首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In arid and semi-arid inland deserts, one of the environmental stresses for plants is recurrent sand burial, which can influence the physical and biotic microenvironments of the plants and soil. Previous studies have shown that different levels of sand burial have different effects on plants. Slight sand burial could increase the height increment, leaf biomass and the number of new ramets of the plants while heavy sand burial could impair the growth of the plants and even decrease their chances of survival. In other words, below a certain threshold level of burial, the growth of plants is stimulated probably because of multiple factors. However, as the level of burial increases, the positive response starts to decline until it becomes a negative value. Arid and semi-arid inland deserts are frequently colonized and stabilized by many rhizomatous clonal plants. Clonal physiological integration often helps clonal plants buffer local environmental stress encountered by ramets. A rhizomatous clonal semishrub, Hedysarum laeve (H. laeve), is the dominant plant species and important for vegetation restoration in the Mu Us sandland. To investigate whether clonal integration can increase the threshold of sand burial and help rhizomatous H. laeve tolerate heavy sand burial, we conducted a field experiment. The results showed that slight sand burial could accelerate ramet growth and enhance leaf biomass, stem biomass and shoot biomass, while heavy sand burial reducesed the biomass of the plant and impairs survival and growth of the ramets. Clonal integration increased the threshold of sand burial. Under heavy sand burial, ramets connected to other ramets not buried in sand were more in terms of height increment, stem biomass, leaf biomass and shoot biomass compared to the ramets encountering sand burial but disconnected from other ramets. It suggested that clonal physiological integration could help H. laeve ramets tolerate relatively heavy sand burial. We also discussed that clonal integration plays a role in H. laeve presence in the Mu Us sandland. __________ Translated from Journal of Plant Ecology (formerly Acta Phytoecologica Sinica), 2006, 30(2): 278–285 [译自: 植物生态学报]  相似文献   

2.
In a 3-yr field study Ammophila breviligulata responded positively to sand accretion by maintaining plant height above a rising sand surface. Vertical growth for treated plants was approximately 80 cm over 3 yr. Bunch size did not differ between treated and control plants in the first or second year. But by Year 3, bunch circumference, number of stems per bunch, and plant height above the sand surface were significantly greater in plants receiving accelerated sand accretion. During the first year, treated plants flowered significantly less than controls. The greater vertical growth necessary for the treated plants may have depleted the energy reserves of a young rhizome system otherwise used for inflorescence production. The percent of the total nonstructural carbohydrates in rhizomes in the form of sugar was greater in plants in the accelerated sand accretion treatment, perhaps sustaining the necessary rapid vertical growth. To determine whether ethylene plays a role in stimulating stem elongation, endogenous ethylene accumulation was measured in plants in the field and seedlings in the greenhouse exposed to sand accretion. Treated plants responded by accumulating higher levels of ethylene in their stems, after 10 and/or 30 d, than did control plants. However, plants treated with exogenous ethylene exhibited growth and elongation inhibition.  相似文献   

3.
Dune plants are subjected to disturbance and environmental stresses, but little is known about the possible combined effects of such factors on growth and spatial colonization. We investigated how clones of Sporobolus virginicus , a widespread dune species, responded to the independent and interactive effects of breakage of rhizomes, breakage position and burial regime. Horizontal rhizomes were severed at three different internode positions relative to the apex to span the range of damage by disturbance naturally observed or left intact, and apical portions exposed to two burial scenarios (ambient vs. increased frequency) for three months in the field. The performance of both parts of severed rhizomes, the apical portion and the remaining basal portion connected to clone containing four consecutive ramets, was compared with that of equivalent parts in intact rhizomes. Apical portions severed proximal to the third internode did not survive and their removal did not enhance branching on their respective basal portions. Severing the sixth or twelfth internode did not affect survival and rhizome extension of apical portions, but suppressed ramet production and reduced total biomass and specific shoot length. Their removal enhanced branching and ramet production on basal portions and changed the original rhizome growth trajectory. However, the gain in number of ramets in basal portions never compensated for the reduction in ramet number in apical portions. Recurrent burial increased biomass allocation to root tissues. Burial also stimulated rhizome extension only in intact rhizomes, indicating that disturbance interacts with, and counteracts, the positive burial effect. These results suggest that disturbance and recurrent burial in combination reduces the regeneration success and spread capacity of S . virginucus . Since global change leads to increasingly severe or frequent storms, the impact of disturbance and burial on clones could be greater in future and possibly prevent colonization of mobile dunes by the species.  相似文献   

