首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genotypic differences in acquiring immobile P exist among species or cultivars within one species. We investigated the P-efficiency mechanisms of rapeseed (Brassica napus L.) in low P soil by measuring plant growth, P acquisition and rhizosphere properties. Two genotypes with different P efficiencies were grown in a root-compartment experiment under low P (P15: 15 mg P kg?1) and high P (P100: 100 mg P kg?1) treatments. The P-efficient genotype produced more biomass, and had a high seed yield and high P acquisition efficiency under low P treatment. Under both P treatments, both genotypes decreased inorganic P (Pi) and organic P (Po) fractions in the rhizosphere soil. However there was no decrease in NaHCO3-Po at P100. For the P15 treatment, the concentrations of NaHCO3-Po and NaOH-Po were negatively correlated with soil acid phosphatase activity. The P-efficient genotype 102 differed from the P-inefficient genotype 105 in the following ways. In the rhizosphere the soil pH was lower, acid phosphatase activity was higher, and depletion of P was greater. Further the depletion zones were wider. These results suggested that improving P efficiency based on the character of P efficiency acquisition in P-efficient genotype would be a potential approach for maintaining rapeseed yield potential in soils with low P bioavailability.  相似文献   

2.
以湖南省平江县国有芦头林场的次生林以及经人工翻垦种植的油茶(Camellia oleifera)、黄桃(Amygdalus persica)、杨梅(Myrica rubra)和杉木(Cunninghamia lanceolata)四种人工林为研究对象,比较了不同林分土壤理化性质、磷酸酶活性与磷形态特征,分析了三者之间的相关性,探讨了次生林转变为人工林后,土壤磷形态和磷酸酶的变化特征以及驱动土壤磷素形态变化的关键因子。结果表明:(1)次生林土壤有机碳(SOC),全氮(TN)、铵态氮(NH+4-N)含量与磷酸酶活性显著高于其他四种林分。(2)五种林分中土壤残余磷(Residual-P)含量最高,是林地土壤主要的磷素存在形态。林分转变后,黄桃林与杉木林树脂提取态无机磷(Resin-Pi)显著增加,黄桃林与油茶林NaHCO3提取态磷(NaHCO3-Pi、NaHCO3-Po)含量显著增加,而四种人工林的NaOH提取态有机磷(NaOH-Po)含量均显著降低。可利用磷、中等可利用磷与稳定态磷...  相似文献   

3.
刘丹  游郭虹  宋小艳  胡雷  柳杨  王长庭 《生态学报》2023,43(6):2378-2387
以川西北高寒草地为研究对象,采用随机区组设计,设置0、10、20、30、40、50、60 g/m2的过磷酸钙(P2O5,16%)施肥试验,分析土壤不同形态磷含量和有效磷(Olsen-P)含量变化特征,探究施磷对川西北高寒草地土壤磷形态及有效磷的影响。结果表明:(1)随施磷量增加,土壤总磷(TP)含量先增加后趋于平稳而Olsen-P含量减少。高水平(50、60 g/m2)施磷下氢氧化钠有机磷(NaOH-Po)及残留磷(Residual-P)是高寒草地主要的磷素累积形态,其含量显著高于不施磷处理;(2)树脂交换态磷(Resin-Pi)、碳酸氢钠无机磷(NaHCO3-Pi)、碳酸氢钠有机磷(NaHCO3-Po)和氢氧化钠无机磷(NaOH-Pi)含量随施磷量增加整体呈先增加后降低趋势,表层土壤30 g/m2磷肥用量下其值均为最高,分别为21.54、22.94、65.86、64.48 mg/kg。酸溶性无机磷(HCl-Pi)随施磷量增加整体呈下...  相似文献   

