer yellow (LuY), a 457 dalton, membrane-impermeant fluorescent dye, and glucose polymers ranging from sucrose through higher molecular weight, fluorescein isothiocyanate (FITC) dextrans. After a long term uptake (16-20 h), each of these tracers was localized to lysosomes. Exocytosis of the majority of the small molecule tracers, LuY and [14C] sucrose, was observed over a period of a few to several h. There was no significant exocytosis of 42 kDa FITC dextran or HRP during an 18-20 h chase, while lower molecular weight dextrans were exocytosed. After co-accumulation of LuY and HRP in lysosomes, only the low molecular weight marker was exocytosed. These observations suggest retention of endocytized solutes within lysosomes is dependent on molecular size and may be limited by the rate of diffusion of molecules into shuttle vesicles.  相似文献   

18.
Encephalitozoon cuniculi grow within ever-increasing parasitophorous vacuoles (PV) in peritoneal macrophages. The PV boundary membrane conforms to a rich arrangement of blebs; similar, but free vesicles were observed within the PV space. An iron dextran-concanavalin A marker was used to express visually clustered distributions of Con A receptors on the PV boundary blebs and free vesicles; no marker was observed on other membrane surfaces within the PV. These results, combined with the observation that the PV grows while the host cytoplasm decreases in mass, implicate the PV boundary blebs of interiorizing into vesicles by a pinocytic mechanism. Phagocytic vacuoles, secondary lysosomes and pinocytic vesicles were labeled by incubating infected macrophages in minimum essential medium with ferritin. Ferritin readily accumulated in secondary lysosomes and phagocytic vacuoles; however, ferritin was excluded from parasitophorous vacuoles containing E. cuniculi. Acid phosphatase cytochemical reaction product was observed in lysosomes and phagocytic vacuoles; however, parasitophorous vacuoles with vegetative E. cuniculi were always negative.  相似文献   

19.
SUMMARY 1. Effects of pentosan polysulfate (PPS) and the structurally related sulfated polyanions dextran sulfate, fucoidan, and heparin on the scavenger receptor-mediated and fluid-phase endocytosis in GP8 immortalized rat brain endothelial cells were investigated.2. Using 1,1-dioctadecyl-3,3,3,3-tetramethylindocarboxyamine perchlorate-labeled acetylated low-density lipoprotein (DiI-AcLDL), we found a binding site with high affinity and low binding capacity, and another one with low affinity and high binding capacity. Increasing ligand concentrations could not saturate DiI-AcLDL uptake. DiI-AcLDL uptake, but not binding, was sensitive to pretreatment with filipin, an inhibitor of caveola formation.3. PPS (20–200 g/ml) significantly reduced the binding of DiI-AcLDL after coincubation for 3 hr, though this effect was less expressed after 18 hr. Among other polyanions, only fucoidan decreased the DiI-AcLDL binding after 3 hr, whereas dextran sulfate significantly increased it after 18 hr. PPS treatment induced an increase in DiI-AcLDL uptake, whereas other polysulfated compounds caused a significant reduction.4. Fluid-phase endocytosis determined by the accumulation of Lucifer yellow was concentration and time dependent in GP8 cells. Coincubation with PPS or other sulfated polyanions could not significantly alter the rate of Lucifer yellow uptake.5. In conclusion, PPS decreased the binding and increased the uptake of DiI-AcLDL in cerebral endothelial cells, an effect not mimicked by the other polyanions investigated.  相似文献   

20.
The lysosomotropic agent chloroquine is widely used as a specific inhibitor of intralysosomal proteolysis in isolated hepatocytes. It was shown that in vitro chloroquine reversibly inhibited purified cathepsins H, B, L in concentrations less than those observed inside lysosomes in vivo. However, administration of high doses of chloroquine to rats (30-50 mg/kg i.p. as a single or repeated injections) was followed by increased cathepsin D and cysteine proteinase activities, as well as other lysosomal enzymes. Chloroquine administration did not induce any changes of carbon particles phagocytosis by liver cells (macrophages); modifications of fluid-phase (125I-PVP uptake) and receptor-mediated endocytosis (125I-asialo-fetuin uptake) were noted. Chloroquine administered in vivo reproduced some symptoms of lysosomal storage diseases (especially during repeated drug administration).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号