首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The changes in bacterial communities associated with the marine sponge Mycale laxissima on transfer to aquaculture were studied using culture-based and molecular techniques. M. laxissima was maintained alive in flowthrough and closed recirculating aquaculture systems for 2 years and 1 year, respectively. The bacterial communities associated with wild and aquacultured sponges, as well as the surrounding water, were assessed using 16S rRNA gene clone library analysis and denaturing gradient gel electrophoresis (DGGE). Bacterial richness and diversity were measured using DOTUR computer software, and clone libraries were compared using S-LIBSHUFF. DGGE analysis revealed that the diversity of the bacterial community of M. laxissima increased when sponges were maintained in aquaculture and that bacterial communities associated with wild and aquacultured M. laxissima were markedly different than those of the corresponding surrounding water. Clone libraries of bacterial 16S rRNA from sponges confirmed that the bacterial communities changed during aquaculture. These communities were significantly different than those of seawater and aquarium water. The diversity of bacterial communities associated with M. laxissima increased significantly in aquaculture. Our work shows that it is important to monitor changes in bacterial communities when examining the feasibility of growing sponges in aquaculture systems because these communities may change. This could have implications for the health of sponges or for the production of bioactive compounds by sponges in cases where these compounds are produced by symbiotic bacteria rather than by the sponges themselves.  相似文献   

2.
To examine the bacterial community structure in the Fildes Peninsula, King George Island, Antarctica, we examined the bacterial diversity and community composition of samples collected from lacustrine sediment, marine sediment, penguin ornithogenic sediments, and soils using culture-dependent and culture-independent methods. The 70 strains fell into five groups: Actinobacteria, Bacteroidetes, Firmicutes, Gammaproteobacteria, and Betaproteobacteria. Bacterial diversity at the phylum level detected in Denaturing Gradient Gel Electrophoresis (DGGE) profiles comprised Proteobacteria (including the subphyla Alpha-, Beta-, Gamma-, Deltaproteobacteria), Bacteroidetes, Firmicutes, Chlorobi, and Deinococcus-Thermus. Gammaproteobacteria was identified to be the dominant bacterial subphylum by cultivation and DGGE method. By cluster analysis, the overall structure and composition of bacterial communities in the soil and lacustrine sediment were similar to one another but significantly different from bacterial communities in penguin ornithogenic sediment and marine sediment, which were similar to one another. The majority of 16S rDNA sequences from cultured bacteria were closely related to sequences found in cold environments. In contrast, a minority of 16S rDNA sequences from the DGGE approach were closely related to sequences found in cold environments.  相似文献   

3.
Halibut, the largest of all flatfishes is a valuable species with a great potential for aquaculture. Bacteria play an important role in regulating the health of the early life stages. The present article is the first broad-range molecular analysis of bacterial communities in larvae of the Atlantic halibut (Hippoglossus hippoglossus). DNA was extracted from larvae, water and silo biofilm from hatcheries in Norway, Scotland, Iceland and Canada. Eubacterial 16S rRNA gene fragments were amplified by polymerase chain reaction (PCR) with broad-range primers. Sequences spanning the hyper variable V3 region representing individual bacterial species were separated into community profiles by denaturing gradient gel electrophoresis (DGGE). The profiles revealed simple communities after hatching and bacterial succession following growth. Sequencing and phylogenetic analysis of excised DGGE bands suggested aerobic heterotrophs related to groups of Pseudomonas, Janthinobacterium and possibly Marinomonas to be the primary colonisers of the larvae. After onset of feeding, fermentative species (Vibrio) were detected as well. Comparative analysis of bacterial communities from different geographical regions indicated that larvae of the Atlantic halibut possess a distinct and specific normal flora.  相似文献   