4.
The fate and availability of P derived from granular fertilisers in an alkaline Calcarosol soil were examined in a 65-year field trial in a semi-arid environment (annual rainfall 325 mm). Sequential P fractionation was conducted in the soils collected from the trial plots receiving 0–12 kg P ha−1crop−1, and the rhizosphere soil after growing wheat (Triticum aestivum L. cv. Yitpi) and chickpea (Cicer arietinum L. cv. Genesis 836) for one or two 60-day cycles in the glasshouse. Increasing long-term P application rate over 65 years significantly increased all inorganic P (Pi) fractions except HCl–Pi. By contrast, P application did not affect or tended to decrease organic P (Po) fractions. Increasing P application also increased Olsen-P and resin-P but decreased the P buffer capacity and sorption maxima. Residual P, Pi and Po fractions accounted for an average of 32, 16 and 52% of total P, respectively. All soil P fractions including residual P in the rhizosphere soil declined following 60-day growth of either wheat or chickpea. The decreases were greater in soils with a history of high P application than low P. An exception was water-extractable Po, which increased following plant growth. Changes in various P fractions in the rhizosphere followed the same pattern for both plant species. Biomass production and P uptake of the plants grown in the glasshouse correlated positively with the residual P and inorganic fractions (except HCl–Pi) but negatively with Po in the H2O-, NaOH- and H2SO4-fractions of the original soils. The results suggest that the long-term application of fertiliser P to the calcareous sandy soil built up residual P and non-labile Pi fractions, but these P fractions are potentially available to crops.  相似文献   

5.
Richter DD  Allen HL  Li J  Markewitz D  Raikes J 《Oecologia》2006,150(2):259-271
Although low solubility and slow cycling control P circulation in a wide range of ecosystems, most studies that evaluate bioavailability of soil P use only indices of short-term supply. The objective here is to quantify changes in P fractions in an Ultisol during the growth of an old-field pine forest from 1957 to 2005, specifically changes with organic P (Po) and with inorganic P (Pi) associated with Fe and Al oxides as well as Ca compounds. Changes in soil P were estimated from archived mineral soil samples collected in 1962 shortly after pine seedlings were planted, and on six subsequent occasions (1968, 1977, 1982, 1990, 1997, and 2005) from eight permanent plots and four mineral soil layers (0–7.5, 7.5–15, 15–35, and 35–60 cm). Despite the net transfer of 82.5 kg ha−1 of P from mineral soil into tree biomass and O horizons, labile soil P was not diminished, as indexed by anion exchange resins, and NaHCO3 and Mehlich III extractants. An absence of depletion in most labile P fractions masks major restructuring of soil P chemistry driven by ecosystem development. During 28 years of forest growth, decreases were significant and substantial in slowly cycling Po and Pi associated with Fe and Al oxides and Ca compounds, and these accounted for most of the P supplied to biomass and O horizons, and for buffering labile soil fractions as well. Changes in soil P are attributed to the P sink strength of the aggrading forest (at 2.9 kg ha−1 year−1 over 28 years); legacies of fertilization, which enriched slowly cycling fractions of Po and Pi; and the changing biogeochemistry of the soil itself.  相似文献   

6.
植物残体添加和去除试验(The Detritus Input and Removal Treatments, DIRT)是研究地上凋落物以及植物根系对土壤营养物质循环过程及机制探究的一种试验设计。于2012年6月选择福建省三明森林生态系统与全球变化研究站的米槠常绿阔叶天然林,设置5种处理:对照(CT)、去除凋落物(NL)、去除根系(NR)、去除凋落物与根系(NI)、添加双倍凋落物(DL),在2018年12月对各处理不同土层(0—10cm、10—20cm)土壤磷组分及其影响因子进行研究,结果表明:(1)在0—10cm土层中DL处理总磷含量显著大于NL处理,NI处理无机磷含量最低,在10—20cm中DL处理有机磷含量显著大于其他处理;(2)DL处理活性磷(Resin-P、NaHCO3-Pi、NaHCO3-Po)含量在0—10cm土层中显著大于其他处理。在10—20cm土层中NR处理活性磷以及中等活性磷显著大于NL处理。残留态磷(Residual-P)含量最高,但在各处理与土层之间并没有明显差异;(3)酸性磷酸酶在0—10 cm土层不同处理间的变化...  相似文献   

7.
Summary Effects of temperature and flooded-drained soil conditions on 0.01M CaCl2 extractable phosphorus (soluble P) were investigated in four soils over the period of 42 days after fertilizer-P application. These soils show severe induced P deficiency problem in crops following flooded rice culture. The effects of temperature on the reaction rate constants were determined and activation energy was calculated. Increasing soil temperature as well as prior flooding of soil decreased soluble P concentration but the effect of the latter was dominant. The decrease in soluble P concentration in these soils with time followed a first order kinetics and the rate constant (K1) increased as the temperature increased from 10°C to 30°C. The activation energy (Ea) for the kinetics of soluble P concentration in soil, as affected by temperature, was found to be 8.9 and 34.5 KJ mol−1 for Meyers and Willows clay, respectively, over the temperature range studied.  相似文献   

