首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The T cell receptor (TCR) is a molecular complex formed by at least seven transmembrane proteins: the antigen/major histocompatibility complex recognition unit (Ti alpha-beta heterodimer) and the invariant CD3 chains (gamma, delta, epsilon, zeta, and eta). In addition to targeting partially assembled Ti alpha-beta CD3 gamma delta epsilon TCR complexes to the cell surface, CD3 zeta appears to be essential for interleukin-2 production after TCR stimulation with antigen/major histocompatibility complex. The gamma chain of the high affinity Fc receptor for IgE (Fc epsilon RI gamma) has significant structural homology to CD3 zeta and the related CD3 eta subunit. To identify the functional significance of sequence homologies between CD3 zeta and Fc epsilon RI gamma in T cells, we have transfected a Fc epsilon RI gamma cDNA into a T cell hybridoma lacking CD3 zeta and CD3 eta proteins. Herein we show that a Fc epsilon RI gamma-gamma homodimer associates with TCR components to up-regulate TCR surface expression. A TCR composed of Ti alpha-beta CD3 gamma delta epsilon Fc epsilon RI gamma-gamma is sufficient to restore the coupling of TCR antigen recognition to the interleukin-2 induction pathway, demonstrating the functional significance of structural homology between the above receptor subunits. These results, in conjunction with the recent finding that CD3 zeta, CD3 eta, and Fc epsilon RI gamma are coexpressed in certain T cells as subunits of an unusual TCR isoform, suggest that Fc epsilon RI gamma is likely to play a role in T cell lineage function.  相似文献   

2.
The unfolding story of T cell receptor gamma   总被引:3,自引:0,他引:3  
Antigen-specific, major histocompatibility complex-restricted recognition by classical T cells is mediated by a T cell receptor (TCR) consisting of a disulfide-linked alpha beta heterodimer. During the search for the genes encoding the alpha and beta proteins, a third immunoglobulin-like gene, termed gamma, was uncovered. Like the TCR alpha and beta genes, the TCR gamma gene consists of variable and constant segments that rearrange during T cell development in the thymus. Although the physiological role of TCR gamma remains an enigma, much has been learned with the recent identification of the protein products of this gene family in both mice and humans. The gamma chain is associated with a partner chain, termed delta. The gamma delta heterodimer is associated with an invariant T3 complex, very similar to that associated with the alpha beta heterodimer, and appears predominantly, if not exclusively, on cells with a CD4-, CD8- phenotype both in the thymus and in the periphery. TCR gamma delta is the first T3-associated receptor to appear during thymocyte development and defines a separate T cell lineage distinct from alpha beta-bearing cells. Although TCR alpha beta-bearing cells and TCR gamma delta-bearing cells follow parallel developmental pathways, the diversity of expressed gamma delta receptors is extremely limited relative to that of alpha beta receptors.  相似文献   

3.
The TCR consists of the Ti alpha beta heterodimer and the associated CD3 chains, CD3 gamma delta epsilon zeta 2 or zeta eta. The structural relationships between the subunits of the Ti/CD3 complex are still not fully understood. To explore the roles of the individual CD3 chains for the assembly, intracellular processing, and expression of the TCR, mutants of the T cell line Jurkat were isolated. One variant, JGN, was found to produce all the Ti/CD3 components with the exception of CD3-gamma. The results indicate that: 1) the tetrameric form (Ti alpha beta-CD3 delta epsilon) of the Ti/CD3 complex is produced in the endoplasmic reticulum in the absence of CD3-gamma; 2) CD3-zeta does not associate with the Ti alpha beta-CD3 delta epsilon complex; 3) the Ti alpha beta-CD3 delta epsilon complex is not exported from the endoplasmic reticulum to the Golgi apparatus; and 4) CD3-gamma is required for cell surface expression of the Ti/CD3 complex. Transfection of the wild-type CD3-gamma gene into JGN reconstituted expression of functional Ti/CD3 complexes, and analysis of T cell lines producing different amounts of CD3-gamma indicated that CD3-gamma and CD3-delta competed for the binding to CD3-epsilon.  相似文献   

