首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Models of the within-host dynamics of parasites have been used to consider the evolution of microparasites causing acute infections in vertebrate hosts. In this paper, we use these models to examine how the level of virulence to which a parasite evolves, depends on factors such as the relationship between parasite density and its rate of transmission from infected hosts, and the mechanism of parasite-induced pathogenesis. We show that changes in the terms describing transmissibility and pathogenesis may lead to dramatic differences in the level of virulence to which a parasite evolves. This suggests that no single factor is likely to be responsible for the differences in virulence of different parasites, and that understanding of the evolution of virulence of parasites will require a detailed quantitative understanding of the interaction between the parasite and its host.  相似文献   

2.
The recent discovery of a larval nematode in the epididymides of free-living wood mice (Apodemus sylvaticus) suggests a sexual transmission of these parasites. They have been placed within the bursate nematodes (order Strongylida) through 18S rDNA analysis, suggesting that they are undetermined metastrongyloid nematodes. The possibility that these parasites are transmitted sexually opens an intriguing field of research because sexually transmitted metazoan parasites are known to occur mainly in invertebrates, whereas in vertebrates sexually transmitted parasites are usually microparasites such as viruses, bacteria and protozoa.  相似文献   

3.
The physiological and immunological state of an animal can be influenced by current infections and infection history. Consequently, both ongoing and previous infections can affect host susceptibility to another parasite, the biology of the subsequent infection (e.g. infection length) and the impact of infection on host morbidity (pathology). In natural populations, most animals will be infected by a succession of different parasites throughout the course of their lives, with probably frequent concomitant infections. The relative timing of different infections experienced by a host (i.e. the sequence of infection events), and the effects on factors such as host susceptibility and host survival, can only be derived from longitudinal data on individual hosts. Here we review some of the evidence for the impact of co-infection on host susceptibility, infection biology and pathology focusing on insights obtained from both longitudinal studies in humans and experiments that explicitly consider the sequence of infection. We then consider the challenges posed by longitudinal infection data collected from natural populations of animals. We illustrate their usefulness using our data of microparasite infections associated with field vole (Microtus agrestis) populations to examine impacts on susceptibility and infection length. Our primary aim is to describe an analytical approach that can be used on such data to identify interactions among the parasites. The preliminary analyses presented here indicate both synergistic and antagonistic interactions between microparasites within this community and emphasise that such interactions could have significant impacts on host-parasite fitness and dynamics.  相似文献   

4.
Fenton A  Lamb T  Graham AL 《Parasitology》2008,135(7):841-853
Individuals are typically co-infected by a diverse community of microparasites (e.g. viruses or protozoa) and macroparasites (e.g. helminths). Vertebrates respond to these parasites differently, typically mounting T helper type 1 (Th1) responses against microparasites and Th2 responses against macroparasites. These two responses may be antagonistic such that hosts face a 'decision' of how to allocate potentially limiting resources. Such decisions at the individual host level will influence parasite abundance at the population level which, in turn, will feed back upon the individual level. We take a first step towards a complete theoretical framework by placing an analysis of optimal immune responses under microparasite-macroparasite co-infection within an epidemiological framework. We show that the optimal immune allocation is quantitatively sensitive to the shape of the trade-off curve and qualitatively sensitive to life-history traits of the host, microparasite and macroparasite. This model represents an important first step in placing optimality models of the immune response to co-infection into an epidemiological framework. Ultimately, however, a more complete framework is needed to bring together the optimal strategy at the individual level and the population-level consequences of those responses, before we can truly understand the evolution of host immune responses under parasite co-infection.  相似文献   

5.
Leishmania parasites cause a variety of devastating diseases in tropical areas around the world. Due to the lack of vaccines and limited availability of drugs, new therapeutic targets are urgently needed. A variety of genetic tools have been developed to investigate the complex biology of this parasite and its interactions with the host. One of the main techniques is the generation of knock-out parasites via targeted gene replacement, a process that takes advantage of the parasites ability to undergo homologous recombination. Studying the effect of gene deletions in vitro and in infectivity models in vivo allows understanding the function of a target gene and its potential as a therapeutic target. Other genetic manipulations available include episomal and chromosomal complementation and the generation of overproducer strains. However, there are also limitations, such as the lack of RNA interference machinery in most Leishmania species and limited options for inducible expression systems. The genomes of several Leishmania species have now been sequenced and will provide powerful resources in combination with the genetic tools that are available. The increasing knowledge of parasite biology and host parasite interactions derived from these studies will raise the number of potential therapeutic targets, which are sorely needed to combat leishmaniasis.  相似文献   

6.
Protozoan parasites are causing some of the most devastating diseases world-wide. It has now been recognised that a major effort is needed to be able to control or eliminate these diseases. Genome projects for the most important protozoan parasites have been initiated in the hope that the read-out of these projects will help to understand the biology of the parasites and identify new targets for urgently needed drugs. Here, I will review the current status of protozoan parasite genome projects, present findings obtained as a result of the availability of genomic data and discuss the potential impact of genome information on disease control.  相似文献   