8.
To examine the influence of vesicular-arbuscular (VA) mycorrhizal fungi on phosphorus (P) depletion in the rhizosphere, mycorrhizal and non-mycorrhizal white clover (Trifolium repens L.) were grown for seven weeks in a sterilized calcareous soil in pots with three compartments, a central one for root growth and two outer ones for hyphae growth. Compartmentation was accomplished by a 30-μm nylon net. The root compartment received a uniform level of P (50 mg kg−1 soil) in combination with low or high levels of P (50 or 150 mg kg−1 soil) in the hyphal compartments. Plants were inoculated withGlomus mosseae (Nicol. & Gerd.) Gerd. & Trappe or remained uninfected. Mycorrhizal inoculation doubled P concentration in shoot and root, and increased dry weight, especially of the shoot, irrespective of P levels. Mycorrhizal contribution accounted for 76% of total P uptake at the low P level and 79% at the high P level, and almost all of this P was delivered by the hyphae from the outer compartment. In the non-mycorrhizal plants, the depletion of NaHCO3-extractable P (Olsen-P) extended about 1 cm into the outer compartment, but in the mycorrhizal plants a uniform P depletion zone extended up to 11.7 cm (the length of the hyphal compartment) from the root surface. In the outer compartment, the mycorrhizal hyphae length density was high (2.5–7 m cm−3 soil) at the various distances (0–11.7 cm) from the root surface. Uptake rate of P by mycorrhizal hyphae was in the range of 3.3–4.3×10−15 mol s−1 cm−1.  相似文献   

9.
Phosphorus cycling in rainfed lowland rice ecosystems on sandy soils   总被引:3,自引:0,他引:3  
Phosphorus cycling in rainfed lowland rice ecosystems is poorly understood. Soil drying and grazing of rice straw during the long dry season, the growth of volunteer pastures during the early wet season, and intermittent loss of soil-water saturation while the rice crop is growing are important distinguishing characteristics of the rainfed lowlands in relation to P cycling. We studied P cycling in an acid sandy rainfed lowland soil that covers about 30% of the rice growing area of Cambodia. Soils with similar properties in comparable rainfed sub- ecosystems occur in Laos and northeast Thailand. We developed a general schema of P pools and fluxes in the crop and soil for rice-based cropping systems in the rainfed lowlands of Cambodia. The schema was derived from a number of field experiments carried out over five consecutive cropping seasons to quantify the residual value of P fertiliser, P mass balances, soil P fractions, the effect on subsequent rice crops of crop residues and volunteer pastures incorporated into the soils, and the dynamics of P turnover in the soil. With a single rice crop yielding 2.5–3 t ha−1, application of 8–10 kg P ha−1 maintained yields and a small positive P balance in the soil. However, the soil P balance was sensitive to the proportion of rice straw returned to the soil. Volunteer pastures growing during the early wet season accumulated significant amounts of P, and increased their P uptake when soils were previously fertilised with P. These pastures recycled 3–10 kg P ha−1 for the succeeding rice crops. While inorganic soil P pools extractable with ion exchange resins and 0.1 M NaOH appeared to be the main source of P absorbed by rice, microbial and organically-bound P pools responded dynamically to variation in soil water regimes of the main wet, dry and early wet seasons. The schema needs to be developed further to incorporate site-specific conditions and management factors that directly or indirectly affect P cycling, especially loss of soil-water saturation during the rice cropping cycle. The paper discusses the application of results for acid sandy soils to other significant rice soils in the rainfed lowlands of southeast Asia.  相似文献   

