首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Undifferentiated granulosa cells from prehierarchal (6- to 8-mm-diameter) hen follicles express very low to undetectable levels of LH receptor (LH-R) mRNA, P450 cholesterol side chain cleavage (P450scc) enzyme activity, and steroidogenic acute regulatory (StAR) protein, and produce negligible progesterone, in vitro, following an acute (3-h) challenge with either FSH or LH. It has previously been established that culturing such cells with FSH for 18-20 h induces LH-R, P450scc, and StAR expression, which enables the initiation of progesterone production. The present studies were conducted to characterize the ability of activin and transforming growth factor (TGF) beta, both alone and in combination with FSH, to promote hen granulosa cell differentiation, in vitro. A 20-h culture of prehierarchal follicle granulosa cells with activin A or transforming growth factor beta (TGFbeta)1 increased LH-R mRNA levels compared with control cultured cells. Activin A and TGFbeta1 also promoted FSH-receptor (FSH-R) mRNA expression when combined with FSH treatment. Neither activin A nor TGFbeta1 alone stimulated progesterone production after 20 h culture. However, preculture with either factor for 20 h (to induce gonadotropin receptor mRNA expression) followed by a 3-h challenge with FSH or LH potentiated StAR expression and progesterone production compared with cells challenged with gonadotropin in the absence of activin A or TGFbeta1 preculture. Significantly, activation of the mitogen-activated protein (MAP) kinase pathway with transforming growth factor alpha (TGFalpha) (monitored by Erk phosphorylation) blocked TGFbeta1-induced LH-R expression, and this effect was associated with the inhibition of Smad2 phosphorylation. We conclude that a primary differentiation-inducing action of activin A and TGFbeta1 on hen granulosa cells from prehierarchal follicles is directed toward LH-R expression. Enhanced LH-R levels subsequently sensitize granulosa cells to LH, which in turn promotes StAR plus P450scc expression and subsequently an increase in P4 production. Significantly, the finding that TGFbeta signaling is negatively regulated by MAP kinase signaling is proposed to represent a mechanism that prevents premature differentiation of granulosa cells.  相似文献   

2.
To assess whether fetal luteinizing hormone releasing hormone (LH-RH) neurosecretory neurons have the capacity to respond to an exogenous stimulus, a synthetic excitatory amino acid analogue, N-methyl-D-L-aspartate (NMDA; 15 mg/kg), was given rapidly intravenously to 8 chronically catheterized fetuses (130-142 days of gestation; term 147 +/- 3 days). All 8 fetuses exhibited a rise in plasma ovine luteinizing hormone (oLH) and ovine follicle-stimulating hormone (oFSH) within 5 min. The mean maximal increments of oLH (2.25 +/- 0.36 ng/ml) and oFSH (1.21 +/- 0.32 ng/ml) were significantly greater than in 6 normal saline-injected controls (oLH p < 0.0002; oFSH p < 0.03). The secretion of ovine prolactin (oPRL) and ovine growth hormone (oGH) was unaffected. LH-RH (5 microg) evoked a greater oLH response (p < 0.0009) and a greater oFSH response (p < 0.03) than NMDA (n = 6). Desensitization of the fetal gonadotrope by a potent LH-RH agonist, D-Trp6Pro9NEt-LH-RH (10 microg/day i.v. x 4 days), abolished the fetal oLH and the oFSH response to NMDA (n = 5). Moreover, D, L-2-amino-5-phosphonovalerate, a specific competitive antagonist for the NMDA receptor, completely inhibited the fetal oLH and oFSH response to NMDA, whereas D-L-2-amino-5-phosphonovalerate alone did not affect the plasma oLH or oFSH levels, the gonadotropin response to LH-RH, or the release of oGH or oPRL (n = 3). In primary ovine fetal pituitary cell cultures, NMDA (10(-10) to 10(-6) M) had no effect on oLH, oFSH, oGH, or oPRL secretion, whereas LH-RH stimulated oLH (10(-8) M; p < 0.0004) and oFSH (10(-8) M; p < 0. 0001) release, evidence that NMDA did not have a direct pituitary effect. The results suggest that NMDA induces oLH and oFSH secretion by stimulation of the fetal LH-RH pulse generator and is mediated by central NMDA receptors. Fetal LH and FSH secretion and the response to LH-RH decrease in late gestation in the ovine and human fetus. The relative importance of sex steroid dependent and sex steroid independent central nervous system inhibition in this developmental change is unclear. It appears that central neural inhibition in addition to sex steroid negative feedback contributes to the decrease in fetal gonadotropin concentrations in late gestation. NMDA did not affect fetal oGH or oPRL secretion.  相似文献   

3.