4.
Summary Shoot formation from rhizome explants of Cymbidium kanran was promoted on Murashige and Skoog (MS) medium: (1) with 1 mgl−1 (4.4μM) 6-benzyladenine (BA) and 0.1 mgl−1 (0.54μM) α-naphthaleneacetic acid (NAA); (2) with ethylene inhibitor (silver nitrate, AgNO3); or (3) by reducing ammonium nitrate (NH4NO3) and potassium nitrate (KNO3) to 25 and 50%, respectively, of their original concentrations. Shoot formation by BA and NAA was strongly inhibited with the application of ethephon, an ethylene releaser. The ethylene production from the rhizome explants was reduced 30–55% on low nitrogen medium after 1–3 mo. of culture and 52% on BA and NAA medium after 1 mo. of culture compared with explants on standard MS medium. No difference in endogenous auxin (indole-3-acetic acid, IAA) and cytokinin (isopentenyl adenosine, iPA) contents in the rhizomes was found between the treatments. Low ethylene levels were correlated with higher frequency of shoot formation from the rhizomes.  相似文献   

5.
Node and internode explants of Mallotus repandus were precultured on basal medium (BM: Murashige and Skoog (MS) medium with 3% sucrose and 0.55% Agargel) for 0–18 d before culture on shoot induction Medium (SIM: BM added with 4.44 μM of benzylaminopurine) for 4 wk. The cultures were subsequently transferred to BM for 4 wk for shoot elongation. Node explants precultured on BM for 14 d before incubation on SIM were at an optimum for shoot regeneration with the response rate of 95%, compared to a 21% response for the control without preculture. Internode explants precultured on BM for 16 d responded with an optimal shoot formation response rate of 69%, whereas the control response rate was 6%. The maximum shoot regeneration rates were 3.1 ± 0.3 and 2.7 ± 0.4 shoots/responding explant in node and internode explants, respectively. This study demonstrates for the first time that shoot organogenesis can be induced from internode explants of M. repandus. Furthermore, the results suggest that the explants need to acquire competence before shoot organogenesis. Rooting was obtained by incubation of regenerated shoots on half-strength MS with 10.74 μM of 1-naphthylacetic acid for a week before culture on half-strength MS for 4 wk. Regenerated plants were successfully transferred to soil.  相似文献   

6.
We compared seedling growth of four Artemisia species dominated at different habitats to determine whether interspecific seedling growth variation of a same genus in tolerance to burial can be used to explain plant distribution in the sand dune field. Interdune lowland species, Artemisia gmelinii, stabilized dune species, A. frigida, semi-stabilized dune species, A. halodendron, and active dune species, A. wudanica were selected. Seedlings grown for 3 weeks were treated at five burial depths for three burial times in pot experiments. Species from the habitats with little burial had smaller survival rate, dry weight and stem elongation speed than those from the habitats with intensive burial when buried. Furthermore, when buried, the former tended to adjust biomass allocation between shoot and root and produce adventitious buds, while the latter tended to maintain a constant root:shoot ratio and produce adventitious roots. We conclude that (1) seedlings of species with a long evolutionary history of exposure to sand burial (from the active sand dune), show quicker stem growth when buried than do seedlings of species from the habitats with little or no sand burial; (2) seedlings of species which do not change root:shoot ratio might be more tolerant of sand burial than those do; (3) seedlings of species from the habitats with intensive sand burial is prone to produce adventitious roots and seedlings of species from the habitats with little or no sand burial tend to produce adventitious buds when buried.  相似文献   