10.
亚热带不同海拔黄山松林土壤磷组分及微生物特征   总被引:1,自引:0,他引:1  
磷是亚热带地区植物生长必需的养分元素之一,海拔梯度可能会改变土壤-植物-微生物系统并影响土壤磷形态及有效性。了解不同海拔土壤磷组分状况,对维持山地森林生态系统可持续发展具有重要的意义。以戴云山地区不同海拔梯度(1300m和1600 m)黄山松林为研究对象,分析了土壤磷组分、微生物群落特征和磷酸酶活性。结果显示:海拔显著影响黄山松林土壤磷组分,与海拔1300 m相比,海拔1600 m处土壤总磷含量减少了48.4%—49.8%,且各磷组分(易分解态磷、中等易分解态磷和难分解态磷)含量也显著降低,淋溶层(A层)土壤的降低程度分别为45.7%、58.6%和38.7%,淀积层(B层)为82.6%、59.9%和31.1%。海拔对土壤微生物群落特征和酶活性亦有显著影响,各类微生物群落和总微生物磷脂脂肪酸含量(PLFAs),以及磷酸双酯酶(PD)活性均表现为海拔1600 m 1300 m,但酸性磷酸单酯酶(ACP)活性呈相反的趋势。冗余分析(RDA)表明,土壤磷组分主要受有机碳(SOC)调控,且SOC与有机磷组分(Na HCO3-Po和Na OH-Po)呈显著正相关;磷酸酶和外生菌根真菌(EMF)也是影响土壤磷组分变化的重要因素。研究表明,土壤有机质含量和微生物群落结构及功能的变化可能是不同海拔黄山松林土壤磷有效性的关键调控因素。  相似文献   

11.
Summary In the summer of 1980, a field experiment was started to evaluate the direct and residual effect of applied zinc (as zinc sulphate) on the yield and chemical composition of rice and wheat grown as crops in sequence, on an alkali soil. The treatments comprised six rates of zinc 0, 2.25, 4.5, 9.0, 18.0 and 27.0 kg ha−1 applied either only once to the first crop, or repeated to each successive crop in a split plot design with 4 replications. Gypsum at 14 t ha−1, was applied uniformly to all plots. The results show that with respect to increase of yield and available zinc content of soil, an application of 2.25 kg ha−1 zinc frequently to each crop was better than a single high dose. A major portion of the applied zinc accumulated in the 0 to 10 cm soil layer; the movement of zinc to lower layers was negligible. Zinc applications increased the concentration of exchangeable < complexed < amorphous sesquixoides-bound zinc > crystalline sesquioxide-bound zinc fractions. Amorphous sesquixoides bound the major portion of the applied zinc compared to other fractions. Exchangeable and amorphous sesquioxide-bound zinc fractions contributed significantly more to zinc uptake by rice, than the other fractions. DTPA extracted zinc more readily from exchangeable and complexed fractions than from sesquioxides. Application of zinc increased the DTPA extractable zinc and hence zinc uptake by plants.  相似文献   

12.
间伐和凋落物处理对华北落叶松人工林土壤磷形态的影响   总被引:2,自引:0,他引:2  
刘旭军  程小琴  田慧霞  刘莉  韩海荣 《生态学报》2019,39(20):7686-7696
土壤磷在维持生态系统功能稳定性中发挥重要作用,研究间伐和凋落物处理下的土壤磷组分特征及转化机理,对森林生态系统磷素管理和可持续发展具有重要意义。采用Tiessen改良的Hedley分级方法,探究了不同间伐强度(未间伐、轻度间伐、中度间伐、重度间伐)和凋落物处理(对照、加倍、去凋、切根去凋)下土壤磷形态的变化特征及其驱动因子。结果显示:随着间伐强度的增大,土壤活性磷(Resin-Pi、NaHCO_3-Pi和NaHCO_3-Po)、土壤微生物量磷和酸性磷酸酶活性呈先增加后降低的趋势,且在中度间伐最高。凋落物加倍(DL)显著增加了土壤活性磷(Resin-Pi、NaHCO_3-Pi和NaHCO_3-Po)、土壤微生物量磷和酸性磷酸酶活性。稳定态磷(HCl-Pi、浓HCl-Pi和浓HCl-Po)、残留态磷(Residual-P)不受间伐和凋落物处理的影响。冗余分析(RDA)显示,土壤微生物量磷、酸性磷酸酶活性和土壤有机碳是引起华北落叶松人工林表层土壤磷组分变化的重要因子。研究表明,适度的间伐和增加凋落物能够显著提高华北落叶松人工林表层土壤磷素的活化能力。本研究为华北落叶松人工林的可持续经营提供依据。  相似文献   