4.
Culture-independent techniques, denaturing gradient gel electrophoresis (DGGE) analysis, and random cloning of 16S rRNA gene sequences amplified from community DNA were used to determine the diversity of microbial communities in gas industry pipelines. Samples obtained from natural gas pipelines were used directly for DNA extraction, inoculated into sulfate-reducing bacterium medium, or used to inoculate a reactor that simulated a natural gas pipeline environment. The variable V2-V3 (average size, 384 bp) and V3-V6 (average size, 648 bp) regions of bacterial and archaeal 16S rRNA genes, respectively, were amplified from genomic DNA isolated from nine natural gas pipeline samples and analyzed. A total of 106 bacterial 16S rDNA sequences were derived from DGGE bands, and these formed three major clusters: beta and gamma subdivisions of Proteobacteria and gram-positive bacteria. The most frequently encountered bacterial species was Comamonas denitrificans, which was not previously reported to be associated with microbial communities found in gas pipelines or with microbially influenced corrosion. The 31 archaeal 16S rDNA sequences obtained in this study were all related to those of methanogens and phylogenetically fall into three clusters: order I, Methanobacteriales; order III, Methanomicrobiales; and order IV, Methanosarcinales: Further microbial ecology studies are needed to better understand the relationship among bacterial and archaeal groups and the involvement of these groups in the process of microbially influenced corrosion in order to develop improved ways of monitoring and controlling microbially influenced corrosion.  相似文献   

5.
呼伦贝尔草原不同退化梯度土壤细菌多样性季节变化   总被引:3,自引:0,他引:3  
为了研究草地退化程度与土壤微生物多样性的关系,在呼伦贝尔草地上选取羊草草甸草原和贝加尔针茅草甸草原两个典型放牧点,按照轻度、中度和重度划分取样点,分别于6、8月份和10月份3个不同季节采集土壤样品。应用变性梯度凝胶电泳技术(PCR-DGGE)研究两个放牧地点不同退化程度、不同季节草地的细菌群落结构变化。结果表明,呼伦贝尔草地不同退化梯度的草地土壤中细菌种类较为丰富。从丰富度和Shannon-Winner指数的变化看,两个放牧点8月份丰富度和Shannon-Winner指数最高,8月份的丰富度平均为32.4,比6月和10月份分别高11%和7.4%;8月份Shannon-Winner指数平均为4.15,比6月和10月份分别高7.7%和5.4%。DGGE图谱聚类分析结果显示,随着季节变化和草地退化程度由轻至重的变化,土壤中的细菌优势种群没有受到明显的影响。回收DGGE图谱中10个条带进行测序分析,结果显示,所有序列与GenBank数据库中的相似度在87%100%之间。基于98%的相似度,可将其中的7个鉴定为Proteobacteria(变形菌门),将其中的1个鉴定为Actinobacteria(放线菌门)。另外2个同已知序列相似性较低,可能是未知的细菌。结果表明,Proteobacteria(变形菌门)为呼伦贝尔草原土壤中的优势细菌类群,尽管所选取样点草地植被有不同程度的退化,但土壤微生物优势种群并没有发生变化。  相似文献   

6.
Marine macroalgae are constantly exposed to epibacterial colonizers. The epiphytic bacterial patterns and their temporal and spatial variability on host algae are poorly understood. To investigate the interaction between marine macroalgae and epiphytic bacteria, this study tested if the composition of epibacterial communities on different macroalgae was specific and persisted under varying biotic and abiotic environmental conditions over a 2-year observation time frame. Epibacterial communities on the co-occurring macroalgae Fucus vesiculosus, Gracilaria vermiculophylla and Ulva intestinalis were repeatedly sampled in summer and winter of 2007 and 2008. The epibacterial community composition was analysed by denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene libraries. Epibacterial community profiles did not only differ significantly at each sampling interval among algal species, but also showed consistent seasonal differences on each algal species at a bacterial phylum level. These compositional patterns re-occurred at the same season of two consecutive years. Within replicates of the same algal species, the composition of bacterial phyla was subject to shifts at the bacterial species level, both within the same season but at different years and between different seasons. However, 7-16% of sequences were identified as species specific to the host alga. These findings demonstrate that marine macroalgae harbour species-specific and temporally adapted epiphytic bacterial biofilms on their surfaces. Since several algal host-specific bacteria were highly similar to other bacteria known to either avoid subsequent colonization by eukaryotic larvae or to exhibit potent antibacterial activities, algal host-specific bacterial associations are expected to play an important role for marine macroalgae.  相似文献   