7.
Variability in host-parasite interactions has considerable impact on the ecology and evolution of parasites and on the epidemiology of disease. The nature of the impact depends largely on the level of ecological organization where variability occurs: variability of parasites within their individual hosts, variability of host individuals within populations, or variability of hosts and parasites among populations. In this review, Paul Schmid-Hempel and Jacob Koella give some examples of variability at each of these levels, with particular emphasis on microparasites (defined broadly as viruses, bacteria and protozoa), consider the maintenance of the variability, and describe the implications of variability for the epidemiology of disease and the ecology of host parasite associations. In particular, they describe how variability at each level of ecological organization can affect the perception of AIDS and the evolution of virulence.  相似文献   

8.
Species of malaria parasites that infect rodents provide models for the study of the biology of malaria parasites that infect humans. In this article, Chris Janse and Andy Waters describe some of the recent advances in the cultivation and purification methodology of one of these species, Plasmodium berghei. The improvement of these techniques, and the increasing knowledge about the molecular biology of P. berghei enhance the value of this particular rodent model for the investigation of many aspects of the biology of Plasmodium.  相似文献   

9.

Background

Parasites incur periodic mutations which must ultimately be eliminated to maintain their genetic integrity.

Methods

It is hypothesised that these mutations are eliminated not by the conventional mechanisms of competition between parasites in different hosts but primarily by competition between parasites within the same infection.

Results

This process is enhanced by the production of a large number of parasites within individual infections, and this may significantly contribute to parasitic virulence.

Conclusions

Several features of the most virulent human malaria parasite Plasmodium falciparum can usefully be re-interpreted in this light and lend support to this interpretation. More generally, it constitutes a novel explanation for the evolution of virulence in a wider range of microparasites.  相似文献   

10.
Parasites can strongly influence the success of biological invasions. However, as invading hosts and parasites may be derived from a small subset of genotypes in the native range, it is important to examine the distribution and invasion of parasites in the context of host population genetics. We demonstrate that invasive European populations of the North American Crangonyx pseudogracilis have experienced a reduction in post-invasion genetic diversity. We predict that vertically transmitted parasites may evade the stochastic processes and selective pressures leading to enemy release. As microsporidia may be vertically or horizontally transmitted, we compared the diversity of these microparasites in the native and invasive ranges of the host. In contrast to the reduction in host genetic diversity, we find no evidence for enemy release from microsporidian parasites in the invasive populations. Indeed, a single, vertically transmitted, microsporidian sex ratio distorter dominates the microsporidian parasite assemblage in the invasive range and appears to have invaded with the host. We propose that overproduction of female offspring as a result of parasitic sex ratio distortion may facilitate host invasion success. We also propose that a selective sweep resulting from the increase in infected individuals during the establishment may have contributed to the reduction in genetic diversity in invasive Crangonyx pseudogracilis populations.  相似文献   

11.
Many microparasites infect new hosts with specialized life stages, requiring a subset of the parasite population to forgo proliferation and develop into transmission forms. Transmission stage production influences infectivity, host exploitation, and the impact of medical interventions like drug treatment. Predicting how parasites will respond to public health efforts on both epidemiological and evolutionary timescales requires understanding transmission strategies. These strategies can rarely be observed directly and must typically be inferred from infection dynamics. Using malaria as a case study, we test previously described methods for inferring transmission stage investment against simulated data generated with a model of within-host infection dynamics, where the true transmission investment is known. We show that existing methods are inadequate and potentially very misleading. The key difficulty lies in separating transmission stages produced by different generations of parasites. We develop a new approach that performs much better on simulated data. Applying this approach to real data from mice infected with a single Plasmodium chabaudi strain, we estimate that transmission investment varies from zero to 20%, with evidence for variable investment over time in some hosts, but not others. These patterns suggest that, even in experimental infections where host genetics and other environmental factors are controlled, parasites may exhibit remarkably different patterns of transmission investment.  相似文献   

12.
免疫学技术在细胞生物学理论与实验课程中具有重要的应用价值,两者的有机结合能使细胞生物学课程教学更丰富形象,有利于教学质量的提高。目前,免疫学技术普遍只停留于细胞生物学理论课本知识教授中,在对学生开展的细胞实验操作课程中应用较少。如能将免疫荧光标记、流式细胞术等相关技术引入到实验教程中,不仅能使细胞实验结果更形象生动,更能拓宽学生知识领域与实验技能,有利于其综合能力的培养。  相似文献   

13.
14.
15.
The genome projects represent one of the most important developments in our knowledge of parasites. However, translation of this knowledge into an understanding of parasite biology and then on to drugs, vaccines and other healthcare developments for the diseases will need some élan and clarity of thought by scientists and funding organizations. Only then will the activity associated with post-genomics be turned from what I have termed 'genome babble' to real opportunities in understanding these parasites.  相似文献   

