首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
2.
In this study, evidence of novel, important interactions between a hyperactive Tn5 transposon recognition end sequence and hyperactive Tn5 transposase (Tnp) are presented. A hyperactive Tn5 end sequence, the mosaic end (ME), was isolated previously. The ME and a wild-type end sequence, the outside end (OE), differ at only three positions, yet transposition on the ME is tenfold higher than on the OE in vivo. Also, transposition on the ME is much more efficient than transposition on the OE in vitro. Here, we show that the decreased activity observed for the OE is caused by a defect in paired ends complex (PEC) formation resulting from the orientation of the A-T base-pair at position 4 of this end. Efficient PEC formation requires an interaction between the C5-methyl group (C5-Me) on the non-transferred strand thymine base at position 4 (T4) and Tnp. PEC formation on nicked substrates is much less affected by the orientation of the A-T base-pair at position 4, indicating that the C5-Me group is important only for steps preceding nicking. A recently determined co-crystal structure of Tn5 Tnp with the ME is discussed and a model explaining possible roles for the base-pair at position 4 is explored.  相似文献   

3.
Mobile elements and genome evolution   总被引:1,自引:0,他引:1  
  相似文献   

4.
Le Rouzic A  Capy P 《Genetics》2005,169(2):1033-1043
Transposable elements are often considered as selfish DNA sequences able to invade the genome of their host species. Their evolutive dynamics are complex, due to the interaction between their intrinsic amplification capacity, selection at the host level, transposition regulation, and genetic drift. Here, we propose modeling the first steps of TE invasion, i.e., just after a horizontal transfer, when a single copy is present in the genome of one individual. If the element has a constant transposition rate, it will disappear in most cases: the elements with low-transposition rate are frequently lost through genetic drift, while those with high-transposition rate may amplify, leading to the sterility of their host. Elements whose transposition rate is regulated are able to successfully invade the populations, thanks to an initial transposition burst followed by a strong limitation of their activity. Self-regulation or hybrid dysgenesis may thus represent some genome-invasion parasitic strategies.  相似文献   

5.
Circadian rhythms are associated with the preference for sleep–wake timing, also known as morningness–eveningness (ME). Both circadian rhythms and ME are influenced by genetic factors. Studies show an association between eveningness and depression. This study investigates the heritability of ME and whether ME and depression share common genetic influences. Study participants (n?=?1237) were from the Vietnam Era Twin Study of Aging, a longitudinal study of aging with a baseline in midlife. Participants received the Morningness–Eveningness Questionnaire (MEQ) and the Center for Epidemiologic Studies Depression (CES-D) Scale as part of an extensive neurocognitive and psychosocial assessment. MEQ correlations between members of twin pairs were 0.41 (95% CI 0.31–0.49) for monozygotic (MZ) twins and 0.28 for dizygotic (DZ) twins (95% CI 0.19–0.41). CES-D correlations were 0.38 (95% CI 0.28–0.46) for MZ twins and 0.24 (95% CI 0.14–0.36) for DZ twins. Greater eveningness (i.e. lower MEQ scores) was significantly related to more depression symptoms (phenotypic correlation?=??0.15 (95% CI ?0.21 to ?0.09). In the best fitting model, the heritability estimates are 0.42 for the MEQ and 0.37 for the CES-D. A significant genetic correlation of ?0.21 indicated that ME and depression share a significant amount of their underlying genetic variance. The genetic covariance between ME and depression accounted for 59.1% of the phenotypic correlation. Of the CES-D sub-scales, Depressed Mood and Interpersonal Difficulties were significantly heritable, while only Well-Being had a significant genetic correlation with ME. ME and depression are both heritable (ME 0.42, depression 0.37) and share common genetic factors, suggesting an overlap in etiology and the relevance of circadian rhythms to depression. Further study of this relationship may help elucidate etiological factors in depression and targets for treatment.  相似文献   