7.
Stem elongation in Fuchsia × hybrida was influenced by cultivation at different day and night temperatures or in different light qualities. Internode elongation of plants grown at a day (25°C) to night (15°C) temperature difference (DIF+10) in white light was almost twofold that of plants grown at the opposite temperature regime (DIF−10). Orange light resulted in a threefold stimulation of internode elongation compared with white light DIF−10. Surprisingly, internode elongation in orange light was similar for plants grown at DIF−10 and DIF+10. Flower development was accelerated at DIF−10 compared with DIF+10 in both white and orange light. To examine whether the effects of DIF and light quality on shoot elongation were related to changes in gibberellin metabolism or plant sensitivity to gibberellins (GAs), the stem elongation responses of paclobutrazol-treated plants to applied gibberellins were determined. In the absence of applied gibberellins paclobutrazol (>0.32 μmol plant−1) strongly retarded shoot elongation. This inhibition was nullified by the application of about 10–32 nmol of GA1, GA4, GA9, GA15, GA19, GA20, GA24, or GA44. The results are discussed in relation to possible effects of DIF and light quality on endogenous gibberellin levels and gibberellin sensitivity of fuchsia and their effects on stem elongation. Received October 4, 1997; accepted December 17, 1997  相似文献   

8.
Deep-seeding and ethylene were found to stimulate extension growth of the first internode of intact wheat (Triticum aestivum L.) seedlings in darkness. Seedlings of Hon Mang Mai emerged from much deeper in the soil than the seedlings of the other varieties used and their first internodes elongated to a much greater extent in response to ethylene. Carbon dioxide slowed elongation of the first internode and inhibited ethylene action. Elongation of the first internode due to deep-seeding and ethylene treatment showed high heritabilities, suggesting a genetic basis underlying those traits.  相似文献   

9.
 The relationship between nutrient availability and mycorrhizal status has been well studied for terrestrial plant species, but has been examined rarely in aquatic and emergent aquatic species. The purpose of this study was to determine the effect of phosphorus availability on the arbuscular mycorrhizal (AM) status of an emergent aquatic, Lythrum salicaria L. L. salicaria was grown in hydroponic sand culture at five phosphorus concentrations (0, 100, 1000, 10 000, and 47 500 μg PO4/l nutrient solution) for 49 days with or without mycorrhizal inoculum obtained from wetland soil. Inoculated plants at the lowest three phosphorus concentrations were colonized by AM, whereas there was no colonization of plants grown at the highest two phosphorus concentrations. Colonization by AM fungi occurred in conjunction with symptoms of phosphorus deficiency in L. salicaria under experimental conditions: plants at the lowest three phosphorus concentrations had lower biomass and higher root: shoot weight ratios than plants at the highest two concentrations. However, total biomass and internal phosphorus concentration did not differ between inoculated and control plants. Further studies are needed under conditions more closely mimicking natural dynamics. Accepted: 7 August 1999  相似文献   

10.
The two rhizomatous perennials Solidago canadensis and S. gigantea belong to the most widespread alien plants in Europe. Anecdotal observations suggest that they disperse also by rhizome fragments. For testing their resprouting ability, rhizome fragments of different sizes from both species were buried at four different soil depths (0, 5, 10 and 20 cm, respectively) in a common garden. Rhizome fragments of S. canadensis ranged 3–6 cm in length, those of S. gigantea 5–20 cm in length. Resprouting plants were harvested after 3 months and growth related traits measured to assess their vitality. Resprouting rate in S. gigantea was far higher than in S. canadensis (85 and 19%, respectively). In S. gigantea, fragments of all sizes resprouted from all soil depths whereas none rhizome of S. canadensis emerged from 20 cm burial depth. In S. gigantea, size related traits showed significant interactions between fragment size and burial depth, but not relative shoot growth rate. At all burial depths, vitality of plants emerging from small rhizomes was lower than plants emerging from large rhizomes. Effects of rhizome size became stronger with increasing burial depth. The results show that both species are able to resprout from buried rhizome fragments, and that succesful regeneration is more likely to occur in S. gigantea. Managing these species should avoid any activities promoting rhizome fragmentation and dispersal of fragments.  相似文献   