13.
三江平原湿地土壤磷形态转化动态   总被引:7,自引:2,他引:7  
采用Hedley连续浸提法对三江平原湿地小叶章草甸土壤磷形态的季节动态进行研究,分析生长季土壤磷形态之间的相互转化及其可能的驱动机制。结果表明:小叶章草甸土壤有机磷(TPo)总量高于无机磷(TPi),NaOH溶液浸提的无机磷(NaOH-Pi)和有机磷形态(NaOH-Po)分别占总无机磷(TPi)和总有机磷(TPo)比重最大。各无机磷形态均有明显的季节变化,Resin-P和Conc.HCl-Pi季节变异性大,生长结束后含量较初期降低,其他形态无机磷含量有不同程度的升高。有机磷组分中NaOH-Po的季节波动最明显,生长季末期较初期含量降低,其他有机磷形态和Residual-P生长季初、末期含量变化不大,波动也相对较小。TP、TPo季节变化整体趋势相似,二者含量变化达到极显著相关。各无机磷形态变化主要受植物生长节律影响;水分、热量等环境条件也是磷的形态转化的重要驱动因子,并可能间接通过影响土壤动物、微生物等的活性推动土壤磷的循环。小叶章草甸土壤有机磷矿化释放的无机磷通常都首先被土壤金属氧化物固定,再经过无机磷之间的转化过程为生物利用,因此三江平原湿地土壤磷大量释放的可能性很小。  相似文献   

14.
It is generally assumed that phosphorus (P) availability for plant growth on highly weathered and P-deficient tropical soils may depend more on biologically mediated organic P (Po) turnover processes than on the release of adsorbed inorganic P (Pi). However, experimental evidence showing the linkages between Po, microbial activity, P cycling and soil P availability is scarce. To test whether land-use systems with higher soil Po are characterized by greater soil biological activity and increased P mineralization, we analyzed the partitioning of P among various organic and inorganic P fractions in soils of contrasting agricultural land-use systems and related it to biological soil properties. Isotopic labeling was used to obtain information on the turnover of P held in the microbial biomass. Soil samples were taken from grass–legume pasture (GL), continuous rice (CR) and native savanna (SAV) which served as reference. In agreement with estimated P budgets (+277, +70 and 0 kg P ha–1 for CR, GL and SAV, respectively), available P estimated using Bray-2 and resin extraction declined in the order CR > GL > SAV. Increases in Bray-2 and resin Pi were greater in CR than GL relative to total soil P increase. Organic P fractions were significantly less affected by P inputs than inorganic fractions, but were a more important sink in GL than CR soils. Extractable microbial P (Pchl) was slightly higher in GL (6.6 mg P kg–1) than SAV soils (5.4 mg P kg–1), and significantly lowest in CR (2.6 mg P kg–1). Two days after labeling the soil with carrier free 33P, 25, 10 and 2% of the added 33P were found in Pchl in GL, SAV and CR soils, respectively, suggesting a high and rapid microbial P turnover that was highest in GL soils. Indicators of P mineralization were higher in GL than CR soils, suggesting a greater transformation potential to render Po available. Legume-based pastures (GL) can be considered as an important land-use option as they stimulate P cycling. However, it remains to be investigated whether crops planted in pasture–crop rotations could benefit from the enhanced Po cycling in grass–legume soils. Furthermore, there is need to develop and test a direct method to quantify Po mineralization in these systems.  相似文献   

15.
Post-fire changes in desert vegetation patterns are known, but the mechanisms are poorly understood. Theory suggests that pulse dynamics of resource availability confer advantages to invasive annual species, and that pulse timing can influence survival and competition among species. Precipitation patterns in the American Southwest are predicted to shift toward a drier climate, potentially altering post-fire resource availability and consequent vegetation dynamics. We quantified post-fire inorganic N dynamics and determined how annual plants respond to soil inorganic nitrogen variability following experimental fires in a Mojave Desert shrub community. Soil inorganic N, soil net N mineralization, and production of annual plants were measured beneath shrubs and in interspaces during 6 months following fire. Soil inorganic N pools in burned plots were up to 1 g m−2 greater than unburned plots for several weeks and increased under shrubs (0.5–1.0 g m−2) more than interspaces (0.1–0.2 g m−2). Soil NO3 −N (nitrate−N) increased more and persisted longer than soil NH4 +−N (ammonium−N). Laboratory incubations simulating low soil moisture conditions, and consistent with field moisture during the study, suggest that soil net ammonification and net nitrification were low and mostly unaffected by shrub canopy or burning. After late season rains, and where soil inorganic N pools were elevated after fire, productivity of the predominant invasive Schismus spp. increased and native annuals declined. Results suggest that increased N availability following wildfire can favor invasive annuals over natives. Whether the short-term success of invasive species following fire will direct long-term species composition changes remains to be seen, yet predicted changes in precipitation variability will likely interact with N cycling to affect invasive annual plant dominance following wildfire.  相似文献   