7.
An ecological study on distribution of Antarctic bacterial communities was determined by 16S-based phylogenetic analyses of clone libraries derived from RNA and DNA extracted from two different marine areas and compared between each other. Superficial seawater samples were collected from four stations in Ross Sea, three of them located in Rod Bay and one in Evans Cove; for each station two clone libraries (16S rDNA and 16S rRNA) were prepared and evident divergences between DNA and RNA libraries of each site were obtained. Of all phylotypes 93.6% were found in RNA libraries; in contrast, only 31 phylotypes (70.5%) were retrieved from total microbial community (DNA libraries). DNA and RNA sequences related to gamma-Proteobacteria and Bacteroidetes groups, typical for Antarctic sea-ice bacterial communities, were detected in analysed sites. 16S rDNA and rRNA libraries derived from the two different areas were enriched by picophytoplanktonic 16S sequences of plastid and mitochondrion origins, reflecting that the algal blooms occurred during sampling (Antarctic summer 2003). The finding in Rod Bay libraries of high percentage of DNA clones apparently affiliated with beta-Proteobacteria typical for activated sludges and well water could be explained by the presence of a sewage depuration system at this site. Obtained results clearly demonstrate that combination of 16S rDNA and 16S rRNA gene sequencing is preferred approach to have a more reliable vision on the composition of microbial communities.  相似文献   

8.
Abstract

High-throughput sequencing approach of the 16S rRNA gene was employed to evaluate the bacterial diversity inhabit in melted water, snow, soil, and rocks samples at the lower altitudes of the Laohugou glacial environment. Bioinformatics tools were used to process millions of Illumina reads for alpha and beta diversities of bacterial communities. The diversity indices such as Chao, Shannon, and Simpson were different in the collected samples and solid samples (soil and rocks) showed higher taxon richness and evenness. Taxonomic diversity was unexpectedly higher and the major portion of sequences was assigned to Proteobacteria, Actinobacteria, and Acidobacteria. Higher variation in community structure was reported at the class level and Alphaproteobacteria was dominant. The solid niches were occupied by a higher number of phyla compared with liquid. The physicochemical variables acted as spatial gradients and associated with the bacterial structural communities of the glacial ecosystem. Findings showed that both Proteobacteria and Actinobacteria in solid samples influenced the bacterial community structure in downstream liquid samples. Interestingly, the metagenomic biomarkers were higher in liquid samples. This study provides precious datasets to understand the bacterial community in a better way under the influence of spatial, physical and environmental factors.  相似文献   

9.
Correlations between the biomass of phytoplankton and the biomass of bacteria and between the biomass of bacteria and the biomass of protozoans suggest that there is coupling between these compartments of the "microbial loop." To investigate this coupling on the species level, bacteria and protozoans from untreated lake water inocula were allowed to grow on detritus of the green alga Ankistrodesmus falcatus or the cyanobacterium Oscillatoria limnetica in continuous-flow systems for 1 month. Denaturing gradient gel electrophoresis (DGGE) of the 16S and 18S rRNA genes was used to monitor the development of the bacterial community structure and the eukaryotic community structure, respectively. Nonmetric multidimensional scaling of the DGGE profiles revealed the changes in the microbial community structure. This analysis showed that significantly different bacterial communities developed on the green algal detritus and on the cyanobacterial detritus. Although similar results were obtained for the eukaryotic communities, the differences were not significant. Hence, our findings indicate that the origin of detritus can affect the structure of at least the bacterial community. A phylogenetic analysis of 20 18S ribosomal DNA clones that were isolated from the continuous cultures revealed that many sequences were related to the sequences of bacterivorous protozoans (members of the Ciliophora, Rhizopoda, Amoeba, and Kinetoplastida). One clone grouped in a recently established clade whose previously described members are all parasites. The affiliations of about 20% of the clones could not be determined.  相似文献   

10.
Diversity of particle-attached and free-living marine bacteria in Victoria Harbor, Hong Kong, and its adjacent coastal and estuarial environments was investigated using DNA fingerprinting and clone library analysis. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA genes showed that bacterial communities in three stations of Victoria Harbor were similar, but differed from those in adjacent coastal and estuarine stations. Particle-attached and free-living bacterial community composition differed in the Victoria Harbor area. DNA sequencing of 28 bands from DGGE gel showed Alphaproteobacteria was the most abundant group, followed by the Bacteroidetes, and other Proteobacteria. Bacterial species richness (number of DGGE bands) differed among stations and populations (particle-attached and free-living; bottom and surface). BIOENV analysis indicated that the concentrations of suspended solids were the major contributing parameter for the spatial variation of total bacterial community structure. Samples from representative stations were selected for clone library (548 clones) construction and their phylogenetic distributions were similar to those of sequences from DGGE. Approximately 80% of clones were affiliated to Proteobacteria, Bacteroidetes and Cyanobacteria. The possible influences of dynamic pollution and hydrological conditions in the Victoria Harbor area on the particle-attached and free-living bacterial community structures were discussed.  相似文献   