6.
We have analyzed donor and target sites of the mobile element Activator (Ac) that are altered as a result of somatic transposition from the P locus in maize. Previous genetic analysis has indicated that the two mitotic daughter lineages which result from Ac transposition from P differ in their Ac constitution at the P locus. Both lineages, however, usually contain transposed Ac elements which map to the same genetic position. Using methylation-sensitive restriction enzymes and genomic blot analysis, we identified Ac elements at both the donor P locus and Ac target sites and used this assay to clone the P locus and to identify transposed Ac elements. Daughter lineages were shown to be mitotic descendants from a single transposition event. When both lineages contained Ac genetic activity, they both contained a transposed Ac element on identical genomic fragments independent of the genetic position of the target site. This indicates that in the majority of cases, Ac transposition takes place after replication of the donor locus but before completion of replication at the target site.  相似文献   

7.
Emelyanov A  Gao Y  Naqvi NI  Parinov S 《Genetics》2006,174(3):1095-1104
Transposons are very valuable tools for genetic manipulation. However, the number of transposable elements that have been suitably adapted for experimental use is insufficient and the spectrum of heterologous hosts in which they have been deployed is restricted. To date, only transposons from animal hosts have been utilized in heterologous animal species and transposons of plant origin have been used in plant genetics. There has been no experimental evidence that any of the known elements could transpose in hosts belonging to both kingdoms. Here we demonstrate that the maize Dissociation (Ds) element is capable of effective Activator (Ac) transposase-mediated transposition in the zebrafish Danio rerio, yielding remarkable germline transmission rates. In addition, mammalian cells were also found to be conducive to Ds transposition. Furthermore, we demonstrate that nuclear localization of Ac transposase is essential for genomic Ds transposition. Our results support the hypothesis that Ac/Ds elements do not rely on host-specific factors for transposition and that host factors involved in their mobility mechanism are widely conserved. Finally, even in vertebrate cells, the Ac/Ds system displays accurate transposition, large-fragment carrying capacity, high transposition frequencies, efficient germline transmission, and reporter gene expression, all of which are advantageous for various genetic applications and animal biotechnology.  相似文献   

8.
Tn5 Transposase with an Altered Specificity for Transposon Ends   总被引:6,自引:0,他引:6       下载免费PDF全文
Tn5 is a composite bacterial transposon that encodes a protein, transposase (Tnp), required for movement of the transposon. The initial step in the transposition pathway involves specific binding of Tnp to 19-bp end recognition sequences. Tn5 contains two different specific end sequences, termed outside end (OE) and inside end (IE). In Escherichia coli, IE is methylated by Dam methylase (IE(ME)). This methylation greatly inhibits recognition by Tnp and greatly reduces the ability of transposase to facilitate movement of IE defined transposons. Through use of a combinatorial random mutagenesis technique (DNA shuffling), we have isolated an IE(ME)-specific hyperactive form of Tnp, Tnp sC7v.2.0, that is able to promote high levels of transposition of IE(ME) defined transposons in vivo and in vitro while functioning at wild-type levels with OE transposons. This protein contains a critical glutamate-to-valine mutation at amino acid 58 that is responsible for this change in end specificity.  相似文献   

9.
C Turlan  M Chandler 《The EMBO journal》1995,14(21):5410-5421
A system is described which permits visualization and analysis of a number of molecular species associated with transposition activity of the bacterial insertion sequence, IS1, in vivo. The technique involves induction of an IS1 transposase gene carried by a plasmid which also includes an IS1-based transposable element. It is, in principle, applicable to the identification of transposition intermediates as well as unstable transposition products and those which are not detectable by genetic means. Thirteen novel molecular species were detected after 4 h of induction. Five major species were characterized, based on their behaviour as a function of time, on their hybridization patterns and on the nucleotide sequences of the transposon-backbone junctions. All result from intramolecular IS1 transposition events. The two reciprocal partner products of IS1-mediated deletions, the intramolecular equivalent of co-integrates generated by intermolecular transposition, have been identified. Both carry a single copy of the transposable element and present complementary distributions of deletion endpoints. These results establish, by direct physical means, that adjacent IS1-mediated deletions are accompanied by duplication of the element. A second type of molecule identified was an excised circular copy of the transposon, raising the possibility that IS1 is capable of following an intermolecular transposition pathway, via excised transposon circles, leading to direct insertion.  相似文献   