11.
Plants of the seagrass Zostera noltii were cultured in the laboratory (mesocosms) for two weeks to assess the effect of above:below-ground (AG/BG) biomass ratios and light on growth, photosynthesis and chemical composition. Experimental plant units (EPUs) with different proportions between AG and BG biomass were obtained from plants of the same size (containing 6 shoots and 5 internodes) by excising 0-5 shoots. The EPUs maintained the proportions in AG/BG biomass ratios during the experiment. While growth rate was unaffected by biomass partitioning at high light, maximum growth at low light was recorded in plants with low AG/BG ratios. The production of shoots and rhizomes showed a compensatory morphological response depending on the initial AG/BG proportions regardless of the light level. While shoot production, estimated as shoot appearance rate, was high at low AG/BG ratios and minimal under high AG/BG values, rhizome production, estimated as internode appearance rate and internode elongation rate, was maximal under high AG/BG proportions and decreased towards lower AG/BG ratios. This rhizomatic response was observed for secondary rhizomes and not for primary ones. In contrast to morphological response, no significant differences were detected in maximum electron transport rates (ETRm) among the different shoots in the plant. However, mean values of ETRm in plants were affected by biomass partitioning and light. EPUs grown in low light increased the sucrose stored in shoots as the AG/BG biomass ratios decreased; however, EPUs grown at high light showed no effect of biomass partitioning on sucrose levels. In conclusion, shoots excision by experimental manipulation caused a compensatory morphological response in plants while photosynthetic performance remained almost unaffected.  相似文献   

12.
In the stem of Phaseolus vulgaris L. the specific activity ofacid invertase was highest in the most rapidly elongating internode.Activity of the enzyme was very low in internodes which hadcompleted their elongation, in young internodes before the onsetof rapid elongation, and in the apical bud. From shortly afterits emergence from the apical bud the elongation of internode3 was attributable mainly to cell expansion. Total and specificactivities of acid invertase in this internode rose to a maximumat the time of most rapid elongation and then declined. Transferof plants to complete darkness, or treatment of plants withgibberellic acid (GA3), increased the rate of internode elongationand final internode length by stimulating cell expansion. Bothtreatments rapidly increased the total and specific activitiesof acid invertase in the responding internodes; peak activitiesof the enzyme occurred at the time of most rapid cell expansion. In light-grown plants, including those treated with GA3, rapidcell and internode elongation and high specific activities ofacid invertase were associated with high concentrations of hexosesugar and low concentrations of sucrose. As cell growth ratesand invertase activities declined, the concentration of hexosefell and that of sucrose rose. In plants transferred to darkness,stimulated cell elongation was accompanied by a rapid decreasein hexose concentration and the disappearance of sucrose, indicatingrapid utilization of hexose. No sucrose was detected in theapical tissues of light-grown plants. The results are discussed in relation to the role of acid invertasein the provision of carbon substrates for cell growth. Key words: Cell expansion, Acid invertase, Hexose, Sucrose, Phaseolus  相似文献   

13.
Accumulation of the gaseous plant hormone ethylene is very importantfor the induction of several responses of plants to flooding.However, little is known about the role of this gas in the formationof flooding-induced adventitious roots. Formation of adventitiousroots in Rumex species is an adaptation of these plants to floodedsoil conditions. The large air-spaces in these roots enablesdiffusion of gases between shoot and roots. Application of ethylene to non-flooded Rumex plants resultedin the formation of adventitious roots. In R. palustris Sm.shoot elongation and epinasty were also observed. The numberof roots in R. thyrsiflorus Fingerh. was much lower than inR. palustris, which corresponds with the inherent differencein root forming capacity between these two species. Ethyleneconcentrations of 1.5–2µI I– 1 induced a maximumnumber of roots in both species. Quantification of ethylene escaping from root systems of Rumexplants that were de-submerged after a 24 h submergence periodshowed that average ethylene concentrations in submerged rootsreached 1.8 and 9.1 µl I–1 in R. palustris and R.thyrsiflorus, respectively. Inhibition of ethylene productionin R. palustris by L--(2-aminoethoxyvinyl)-glycine (AVG) or-aminobutyric acid (AIB) decreased the number of adventitiousroots induced by flooding, indicating that high ethylene concentrationsmay be a prerequisite for the flooding-induced formation ofadventitious roots in Rumex species. Key words: Adventitious roots, epinasty, ethylene, flooding, Rumex, shoot elongation  相似文献   