4.
T lymphocytes express either the alpha/beta or the gamma/delta receptor (TCR) in a mutually exclusive fashion. Both structures are associated on the cell membrane with the CD3 proteins which are thought to transduce signals resulting from antigen recognition. The CD3 complex is present in both alpha/beta and gamma/delta cells and includes at least five proteins (designated gamma, delta, epsilon, zeta and eta). We have developed here a novel mAb, anti-CD3.TCR1, which immunoprecipitates the CD3 molecules from both alpha/beta and gamma/delta cells lysates following solubilization with Triton X-100. While the SDS-PAGE migration profile of the material recognized by either anti-CD3.TCR1 or anti-OKT3 are superimposable in both cell types, this mAb recognizes viable untreated gamma/delta T lymphocytes exclusively. These findings further support the view that molecular interactions within the TCR/CD3 protein complex are distinct in the two T lymphocyte populations.  相似文献   

5.
6.
The T cell receptor for antigen (TCR) consists of two glycoproteins containing variable regions (TCR-alpha/beta or TCR-gamma/delta) which are expressed on the cell surface in association with at least four invariant proteins (CD3-gamma, -delta, -epsilon and -zeta). CD3-gamma and CD3-delta chains are highly homologous, especially in the cytoplasmic domain. The similarity observed in their genomic organization and their proximity in the chromosome indicate that both genes arose from duplication of a single gene. Here, we provide several lines of evidence which indicate that in human and murine T cells which expressed both the CD3-gamma and CD3-delta chains on their surface, the TCR/CD3 complex consisted of a mixture of alpha beta gamma epsilon zeta and alpha beta delta epsilon zeta complexes rather than a single alpha beta gamma delta epsilon zeta complex. First, a CD3-gamma specific antibody failed to co-immunoprecipitate CD3-delta and conversely, several CD3-delta specific antibodies did not coprecipitate CD3-gamma. Secondly, analysis of a panel of human and murine T cell lines demonstrated that CD3-gamma and CD3-delta were expressed at highly variable ratios on their surface. This suggested that these chains were not expressed as a single complex. Thirdly, CD3-gamma and CD3-delta competed for binding to CD3-epsilon in transfected COS cells, suggesting that CD3-gamma and CD3-delta formed mutually exclusive complexes. The existence of these two forms of TCR/CD3 complexes could have important implications in the understanding of T cell receptor function and its role in T cell development.  相似文献   

7.
8.
9.
Transfected T cell receptor (TCR) beta chain genes are expressed as homodimers on the surface of immature (Sci/ET27F) but not on mature (58 alpha-beta-) T cell lines which lack TCR alpha, gamma and delta chains. The homodimer on Sci/ET27F cells is tightly bound to CD3 delta and CD3 epsilon while the association with CD3 gamma and CD3 zeta proteins is rather weak. Crosslinking of the TCR beta homodimers resulted in a strong and rapid calcium flux. In 58 alpha-beta- T cells the beta TCR chain could be easily visualized intracellularly but was not transported to the cell surface. The Scid cell lines considerably facilitate the molecular analysis of early differentiation events in the thymus which are likely to be regulated by the beta TCR homodimer.  相似文献   