10.
植物中的反转录转座子及其应用   总被引:8,自引:0,他引:8  
陈志伟  吴为人 《遗传》2004,26(1):122-126
反转录转座子是植物中最不稳定的遗传元件之一,它们对基因组的大小、结构、功能和进化都有重要作用。本文综述了近年来对植物反转录转座子类型和结构、在基因组中表达、调控、转座活动、进化等方面的研究进展,讨论了它们在遗传研究中的应用前景。 Abstract:Retrotransposons are one of the most unstable genetic elements in the plant kingdom,they have the potential to dramatically affect gene function and host genome structure.The current status of their types and structure,expression regulation,transposition,and evolution are reviewed.Their potential as genetic tools are also discussed.  相似文献   

11.
Surprisingly little is known about the role of host factors in regulating transposition, despite the potentially deleterious rearrangements caused by the movement of transposons. An extensive mutant screen was therefore conducted to identify Escherichia coli host factors that regulate transposition. An E. coli mutant library was screened using a papillation assay that allows detection of IS903 transposition events by the formation of blue papillae on a colony. Several host mutants were identified that exhibited a unique papillation pattern: a predominant ring of papillae just inside the edge of the colony, implying that transposition was triggered within these cells based on their spatial location within the colony. These mutants were found to be in pur genes, whose products are involved in the purine biosynthetic pathway. The transposition ring phenotype was also observed with Tn552, but not Tn10, establishing that this was not unique to IS903 and that it was not an artifact of the assay. Further genetic analyses of purine biosynthetic mutants indicated that the ring of transposition was consistent with a GTP requirement for IS903 and Tn552 transposition. Together, our observations suggest that transposition occurs during late stages of colony growth and that transposition occurs inside the colony edge in response to both a gradient of exogenous purines across the colony and the developmental stage of the cells.  相似文献   

12.
Ovcharenko OO  Rudas VA  Kuchuk MV 《T?Sitologii?a i genetika》2006,40(4):68-80, 1 p following 80
Data concerning plant transposable elements and their contribution to plant genome evolution are reviewed. Much attention is focused on utilization of transgenic plants as heterologous hosts of transposons for investigation of transposition mechanisms and gene cloning. Probable ways of the use of plant transposons as genetic tools in biotechnology are discussed.  相似文献   

13.
Transposons are mobile genetic elements and have been utilized as essential tools in genetics over the years. Though highly useful, many of the current transposon-based applications suffer from various limitations, the most notable of which are: (i) transposition is performed in vivo, typically species specifically, and as a multistep process; (ii) accuracy and/or efficiency of the in vivo or in vitro transposition reaction is not optimal; (iii) a limited set of target sites is used. We describe here a genetic analysis methodology that is based on bacteriophage Mu DNA transposition and circumvents such limitations. The Mu transposon tool is composed of only a few components and utilizes a highly efficient and accurate in vitro DNA transposition reaction with a low stringency of target preference. The utility of the Mu system in functional genetic analysis is demonstrated using restriction analysis and genetic footprinting strategies. The Mu methodology is readily applicable in a variety of current and emerging transposon-based techniques and is expected to generate novel approaches to functional analysis of genes, genomes and proteins.  相似文献   

14.
A genetic complementation system is described in which the complementing components are close together in a single linear DNA fragment; the complementation situation is temporary. This system is useful for providing transposition functions to transposition-defective transposons, since transposition functions act preferentially in cis. The basic procedure involves placing a transposition-defective transposon near the gene(s) for its transposition functions on a single DNA fragment. This fragment is introduced, here by general transduction, into a new host. The transposase acts in cis to permit the defective element to transpose from the introduced fragment into the recipient chromosome. The helper genes do not transpose and are lost by degradation and segregation. The method yields single insertion mutants that lack transposase and are not subject to further transposition or chromosome rearrangement. The general procedure is applicable to other sorts of transposable elements and could be modified for use in other genetic systems.  相似文献   

15.
A J Klar  J N Strathern  J B Hicks 《Cell》1981,25(2):517-524
Mating-type switches of the yeast Saccharomyces cerevisiae occur by unidirectional transposition of copies of unexpressed mating-type genetic information, residing at HML and HMR loci, into the expressed MAT locus. The HML and HMR loci remain unchanged. In contrast, in appropriate strains where the silent loci are also allowed to express, for example in mar mutants, efficient switches of HML and HMR are shown to occur at rates equivalent to those observed for MAT. Thus the position-effect control on the direction of transposition is affected by the state of expression of the locus under study the expressed loci switch regardless of their location.  相似文献   