14.
Thallus growth and development in the coenocyti alga Caulerpa sertularioides (Gmelin) Howe have been studied quantitatively. In unsupplemented seawater at 26 C and in a 12:12 hr light/dark cycle, new rhizomes formed near the old growing points on thalli transplanted from the ocean. Adjacent to the apices of new rhizomes, rhizoids were produced downward, regularly spaced and at a rate of about 1.5/day. Upright. shoots developed irregularly in acropetal succession behind the tips of either the parent or the new rhizomes, which arose as branches of the old. Rates of rhizome, rhizoid, and upright shoot elongation were 0.4, 0.81, and 0.54 cm/day, respectively. Thalli survived up to 2 months in unsupplemented seawater. Long-term growth was obtained by varying culture conditions. A substratum of sand, apparently rich in microorganisms, produced long-term thallus growth in seawater, and the form of development changed so that upright shoot formation was promoted and rhizome elongation halved. Similar effects were elicited by indole-3-acetic acid, 5 × 10-5, M in seawater and by sap expressed from C. racemosa or C. sertularioides and added to seawater at 2.5–10% by volume. The regulation of development in an algal coenocyte is discussed and analogies with regulation in multicellular plants are drawn.  相似文献   

15.
Summary An efficient system to regenerate shoots on excised sepals (calyx) of greenhouse-grown ‘Bounty’ strawberry (Fragaria x ananassa Duch.) was developed in vitro. Sepal cultures produced multiple buds and shoots without an intermediary callus phase on 2–4 μM 1-phenyl-3-(1,2,3-thiadiazol-5-yl) urea (thidiazuron, TDZ)-containing shoot induction medium within 4–5 wk of culture initiation. Young expanding sepals with the adaxial side touching the culture medium and maintained for 14 d in darkness produced the best results. In a second experiment, sepals proved more effective than the leaf discs and petiole segments for regenerating shoots. A third experiment compared the effects of six concentrations of two cytokinins (TDZ at 0, 0.5, 2, and 4 μM and zeatin at 2 and 4 μM) for elongation of sepal-derived adventitious shoots. The media containing TDZ generally promoted more callus formation and suppressed shoot elongation. TDZ-initiated cultures transferred into the medium containing 2–4 μM zeatin, produced usable shoots after one additional subculture. Shoots were rooted in vitro in the same medium used for shoot regeneration, but without any growth regulators. When transferred to potting medium, 85–90% of in vitro plantlets survived.  相似文献   

16.
The growth-retarding activity of the norbornenodiazetine tetcyclacis and the di-oxanylalkenyl triazole LAB 150 978 as well as the ethylene-forming compounds 2-chloroethyl-phosphonic acid (ethephon) and 1-amino-cyclopropane-l-carboxylic acid (ACC) on stem histogenesis and ethylene production of sunflower plants ( He-lianthus annuus L. cv.Spanners Allzweck) has been studied. The shoot growth of plants hydroponically grown and treated was reduced by the compounds. The shortening in the length of the 1st internode caused by tetcyclacis and LAB 150 978 was mainly induced by inhibition of cell division (the internode possessed fewer cortical cells per cell file). In contrast, ethephon and ACC decreased internode elongation mainly by reducing the rate of cell enlargement.
The ethylene production of sunflower seedlings cultivated on agar nutrient medium rose with increasing concentrations of ethephon and ACC, the shoot length of the plants being progressively reduced.
Tetcyclacis and LAB 150 978 inhibited both the formation of ethylene and shoot growth. It is suggested that in contrast to ethephon and ACC, tetcyclacis and LAB 150 978 do not achieve their growth-retarding effect by influencing the production of ethylene.  相似文献   

17.
The epiphytic habitat is potentially one of the most stressful environments for plants, making the effective developmental control in response to external cues critical for epiphyte survival. Because ethylene mediates several abiotic stresses in plants, here, we have examined the ethylene influence in both shoot and root systems of the epiphytic orchid Catasetum fimbriatum. Under controlled conditions, ethylene production was quantified during an entire growth cycle of C. fimbriatum development in vitro, while treatments modulating either ethylene concentration or perception were carried out over the early growth phase of these plants. After treatments, growth measurements and histological features were studied in both shoot and root tissues. Ethylene production showed a decreasing trend over the period of organ elongation; however, it increased considerably when leaves were shed, and a new axillary bud was initiating. The early exposure of young plants to higher concentrations of ethylene triggered morphogenic responses that included root hair formation instead of velamen, and a combination of inhibitory effects (decreases in both stem enlargement and cellular/organ elongation) and inductive effects (increases in leaf and root formation, bud initiation and cellular thickening) on plant growth, which favored biomass allocation to roots. Conversely, inhibition of ethylene perception over the plant growth phase generally resulted in the opposite morphogenic responses. Our data indicate that periodic variations in ethylene concentration and/or sensitivity seem to modulate several developmental features in shoot and root systems of C. fimbriatum which could have adaptive significance during the growing phase of this epiphytic orchid.  相似文献   