10.
The T-cell receptor (TCR) is a multimeric receptor composed of the Ti alpha beta heterodimer and the noncovalently associated CD3 gamma delta epsilon and zeta(2) chains. All of the TCR chains are required for efficient cell surface expression of the TCR. Previous studies on chimeric molecules containing the di-leucine-based endocytosis motif of the TCR subunit CD3 gamma have indicated that the zeta chain can mask this motif. In this study, we show that successive truncations of the cytoplasmic tail of zeta led to reduced surface expression levels of completely assembled TCR complexes. The reduced TCR expression levels were caused by an increase in the TCR endocytic rate constant in combination with an unaffected exocytic rate constant. Furthermore, the TCR degradation rate constant was increased in cells with truncated zeta. Introduction of a CD3 gamma chain with a disrupted di-leucine-based endocytosis motif partially restored TCR expression in cells with truncated zeta chains, indicating that the zeta chain masks the endocytosis motif in CD3 gamma and thereby stabilizes TCR cell surface expression.  相似文献   

11.
The T cell antigen receptor (TCR) consists of an alphabeta heterodimer and associated invariant CD3gamma, delta, epsilon, and zeta chains (TCR/CD3 complex). The general stoichiometry of the receptor complex, which is believed to be one molecule each of TCRalpha, TCRbeta, CD3gamma, and CD3delta and two molecules each of CD3epsilon and CD3zeta, is not clearly understood. Although it has been shown that there are two chains of CD3epsilon and CD3zeta, the stoichiometry of CD3gamma or CD3delta chains in the surface antigen receptor complex has not been determined. In the present study, transgenic mice expressing an altered form of mouse CD3delta and CD3gamma were employed to show that the surface TCR complexes contain one molecule each of CD3delta and CD3gamma. Thymocytes from wild type and CD3 chain transgenic mice on the appropriate knockout background were surface-biotinylated and immunoprecipitated using a specific antibody. The immunoprecipitates were resolved in two dimensions under nonreducing/reducing conditions to determine the stoichiometry of CD3delta and CD3gamma in the surface antigen receptor complex. Our data clearly show the presence of one molecule each of CD3delta and CD3gamma in the surface TCR/CD3 complex.  相似文献   

12.
Molecular characterization of immunodeficiencies contributes to a better understanding of the physiological mechanisms of immune function. The T cell receptor is a heterodimer (alpha/beta or gamma/delta) associated with four transmembrane units of the CD3 complex (gamma, delta, epsilon and zeta). We herein summarize the immunodeficiency states resulting from defects in genes encoding the CD3 complex. Such analysis highlights the respective role of each of these chains in T lymphocyte development and underscores differences between T lymphocyte development in man and mouse. Currently, there is a growing body of knowledge on immunodeficiencies specifically involving the four chains of the CD3, namely gamma, delta, epsilon and zeta. Thus, we can compare the phenotypes observed in these patients with those seen in mice knockout for these genes. The main differences observed involve the respective roles of the CD3gamma chain as well as the CD3delta, whose functions seem to be reciprocal between the two species. Indeed, in the mouse, knockout of CD3delta allows some degree of T lymphocyte differentiation since mature CD4 and CD8 as well as TCRgammadelta T lymphocytes are observed in the periphery. In contrast, deleterious mutation of the CD3delta encoding gene in the human leads to a severe combined immunodeficiency characterised by the complete absence of mature T cell subpopulations including TCRalpha/beta and TCRgamma/delta. Reciprocally, in the human, mutation of the CD3gamma encoding gene leads to a moderate immunodeficiency which contrasts with the complete block of T cell differentiation observed in mice knockout for this gene. This article brings into focus the knowledge gained through studies of immunodeficiency mouse models with the pathophysiological state observed in human disease.  相似文献   