16.
J. Sakai  N. Kleckner 《Genetics》1996,144(3):861-870
Tn10 transposition requires IS10 transposase and essential sequences at the two ends of the element. Mutations in terminal basepairs 6-13 confer particularly strong transposition defects. We describe here the identification of transposase mutations that suppress the transposition defects of such terminus mutations. These mutations are named ``SEM'''' for suppression of ends mutations. All of the SEM mutations suppress more than a single terminus mutation and thus are not simple alterations of transposase/end recognition specificity. The mutations identified fall into two classes on the basis of genetic tests, location within the protein and nature of the amino acid substitution. Class I mutations, which are somewhat allele specific, appear to define a small structural and functional domain of transposase in which hydrophobic interactions are important at an intermediate stage of the transposition reaction, after an effective interaction between the ends but before transposon excision. Class II mutations, which are more general in their effects, occur at a single residue in a small noncritical amino-terminal proteolytic domain of transposase and exert their affects by altering a charge interaction; these mutations may affect act early in the reaction, before or during establishment of an effective interaction between the ends.  相似文献   

17.
DNA-based transposable elements appear to have been nearly or completely inactivated in vertebrates. Therefore the elements of the medaka fish Oryzias latipes that still have transposition activity provide precious materials for studying transposition mechanisms, as well as the evolution, of transposable elements in vertebrates. Fortunately, the medaka fish has a strong background for genetic and evolutionary studies. The advantages of this host species and their elements, together with results so far obtained, are here described.  相似文献   

18.
Postexcision transposition of the transposon Tn10 in Escherichia coli K12   总被引:2,自引:0,他引:2  
An experimental analysis of the fate of transposon Tn10 after excision from a proA::Tn10 site localized on the plasmid F' leads to the conclusions: 1. The precise excision is a progressive process. Its probability is estimated per time unit. 2. An excised Tn10 is always integrated into a different genetic locus. 2. An excised Tn10 is always integrated into a different genetic locus. 3. The kinetics of postexcision transposition are sometimes very slow. The excised transposon is inherited in one cell line in spite of cell multiplication. 4. The processes of excision and secondary insertion have no absolute requirement for the recA+ genotype but they are strongly enhanced in recA+ cells. 5. The kinetics of postexcision transposition are strongly dependent on the genetic site from which the transposon was excised. 6. The probability of postexcision transposition is fully determined by the probability of excision and depends on the genotype of the host and many other factors.  相似文献   

19.
Drosophila P transposable elements are the best-studied family of eukaryotic non-retroviral transposons. P element transposition is regulated in several different ways and has thus provided a unique system with which to study the control of DNA rearrangements and gene expression in metazoans. Recent genetic and biochemical experiments have begun to shed light on the mechanism of P element transposition and the mechanisms controlling the temporal and spatial patterns of transposition.  相似文献   

20.
Several authors have postulated that genetic divergence between populations could result in genomic incompatibilities that would cause an increase in transposition in their hybrids, producing secondary effects such as sterility and therefore starting a speciation process. It has been demonstrated that transposition largely depends on intraspecific hybridization for P, hobo, and I elements in Drosophila melanogaster and for several elements, including long terminal repeat (LTR) and non-LTR retrotransposons, in D. virilis. However, in order to demonstrate the putative effect of transposable elements on speciation, high levels of transposition should also be induced in hybrids between species that could have been originated by this process and that are still able to interbreed. To test this hypothesis, we studied the transposition of the LTR retrotransposon Osvaldo in Drosophila buzzatii-Drosophila koepferae hybrids. We used a simple and robust experimental design, analyzing large samples of single-pair mate offspring, which allowed us to detect new insertions by in situ hybridization to polytene chromosomes. In order to compare transposition rates, we also used a stock recently obtained from the field and a highly inbred D. buzzatii strain. Our results show that the transposition rate of Osvaldo is 10(-3) transpositions per element per generation in all nonhybrid samples, very high when compared with those of other transposable elements. In hybrids, the transposition rate was always 10(-2), significantly higher than in nonhybrids. We show that inbreeding has no effect on transposition in the strains used, concluding that hybridization significantly increases the Osvaldo transposition rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号