11.
Correlations between the biomass of phytoplankton and the biomass of bacteria and between the biomass of bacteria and the biomass of protozoans suggest that there is coupling between these compartments of the “microbial loop.” To investigate this coupling on the species level, bacteria and protozoans from untreated lake water inocula were allowed to grow on detritus of the green alga Ankistrodesmus falcatus or the cyanobacterium Oscillatoria limnetica in continuous-flow systems for 1 month. Denaturing gradient gel electrophoresis (DGGE) of the 16S and 18S rRNA genes was used to monitor the development of the bacterial community structure and the eukaryotic community structure, respectively. Nonmetric multidimensional scaling of the DGGE profiles revealed the changes in the microbial community structure. This analysis showed that significantly different bacterial communities developed on the green algal detritus and on the cyanobacterial detritus. Although similar results were obtained for the eukaryotic communities, the differences were not significant. Hence, our findings indicate that the origin of detritus can affect the structure of at least the bacterial community. A phylogenetic analysis of 20 18S ribosomal DNA clones that were isolated from the continuous cultures revealed that many sequences were related to the sequences of bacterivorous protozoans (members of the Ciliophora, Rhizopoda, Amoeba, and Kinetoplastida). One clone grouped in a recently established clade whose previously described members are all parasites. The affiliations of about 20% of the clones could not be determined.  相似文献   

12.
芒草种植对土壤细菌群落结构和功能的影响   总被引:1,自引:0,他引:1  
芒草作为第二代能源植物的代表,其生长过程中根际土壤细菌群落的结构与功能尚不清楚.本研究以种植5年的芒草(湘杂芒1号)为研究对象,选取裸地作为对照,采用16S rRNA基因Miseq测序技术研究其细菌群落组成,同时采用PICRUSt功能预测分析其功能.结果表明: 芒草根际细菌由变形菌门、酸杆菌门、放线菌门、绿弯菌门、拟杆菌门和芽单胞菌门等23个门、231个属的细菌组成,表现出群落组成的丰富性.细菌群落分析表明,种植湘杂芒1号改变了根际细菌群落结构,其细菌群落多样性低于裸地对照.PICRUSt功能预测分析表明,湘杂芒1号根际细菌主要涉及氨基酸运输和代谢、细胞壁/细胞膜/膜结构的生物合成、信号转导机制等24个基因功能家族,表现出功能上的丰富性,并有22个基因功能家族预测基因相对丰度高于裸地,表明种植湘杂芒1号提高了根际细菌功能.对氮、磷循环相关基因进行分析表明,种植湘杂芒1号改变了土壤氮、磷代谢能力.  相似文献   

13.
Bacterioplankton community compositions in the Dongjiang River were characterized using denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone library construction. Water samples in nine different sites were taken along the mainstem and three tributaries. In total, 24 bands from DGGE gels and 406 clones from the libraries were selected and sequenced, subsequently analyzed for the bacterial diversity and composition of those microbial communities. Bacterial 16S rRNA gene sequences from freshwater bacteria exhibited board phylogenetic diversity, including sequences representing the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria, Bacteriodetes, Verrucomicrobia, and candidate division TM7. Members of Betaproteobacteria group were the most dominant in all sampling sites, followed by Gammaproteobacteria, Alphaproteobacteria, and Actinobacteria. DGGE profiles and the ∫-LIBSHUFF analysis revealed similar patterns of bacterial diversity among most sampling sites, while spatial distribution variances existed in all sites along the river basin. Statistical analysis showed that bacterial species distribution strongly correlated with environmental variables, such as nitrate and ammonia, suggesting that nitrogen nutrients may shape the microbial community structure and composition in the Dongjiang River. This study had important implications for the comparison with other rivers elsewhere and contributed to the growing data set on the factors that structure bacterial communities in freshwater ecosystems.  相似文献   