16.
Zhang  T.Q.  MacKenzie  A.F. 《Plant and Soil》1997,192(1):133-139
Limited efficiency of fertilizer P may be improved through an understanding of soil P fraction changes with time. This study examined sequential changes in soil organic P (Po) and inorganic P (Pi) in a Ste. Rosalie clay (Humic Gleysol; fine, mixed, frigid, Typic Humaquept) under continuous corn with and without P fertilization. Soil P was fractionated into Bicarb-Pi and Po, NaOH-1-Pi and Po, HCl-Pi, NaOH-Pi and Po, and Residue-P. In the non-P fertilized plots, soil total extractable Po declined by 14% of the initial value over five years of corn production, whereas soil Pi fractions were unchanged. The losses of soil Po were mainly from NaOH-1-Po. Added fertilizer P increased NaHCO3-Pi and NaOH-1-Pi in plots receiving 44 and 132 kg P ha-1 yr-1 and increased Residue-P in plots receiving 132 kg P ha-1 yr-1. Although NaOH-1-Po decreased slightly in the plots receiving 44 kg ha-1 yr-1 P fertilizer, total soil extractable Po was maintained in P fertilized plots. Mineralization of from 16 to 29 kg P ha-1 yr-1 Po was needed to account for soil Po losses. Bicarb-Pi and NaOH-1-Pi appeared to be most important for assessment of soil P fertility changes in long-term fertilized soils.  相似文献   

17.
To improve knowledge on the role of microbial processes in phosphorus (P) transformations in highly weathered subtropical soil, dynamics in microbial biomass C (BC) and P (BP), and Olsen-P in a subtropical Ultisol following amendments with glucose at 2 g C kg−1 soil (G2) and rice straw at 2 and 4 g C kg−1 soil (RS2 and RS4) was studied during a 43-day incubation period at 25°C and 45% of soil water-holding capacity. By 3 days, the amount of soil BC had increased about 3.2, 1.7, and 2.6 times for G2, RS2, and RS4, respectively. The amount of soil BC significantly decreased between 3 and 7 days for G2 and 3 and 14 days for RS4, and thereafter remained almost steady throughout the 43-day incubation period, at levels about 1.6–2.4 times larger than for the control (no organic amendment; CK). The amount of soil BP for G2 and RS4 almost doubled by 3 or 7 days, then remained relatively steady, and for RS2, maintained relatively constant (6.7–8.2 mg kg−1 soil) throughout 43-day incubation period, whereas it declined by about 50% for CK. A significant decrease (3.5 mg kg−1 soil) in Olsen-P occurred in G2 by 3 days; indicating a close response of available P to microbial immobilization. Also, the amounts of Al- and Fe-bound P in G2 and Fe-bound-P in RS4 decreased significantly, as determined at 43 days. In conclusion, organic amendment enhances microbial immobilization and transformations of P, but the turnover of BP behaves in different patterns as BC in highly weathered subtropical soil.  相似文献   