16.
Hall SR  Duffy MA  Tessier AJ  Cáceres CE 《Oecologia》2005,143(4):635-644
Spatially explicit models show that local interactions of hosts and parasites can strongly influence invasion and persistence of parasites and can create lasting spatial patchiness of parasite distributions. These predictions have been supported by experiments conducted in two-dimensional landscapes. Yet, three-dimensional systems, such as lakes, ponds, and oceans, have received comparatively little attention from epidemiologists. Freshwater zooplankton hosts often aggregate horizontally and vertically in lakes, potentially leading to local host–parasite interactions in one-, two-, or three-dimensions. To evaluate the potential spatial component of daphniid parasitism driven by these local interactions (patchiness), we surveyed vertical and horizontal heterogeneity of pelagic Daphnia infected with multiple microparasites in several north temperate lakes. These surveys uncovered little evidence for persistent vertical patchiness of parasitism, since the prevalence of two parasites showed little consistent trend with depth in four lakes (but more heterogeneity during day than at night). On a horizontal scale of tens of meters, we found little systematic evidence of strong aggregation and spatial patterning of daphniid hosts and parasites. Yet, we observed broad-scale, basin-wide patterns of parasite prevalence. These patterns suggest that nearshore offshore gradients, rather than local-scale interactions, could play a role in governing epidemiology of this open water host–parasite system. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

17.
Concurrent infections with multiple parasites are ubiquitous in nature. Coinfecting parasites can interact with one another in a variety of ways, including through the host's immune system via mechanisms such as immune trade-offs and immunosuppression. These within-host immune processes mediating interactions among parasites have been described in detail, but how they scale up to determine disease dynamic patterns at the population level is only beginning to be explored. In this review, we use helminth-microparasite coinfection as a model for examining how within-host immunological effects may influence the ecological outcome of microparasitic diseases, with a specific focus on disease invasion. The current literature on coinfection between helminths and major microparasitic diseases includes many studies documenting the effects of helminths on individual host responses to microparasites. In many cases, the observed host responses map directly onto parameters relevant for quantifying disease dynamics; however, there have been few attempts at integrating data on individual-level effects into theoretical models to extrapolate from the individual to the population level. Moreover, there is considerable variability in the particular combination of disease parameters affected by helminths across different microparasite systems. We develop a conceptual framework identifying some potential sources of such variability: Pathogen persistence and severity, and resource availability to hosts. We also generate testable hypotheses regarding diseases and the environmental contexts when the effects of helminths on microparasite dynamics should be most pronounced. Finally, we use a case study of helminth and mycobacterial coinfection in the African buffalo to illustrate both progress and challenges in understanding the population-level consequences of within-host immunological interactions, and conclude with suggestions for future research that will help improve our understanding of the effects of coinfection on dynamics of infectious diseases.  相似文献   

18.
19.
Organic remains can be found in many different environments. They are the most significant source for paleoparasitological studies as well as for other paleoecological reconstruction. Preserved paleoparasitological remains are found from the driest to the moistest conditions. They help us to understand past and present diseases and therefore contribute to understanding the evolution of present human sociality, biology, and behavior. In this paper, the scope of the surviving evidence will be briefy surveyed, and the great variety of ways it has been preserved in different environments will be discussed. This is done to develop to the most appropriated techniques to recover remaining parasites. Different techniques applied to the study of paleoparasitological remains, preserved in different environments, are presented. The most common materials used to analyze prehistoric human groups are reviewed, and their potential for reconstructing ancient environment and disease are emphasized. This paper also urges increased cooperation among archaeologists, paleontologists, and paleoparasitologists.  相似文献   

20.
寄生物对宿主繁殖的影响取决于宿主对当前繁殖值和剩余繁殖值的权衡。球虫为微型寄生物,而微型寄生物对宿主当前繁殖值的影响较剩余繁殖值要大。因此,本研究检验了寄生在高原鼠兔肠道内的艾美耳球虫可影响其当前繁殖的假设。在繁殖早、中、晚期,野外共观测高原鼠兔170只。结果表明,不同繁殖期感染率有显著差异。在繁殖中期,未感染雌性的妊娠率显著高于感染雌性。且未妊娠雌性较妊娠雌性有更高的感染强度,但在另外两个繁殖期没有发现此效应。在雄性中,任何繁殖期的感染强度和感染率与睾丸和附睾指数均无显著相关性,且感染和未感染球虫雄性睾丸及附睾指数无显著差异。此外,野外观测实验结果表明,感染雌性的胚胎重较未感染雌性显著降低,与野外感染对胚胎重量影响的实验结果相一致。说明艾美耳球虫感染可影响胚胎的发育。上述结果说明,艾美耳球虫对高原鼠兔繁殖的影响随繁殖期而有不同效应,且存在性别间差异,这种效应可能与不同性别间的繁殖对策有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号