14.
The bacterial communities in the soils from tea orchards and their adjacent wasteland in Anhui Province, China were analysed by nested PCR-DGGE technique combined with sequencing. DGGE profiles revealed that the DGGE patterns of different soils were similar to each other and the most intensely bands appeared in all lanes. The bacterial genetic diversity index of tea orchard soils was lower than that of wasteland. For the tea orchard soils, Shannon’s diversity index decreased in the order: 45-year-old tea orchard >25-year-old tea orchard >7-year-old tea orchard >70-year-old tea orchard. The analysis of 16S rRNA gene sequences indicated that the fragments belong to Proteobacteria, Acidobacteria, TM7, Cyanobacteria and Firmicutes. A comprehensive analysis of the bacterial community structure in the tea orchard soils indicated the bacterial community was dominantly composed of Acidobacteria, followed by Proteobacteria (Gamma and Alpha), Firmicutes, Cyanobacteria and candidate division TM7. The RDA combined with UPGMA clustering analysis showed that the more similar the environmental variables were, the more similar the bacterial community structures in tea orchard soils were.  相似文献   

15.
Bacterial communities in groundwater collected from five different sites at the Kamaishi Mine were investigated by using denaturing gradient gel electrophoresis (DGGE). The bacterial cells in groundwater were collected on Millipore filters, and their nucleic acid was extracted by freeze-thaw cycles. A partial 16S rRNA gene was amplified by using a universal primer set by PCR. The PCR products were analyzed by DGGE. The band pattern of DGGE was essentially identical between two samples obtained from different depths in the same borehole (KH-1). Samples from the other sites differed from one another. The partial sequences of 16S rRNA genes (about 350 base pairs) isolated from bands were determined and analyzed for phylogenetic position. Almost half the sequences from two samples of the KH-1 belonged to the cluster of spore-forming, gram-positive sulfate reducer, Desulfotomaculum. The other bands also were related to those of obligate anaerobes. This suggests that the environment in both sites of KH-1 was highly anaerobic. Although only a few sequences were retrieved from the other sites, they were phylogenetically distanced from known isolates.  相似文献   

16.
The bacterial and fungal rhizosphere communities of strawberry (Fragaria ananassa Duch.) and oilseed rape (Brassica napus L.) were analysed using molecular fingerprints. We aimed to determine to what extent the structure of different microbial groups in the rhizosphere is influenced by plant species and sampling site. Total community DNA was extracted from bulk and rhizosphere soil taken from three sites in Germany in two consecutive years. Bacterial, fungal and group-specific (Alphaproteobacteria, Betaproteobacteria and Actinobacteria) primers were used to PCR-amplify 16S rRNA and 18S rRNA gene fragments from community DNA prior to denaturing gradient gel electrophoresis (DGGE) analysis. Bacterial fingerprints of soil DNA revealed a high number of equally abundant faint bands, while rhizosphere fingerprints displayed a higher proportion of dominant bands and reduced richness, suggesting selection of bacterial populations in this environment. Plant specificity was detected in the rhizosphere by bacterial and group-specific DGGE profiles. Different bulk soil community fingerprints were revealed for each sampling site. The plant species was a determinant factor in shaping similar actinobacterial communities in the strawberry rhizosphere from different sites in both years. Higher heterogeneity of DGGE profiles within soil and rhizosphere replicates was observed for the fungi. Plant-specific composition of fungal communities in the rhizosphere could also be detected, but not in all cases. Cloning and sequencing of 16S rRNA gene fragments obtained from dominant DGGE bands detected in the bacterial profiles of the Rostock site revealed that Streptomyces sp. and Rhizobium sp. were among the dominant ribotypes in the strawberry rhizosphere, while sequences from Arthrobacter sp. corresponded to dominant bands from oilseed rape bacterial fingerprints.  相似文献   