13.
Role of CD3 gamma in T cell receptor assembly   总被引:3,自引:0,他引:3       下载免费PDF全文
The T cell receptor (TCR) consists of the Ti alpha beta heterodimer and the associated CD3 gamma delta epsilon and zeta 2 chains. The structural relationships between the subunits of the TCR complex are still not fully known. In this study we examined the role of the extracellular (EC), transmembrane (TM), and cytoplasmic (CY) domain of CD3 gamma in assembly and cell surface expression of the complete TCR in human T cells. A computer model indicated that the EC domain of CD3 gamma folds as an Ig domain. Based on this model and on alignment studies, two potential interaction sites were predicted in the EC domain of CD3 gamma. Site-directed mutagenesis demonstrated that these sites play a crucial role in TCR assembly probably by binding to CD3 epsilon. Mutagenesis of N-linked glycosylation sites showed that glycosylation of CD3 gamma is not required for TCR assembly and expression. In contrast, treatment of T cells with tunicamycin suggested that N-linked glycosylation of CD3 delta is required for TCR assembly. Site-directed mutagenesis of the acidic amino acid in the TM domain of CD3 gamma demonstrated that this residue is involved in TCR assembly probably by binding to Ti beta. Deletion of the entire CY domain of CD3 gamma did not prevent assembly and expression of the TCR. In conclusion, this study demonstrated that specific TCR interaction sites exist in both the EC and TM domain of CD3 gamma. Furthermore, the study indicated that, in contrast to CD3 gamma, glycosylation of CD3 delta is required for TCR assembly and expression.  相似文献   

14.
The T-cell receptor (TCR) is a multisubunit complex consisting of the clonotypic Ti alpha and beta (or Ti gamma and delta) subunits and the invariant CD3 gamma, CD3 delta, CD3 epsilon, CD3 zeta, and CD3 eta subunits. Herein, we describe an additional product from the CD3 zeta/eta gene locus which we have termed CD3 theta. The cDNA derives from the first seven exons common to CD3 zeta and CD3 eta, 94 base pairs (bp) of the CD3 eta-specific exon 9 and an additional exon 10 encoding the carboxyl-terminal 15 amino acids and the 3'-untranslated region. The expression of CD3 theta is equivalent to that of CD3 eta in tissue distribution and level of expression as judged by RNase protection analysis. Despite the identity of the amino-terminal 121 amino acids of CD3 zeta, CD3 eta, and CD3 theta and an additional 31 amino acids shared between CD3 eta and CD3 theta, transfection of CD3 theta into the CD3 zeta- eta- T-cell hybridoma, MA5.8, failed to restore detectable surface TCR expression in contrast to transfection with CD3 zeta or CD3 eta. Analysis of the CD3 theta protein in transfectants indicated that CD3 theta is associated with the TCR intracellularly. However, unlike with CD3 zeta, Ti alpha-beta chains remain endoglycosidase H sensitive, suggesting a role for the unique COOH-terminal segment of CD3 theta in mediating TCR retention and/or degradation in a pre-Golgi compartment.  相似文献   