18.
Sediment fertilization is recommended for improving seagrass restoration efforts, but few studies have evaluated the efficacy of such practice. Increasing storm frequency due to global change could lead to greater sediment mobilization. Understanding how this alteration will interact with fertilization to affect transplants is essential for future restoration planning. We examined the individual and combined effects of nutrients (ambient vs. repeated addition) and burial (control vs. increased frequency and intensity) on the performance and biomass partitioning of transplants of the seagrass Cymodocea nodosa at two sites within a north‐western Mediterranean meadow. Fertilization stimulated the production of shoots, total biomass, and branching. Burial increased leaf sheath length in one site while reduced shoot number, leaf number, leaf sheath length, total biomass, net shoot gain, and root‐to‐shoot ratio in the other site. Regardless of the site, fertilization and burial interaction reduced the length of vertical internodes and horizontal rhizomes, and the net shoot gain. Our research demonstrates that sediment fertilization ensures rapid colonization of restoration sites, providing C. nodosa plants up to eight times larger than controls in one growing season. However, it also indicates that interaction of increased burial and nutrients reduced the gain in terms of vegetative expansion and depressed vertical growth, making plants more vulnerable to subsequent disturbances. Therefore, seagrass restoration practitioners should account for changes in sediment elevation at transplanting sites when planning restoration programs and carefully evaluate the opportunity of applying fertilizers in sites subjected to greater sediment accumulation to avoid failure.  相似文献   

19.
Quantitative data on cell length and mitotic index in elongating internodes of seven species of Equisetum are presented as evidence for the occurrence of two patterns of internode development in rhizomes of different species. In rhizomes of three species of subgenus Equisetum (E. arvense, E. diffusum, E. telmateia) uninterrupted meristems are present, characterized by acropetal internode maturation. In rhizomes of four species of subgenus Hippochaetae (E. hyemale, E. variegatum, E. scripoides, and E. laevigatum) intercalary meristems are present. The number and locations of intercalary meristems are described for an aerial shoot of E. diffusum. The absence or diminution of intercalary meristems from rhizomes of a variety of vascular plants with intercalary meristems in aerial shoots is discussed from the standpoint of adaptive significance.  相似文献   

20.
The morphogenetic potential of node, internode and leaf explants of Brahmi [Bacopa monniera (L.) Wettst.] was investigated to develop reliable protocols for shoot regeneration and somatic embryogenesis. The explants were excised from shoots raised from axillary buds of nodal explants cultured on Murashige and Skoog (MS) basal medium. Presence of 6-benzylaminopurine (BA) or kinetin influenced the degree of callus formation, from which a large number of shoot buds regenerated. Leaf explants gave the largest number of shoot buds followed by node and internode explants. BA was superior to kinetin; BA at 1.5 – 2.0 mg/l appeared to be optimum for inducing the maximum number of shoot buds. MS + 0.1 mg/l BA + 0.2 mg/l indole-3-acetic acid was the most suitable for shoot elongation. Elongated shoots were rooted on full- or half-strength MS medium with or without 0.5 – 1.0 mg/l indole-3-butyric acid or 0.5 – 1.0 mg/l α-naphthaleneacetic acid. The rooted plants were successfully established in soil. Calli derived from nodal explants cultured on MS medium containing 0.5 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D), when subcultured on MS medium containing 0.1 or 0.5 mg/l BA or 0.2 mg/l 2,4-D + 0.1 or 0.5 mg/l kinetin, developed somatic embryos. The somatic embryos germinated either on the same media or on MS basal medium, and the resulting plantlets were successfully transplanted to soil. Received: 25 September 1996 / Revision received: 23 October 1997 / Accepted: 12 November 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号