17.
18.
Distribution and phylogenetic diversity of microbial communities in hot, deep underground environments in the Hishikari epithermal gold mine, southern part of Kyushu, Japan, were evaluated using molecular phylogenetic analyses. Samples included drilled cores such as andesitic volcanic rock (0.95-1.78 Ma) and the oceanic sedimentary basement rock of Shimanto-Supergroup (100 Ma), as well as geothermal hot aquifer waters directly collected from two different sites: AW-site (71.5 degrees C, pH 6.19) and XW-site (85.0 degrees C, pH 6.80) at a depth of 350 mbls (meters below land surface). Based on PCR-amplified 16S rRNA gene clone analysis, the microbial communities in the drilled cores and the hot aquifer water from the XW-site consisted largely of the 16S rRNA gene sequences, closely related to the sequences often found in marine environments, while the aquifer water from the AW-site contained 16S rRNA gene sequences representing members of Aquificales, thermophilic methanotrophs within the gamma-subdivision of the Proteobacteria and uncultivated strains within the beta-subdivision of Proteobacteria. The cultivable microbial community detected by enrichment cultivation analysis largely matched that detected by the culture-independent molecular analysis.  相似文献   

19.
This study investigated the effects of dietary supplementation with a prebiotic mannan oligosaccharide (MOS) on broiler performance, bacterial community structure, and phylogenetic populations of cecal contents. Bird performance data were collected, and cecal samples were extracted from randomly caught poults from each treatment group every 7 days from hatching to the age of 42 days. Weight gain, feed consumption, and feed efficiency ratios did not differ significantly between groups. Automated ribosomal intergenic spacer analysis (ARISA) of the bacterial communities in birds receiving MOS-supplemented diets indicated that dietary supplementation with MOS at either of 2 levels significantly altered the bacterial community structure from that of the control group on all sample days. The phylogenetic identities of bacteria contained within the cecum were determined by constructing a 16S rRNA gene clone library. A total of 594 partial 16S rRNA gene sequences from the cecal contents were analyzed and compared for the three dietary treatments. The dominant bacteria of the cecum belonged to three phyla, Firmicutes, Bacteroidetes, and Proteobacteria; of these, Firmicutes were the most dominant in all treatment groups. Statistical analysis of the bacterial 16S rRNA gene clone libraries showed that the compositions of the clone libraries from broilers receiving MOS-supplemented diets were, in most cases, significantly different from that of the control group. It can be concluded that in this trial MOS supplementation significantly altered the cecal bacterial community structure.  相似文献   

20.
变性梯度凝胶电泳(DGGE)在微生物生态学中的应用   总被引:47,自引:3,他引:44  
由于从环境样品中分离和培养细菌的困难,分子生物学方法已发展用来描述和鉴定微生物群落。近年来基于DNA方法的群落分析得到了迅速的发展,如PCR扩增技术,克隆文库法,荧光原位杂交法,限制性酶切片段长度多态性法,变性和温度梯度凝胶电泳法。DGGE已广泛用于分析自然环境中细菌、蓝细菌,古菌、微微型真核生物、真核生物和病毒群落的生物多样性。这一技术能够提供群落中优势种类信息和同时分析多个样品。具有可重复和容易操作等特点,适合于调查种群的时空变化,并且可通过对切下的带进行序列分析或与特异性探针杂交分析鉴定群落成员。DGGE分析微生物群落的一般步骤如下:一是核酸的提取,二是16S rRNA,18S rRNA或功能基因如可容性甲烷加单氧酶羟化酶基因(mmoX)和氨加单氧酶a一亚单位基因(amoA)片段的扩增,三是通过DGGE分析PCR产物。DGGE使用具有化学变性剂梯度的聚丙烯酰胺凝胶,该凝胶能够有区别的解链PCR扩增产物。由PCR产生的不同的DNA片段长度相同但核苷酸序列不同。因此不同的双链DNA片段由于沿着化学梯度的不同解链行为将在凝胶的不同位置上停止迁移。DNA解链行为的不同导致一个凝胶带图案,该图案是微生物群落中主要种类的一个轮廓。DGGE使用所有生物中保守的基因片段如细菌中的16S rRNA基因片段和真菌中的18S rRNA基因片段。然而同其他分子生物学方法一样,DGGE也有缺陷,其中之一是只能分离较小的片段,使用于系统发育分析比较和探针设计的序列信息量受到了限制。在某些情况下,由于所用基因的多拷贝导致一个种类多于一条带,因此不易鉴定群落结构到种的水平。此外,该技术具有内在的如单一细菌种类16S rDNA拷贝之间的异质性问题,可导致自然群落中微生物数量的过多估计。DGGE是分析微生物群落的一种有力的工具。不过为了减少DGGE和其它技术的缺陷,建议研究者结合DGGE和其它分子及微生物学方法以便更详细的观察微生物的群落结构和功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号