18.
Despite the high phosphorus (P) mobilizing capacity of many legumes, recent studies have found that, at least in calcareous soils, wheat is also able to access insoluble P fractions through yet unknown mechanism(s). We hypothesized that insoluble P fractions may be more available to non-legume plants in alkaline soils due to increased dissolution of the dominant calcium(Ca)-P pool into depleted labile P pools, whereas non-legumes may have limited access to insoluble P fractions in iron(Fe)- and aluminium(Al)-P dominated acid soils. Four crop species (faba bean, chickpea, wheat and canola) were grown on two acid and one alkaline soil under glasshouse conditions to examine rhizosphere processes and soil P fractions accessed. While all species generally depleted the H2O-soluble inorganic P (water Pi) pool in all soils, there was no net depletion of the labile NaHCO3-extractable inorganic P fraction (NaHCO3 Pi) by any species in any soil. The NaOH-extractable P fraction (NaOH Pi) in the alkaline soil was the only non-labile Pi fraction depleted by all crops (particularly canola), possibly due to increases in rhizosphere pH. Chickpea mobilized the insoluble HCl Pi and residual P fractions; however, rhizosphere pH and carboxylate exudation could not fully explain all of the observed Pi depletion in each soil. All organic P fractions appeared highly recalcitrant, with the exception of some depletion of the NaHCO3 Po fraction by faba bean in the acid soils. Chickpea and faba bean did not show a higher capacity than wheat or canola to mobilize insoluble P pools across all soil types, and the availability of various P fractions to legume and non-legume crops differed in soils with contrasting P dynamics.  相似文献   

19.
Stream export of nitrogen (N) as nitrate (NO3; the most mobile form of N) from forest ecosystems is thought to be controlled largely by plant uptake of inorganic N, such that reduced demand for plant N during the non-growing season and following disturbances results in increased stream NO3 export. The roles of microbes and soils in ecosystem N retention are less clear, but are the dominant controls on N export when plant uptake is low. We used a mass balance approach to investigate soil N retention during winter (December through March) at the Hubbard Brook Experimental Forest by comparing NO3 inputs (atmospheric deposition), internal production (soil microbial nitrification), and stream output. We focused on months when plant N uptake is nearly zero and the potential for N export is high. Although winter months accounted for only 10–15% of annual net nitrification, soil NO3 production (0.8–1.0 g N m−2 winter−1) was much greater than stream export (0.03–0.19 N m−2 winter−1). Soil NO3 retention in two consecutive winters was high (96% of combined NO3 deposition and soil production; year 1) even following severe plant disturbance caused by an ice-storm (84%; year 2) We show that soil NO3 retention is surprisingly high even when N demand by plants is low. Our study highlights the need to better understand mechanisms of N retention during the non-growing season to predict how ecosystems will respond to high inputs of atmospheric N, disturbance, and climate change.  相似文献   

20.
The 24 ha Dry Creek watershed in the Catskill Mountains of southeastern New York State USA was clearcut during the winter of 1996–1997. The interactions among acidity, nitrate (NO3), aluminum (Al), and calcium (Ca2+) in streamwater, soil water, and groundwater were evaluated to determine how they affected the speciation, solubility, and concentrations of Al after the harvest. Watershed soils were characterized by low base saturation, high exchangeable Al concentrations, and low exchangeable base cation concentrations prior to the harvest. Mean streamwater NO3 concentration was about 20 μmol l−1 for the 3 years before the harvest, increased sharply after the harvest, and peaked at 1,309 μmol l−1 about 5 months after the harvest. Nitrate and inorganic monomeric aluminum (Alim) export increased by 4−fold during the first year after the harvest. Alim mobilization is of concern because it is toxic to some fish species and can inhibit the uptake of Ca2+ by tree roots. Organic complexation appeared to control Al solubility in the O horizon while ion exchange and possibly equilibrium with imogolite appeared to control Al solubility in the B horizon. Alim and NO3 concentrations were strongly correlated in B-horizon soil water after the clearcut (r 2 = 0.96), especially at NO3 concentrations greater than 100 μmol l−1. Groundwater entering the stream from perennial springs contained high concentrations of base cations and low concentrations of NO3 which mixed with acidic, high Alim soil water and decreased the concentration of Alim in streamwater after the harvest. Five years after the harvest soil water NO3 concentrations had dropped below preharvest levels as the demand for nitrogen by regenerating vegetation increased, but groundwater NO3 concentrations remained elevated because groundwater has a longer residence time. As a result streamwater NO3 concentrations had not fallen below preharvest levels, even during the growing season, 5 years after the harvest because of the contribution of groundwater to the stream. Streamwater NO3 and Alim concentrations increased more than reported in previous forest harvesting studies and the recovery was slower likely because the watershed has experienced several decades of acid deposition that has depleted initially base-poor soils of exchangeable base cations and caused long-term acidification of the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号