15.
The T cell receptor (TCR) for antigen consists, on the majority of peripheral lymphocytes, of an immunoglobulin-like, disulfide-linked heterodimeric glycoprotein: the alpha and beta chain. These proteins are noncovalently linked to at least four nonvariant proteins which comprise the CD3 complex: CD3 gamma, delta, epsilon, and zeta. Whereas the TCR alpha and beta proteins have positively charged residues in the transmembrane region, all the CD3 proteins have similarly placed negatively charged amino acid residues. It has been suggested that these basic and acidic amino acid residues may play an important role in TCR.CD3 complex assembly and/or function. In this paper, the structural and functional role of the lysine and arginine residues of the TCR alpha chain was addressed using oligonucleotide mediated site directed mutagenesis. The Arg256 and Lys261 residues of the TCR alpha cDNA of the HPB-ALL cell line were mutated to either Gly256 and/or Ile261. The altered cDNAs were transfected into a TCR alpha negative recipient mutant cell line of REX, clone 20A. Metabolic labeling of the T cell transfectants showed that mutation of either the Arg256 or Lys261 amino acid residues had no effect on the ability of the TCR alpha chain to form either a heterodimer with the TCR beta chain or a complex with the CD3 gamma, delta, and epsilon proteins. Consequently, the Arg256 to Gly256 and Lys261 to Ile261 mutations did not prevent the formation of a mature, functional TCR.CD3 complex on the cell surface as determined by immunofluorescence, cell surface radioiodination, and the ability of the transfectants to mobilize intracellular calcium after stimulation with a mitogenic anti-CD3 epsilon monoclonal antibody. In contrast, a mutant cDNA in which both the Arg256 and Lys261 residues were mutated to Gly256 and Ile261, respectively, failed to reconstitute the cell surface expression of the TCR.CD3 complex and, consequently, the ability to respond to mitogenic stimuli. In the absence of both the Arg256 and Lys261 residues, TCR alpha beta heterodimer formation was not observed. Cotransfection studies in COS cells showed that the failure of assembly of a heterodimer was likely due to an inability of the mutated TCR alpha chain to form a subcomplex with either the CD3 gamma, delta, epsilon, or zeta proteins.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Most T lymphocytes express on their surfaces a multisubunit receptor complex, the T cell antigen receptor (TCR) containing alpha, beta, gamma, delta, epsilon, and zeta molecules, that has been widely studied as a model system for protein quality control. Although the parameters of TCR assembly are relatively well established, little information exists regarding the stage(s) of TCR oligomerization where folding of TCR proteins is completed. Here we evaluated the modification of TCR glycoproteins by the endoplasmic reticulum folding sensor enzyme UDP-glucose:glycoprotein glucosyltransferase (GT) as a unique and sensitive indicator of how TCR subunits assembled into multisubunit complexes are perceived by the endoplasmic reticulum quality control system. These results demonstrate that all TCR subunits containing N-glycans were modified by GT and that TCR proteins were differentially reglucosylated during their assembly with partner TCR chains. Importantly, these data show that GT modification of most TCR subunits persisted until assembly of CD3alpha beta chains and formation of CD3-associated, disulfide-linked alpha beta heterodimers. These studies provide a novel evaluation of the folding status of TCR glycoproteins during their assembly into multisubunit complexes and are consistent with the concept that TCR folding is finalized convergent with formation of alpha beta delta epsilon gamma epsilon complexes.  相似文献   

17.
The TCR/CD3 complex is a multimeric protein complex composed of a minimum of seven transmembrane chains (TCR alpha beta-CD3 gamma delta epsilon zeta 2). Whereas earlier studies have demonstrated that both the TCR-alpha and -beta chains are required for the cell surface expression of the TCR/CD3 complex, the role of the CD3 chains for the TCR/CD3 expression have not been experimentally addressed in human T cells. In this study the function of the CD3-zeta chain for the assembly, intracellular processing, and expression of the TCR/CD3 complex in the human leukemic T cell line Jurkat was investigated. The results indicate that: 1) CD3-zeta is required for the cell surface expression of the TCR/CD3 complex; 2) the pentameric form (TCR alpha beta-CD3 gamma delta epsilon) of the TCR/CD3 complex and single TCR chains associated with CD3 (TCR alpha-CD3 gamma delta epsilon and TCR beta-CD3 gamma delta epsilon) are produced in the endoplasmic reticulum in the absence of CD3-zeta; 3) the CD3-zeta does not associate with TCR alpha-CD3 gamma delta epsilon or TCR beta-CD3 gamma delta epsilon complexes; 4) CD3-zeta associate with the pentameric form of the TCR/CD3 complex in the endoplasmic reticulum to form the heptameric complex (TCR alpha beta-CD3 gamma delta epsilon----TCR alpha beta-CD3 gamma delta epsilon 2); and 5) CD3-zeta is required for the export of the TCR/CD3 complex from the endoplasmic reticulum to the Golgi apparatus for subsequent processing.  相似文献   

18.
Infection and transformation by human T cell leukemia virus type I (HTLV-I) up-regulates expression of several inducible genes including those coding for cytokines involved in the proliferation of normal and leukemic T cells. We demonstrate that HTLV-I can also shut off expression of the CD3-gamma, delta, epsilon, and zeta genes that code for the constant elements of the TCR for Ag. In addition, the T cell-specific CD3-epsilon enhancer was found to be inactive in a HTLV-I-infected T cell clone. This HTLV-I-infected T cell clone (827-p19-II) that could be cultured in the absence of IL-2 lacked the CD3 proteins but did express the TCR-alpha and -beta proteins intracellularly. In the absence of the CD3-gamma, delta, epsilon, and zeta polypeptide chains the disulfide bridged TCR-alpha/beta heterodimer was not formed and the Ag receptor did not appear at the cell surface. These results allowed two major conclusions: first, HTLV-I infection has an effect on the T cell specific regulatory elements that coordinately regulate CD3-gamma, delta, epsilon, and zeta expression and second, the CD3-gamma, delta, epsilon, and zeta proteins are necessary for formation and routing the variable TCR-alpha/beta (or -gamma/delta) heterodimer to the human T cell surface.  相似文献   

19.
The alpha beta T cell antigen receptor (TCR) that is expressed on most T lymphocytes is a multisubunit transmembrane complex composed of at least six different proteins (alpha, beta, gamma, delta, epsilon and zeta) that are assembled in the endoplasmic reticulum (ER) and then transported to the plasma membrane. Expression of the TCR complex is quantitatively regulated during T cell development, with immature CD4+CD8+ thymocytes expressing only 10% of the number of surface alpha beta TCR complexes that are expressed on mature T cells. However, the molecular basis for low TCR expression in developing alpha beta T cells is unknown. In the present study we report the unexpected finding that assembly of nascent component chains into complete TCR alpha beta complexes is severely impaired in immature CD4+CD8+ thymocytes relative to their mature T cell progeny. In particular, the initial association of TCR alpha with TCR beta proteins, which occurs relatively efficiently in mature T cells, is markedly inefficient in immature CD4+CD8+ thymocytes, even for a matched pair of transgenic TCR alpha and TCR beta proteins. Inefficient formation of TCR alpha beta heterodimers in immature CD4+CD8+ thymocytes was found to result from the unique instability of nascent TCR alpha proteins within the ER of immature CD4+CD8+ thymocytes, with nascent TCR alpha proteins having a median survival time of only 15 min in CD4+CD8+ thymocytes, but > 75 min in mature T cells. Thus, these data demonstrate that stability of TCR alpha proteins within the ER is developmentally regulated and provide a molecular basis for quantitative differences in alpha beta TCR expression on immature and mature T cells. In addition, these results provide the first example of a receptor complex whose expression is quantitatively regulated during development by post-translational limitations on receptor assembly.  相似文献   

20.
TCR gene therapy is adversely affected by newly formed TCRalphabeta heterodimers comprising exogenous and endogenous TCR chains that dilute expression of transgenic TCRalphabeta dimers and are potentially self-reactive. We have addressed TCR mispairing by using a modified two-chain TCR that encompasses total human CD3zeta with specificities for three different Ags. Transfer of either TCRalpha:CD3zeta or beta:CD3zeta genes alone does not result in surface expression, whereas transfer of both modified TCR chains results in high surface expression, binding of peptide-MHC complexes and Ag-specific T cell functions. Genetic introduction of TCRalphabeta:zeta does not compromise surface expression and functions of an endogenous TCRalphabeta. Flow cytometry fluorescence resonance energy transfer and biochemical analyses demonstrate that TCRalphabeta:CD3zeta is the first strategy that results in highly preferred pairing between CD3zeta-modified TCRalpha and beta chains as well as absence of TCR mispairing between TCR:CD3zeta and nonmodified TCR chains. Intracellular assembly and surface expression of TCR:CD3zeta chains is independent of endogenous CD3gamma, delta, and epsilon. Taken together, our data support the use of TCRalphabeta:CD3zeta to prevent TCR mispairing, which may provide an adequate strategy to enhance efficacy and safety of TCR gene transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号