Previous studies have shown that equine luteinizing hormone (eLH) inhibits production of cyclic adenosine monophosphate (cAMP) induced by follicle-stimulating hormone (FSH) in preparations of seminiferous tubules from immature rats. It was also shown that the inhibitory effect was a function of the equine LH (eLH) alpha subunit. To explore this phenomenon further, the intrinsic FSH-like activities of eLH alpha alone and in combination with ovine (o) LH beta, ovine FSH beta, and equine FSH beta were evaluated in several assay systems. In a radioreceptor assay employing 125I-o-FSH and testis membranes from day-old calves, eLH was twice as active as oFSH, eLH alpha was 6% as active as oFSH, and other subunits showed a lack of activity (less than 1.5%). Whereas oLH was only 0.1% as active as oFSH, the hybrid eLH alpha-oLH beta was 3.0% as active. The binding activity of eLH alpha-FSH beta hybrids tended to be higher than the oFSH alpha-FSH beta hybrids. In the cAMP production assay, eLH alpha-FSH beta hybrids exhibited dampened dose-response curves when compared to the oFSH alpha-FSH beta hybrids. In a plasminogen activator assay (PAA) employing granulosa cells from intact 21-24-day-old female rats primed with diethylstilbestrol, eLH had activity comparable to that of oFSH, while eLH alpha was inactive. When eLH alpha was recombined with oFSH beta, eFSH beta, or oLH beta, the PAA stimulatory activity was not altered compared to that of the hybrids oLH alpha-oFSH beta, oFSH alpha-eFSH beta, and the recombinant oLH alpha-oLH beta, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Previously described models for avian ovarian steroidogenesis, using mature, 25-40-mm preovulatory follicles as the source of tissues, were based on the assumption that interaction of the granulosa layer, as the predominant source of progesterone, with adjacent theca cells is required for maximal production of C21, C19, and C18 steroids. In the present study, we evaluated the steroidogenic capacity of ovarian cells isolated from less mature, 6-8-mm and 9-12-mm follicles in the chicken ovary (representative of a stage of development 2-3 wk prior to ovulation) to determine at which stage of follicular development granulosa and/or theca cells become steroidogenically competent. Granulosa cells collected from 6-8-mm follicles were found to be virtually incompetent to produce steroids, containing extremely low basal levels of progesterone (12 pg/5 x 10(5) cells) and failing to respond with increased steroid output following a 3-h exposure to ovine LH (oLH; 0.1 and 100 ng/0.5 ml), ovine FSH (oFSH; 100, 500, and 1,000 ng/0.5 ml), 8-bromo-cyclic adenosine monophosphate (8-bromo-cAMP; 0.33 and 3.33 mM) or 25-hydroxycholesterol (250 and 2,500 ng/0.5 ml). However, addition of pregnenolone (20 and 200 ng/0.5 ml) to granulosa incubations resulted in significantly increased progesterone levels. Granulosa cells of 6-8-mm follicles also failed to increase cAMP formation in the presence of oLH (10, 100, and 1,000 ng/0.5 ml) and 3-isobutyl-1-methylxanthine (IBMX; 10 microM), but responded to stimulation with 1,000 ng oFSH (4.4-fold increase over basal) or 10 microM forskolin (32-fold increase over basal) in the presence of IBMX. In contrast, granulosa cells isolated from 9-12-mm follicles and incubated for 3 h in vitro were found to contain basal progesterone levels 200-fold higher than those found in granulosa cells of 6-8-mm follicles. Furthermore, granulosa cells of 9-12-mm follicles markedly increased progesterone production following incubation in the presence of oFSH (100-1,000 ng/0.5 ml), 8-bromo-cAMP (0.33 and 3.33 mM), or 25-hydroxycholesterol (250 and 2,500 ng/0.5 ml). However, these granulosa cells remained unresponsive to oLH (0.1, 10, and 100 ng/0.5 ml), failing to increase cAMP accumulation (in the presence of IBMX) and progesterone output. Theca cells of small yellow follicles were found to produce measurable basal levels of progesterone, androstenedione, and estradiol, and levels of each steroid were significantly increased following a 3-h challenge with oLH, 8-bromo-cAMP, 25-hydroxycholesterol, and pregnenolone.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
6.
7.
The purpose of this study was to determine if the granulosa cells of the small preovulatory follicles of the domestic hen are a target tissue for follicle-stimulating hormone (FSH). The third largest (F3), fourth largest (F4), and fifth largest (F5) follicles were removed from hens at 20, 12, 6 and 2 h before ovulation of the F1 follicle. Basal, FSH- and luteinizing hormone (LH)-stimulable adenylyl cyclase (AC) activities were measured in the granulosa cells. Isolated granulosa cells of the F5 follicle, obtained 20 h before ovulation of the F1 follicle, were incubated with ovine (o) or turkey (t) FSH and progesterone (P4) was assayed in the medium. Basal AC activity was similar for F5, F4 and F3 granulosa cells except for an increase (P less than 0.01) in F3 follicles removed 2 h before ovulation of the F1 follicle. The FSH-stimulable AC activity of F5, F4 and F3 granulosa cells was elevated over basal (P less than 0.01). The greatest responsiveness was seen in the F5 follicle and the least in the F3 follicle. LH-stimulable AC activity was absent in the F5 follicle but present in the F4 and F3 follicles with the greater responsiveness in the F3 follicle. Isolated F5 granulosa cells secreted significant amounts of P4 in response to oFSH and tFSH. The data indicate that: 1) FSH stimulates the AC system of granulosa cells of the smaller preovulatory follicles (F5 greater than F4 greater than F3) while LH stimulates the AC system of granulosa cells of the larger follicles (F3 greater than F4), and 2) FSH promotes P4 production by granulosa cells of F5 follicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We investigated the mRNA expression patterns of receptor genes for bone morphogenetic proteins-15 (BMP15) and growth differentiation factor-9 (GDF-9) in granulosa cells of sheep treated with FSH. The effects of FSH and estradiol (E2) on the regulation of BMPRII, BMPRIB and ALK-5 in ovine granulosa cells were also examined. Ovaries were collected on day 16 of the estrous cycle and granulose cells were harvested from follicles of two sizes (3-5 and >5mm in diameter). For in vitro studies, granulosa cells were obtained from follicles of 3-5mm in diameter and cultured in serum-free McCoy's 5A medium supplemented with different doses of FSH (0, 1, 5, 10ng/ml) or a combination of 5ng/ml FSH with 1ng/ml E2. Expression of BMPRII, BMPRIB and ALK-5 mRNA was estimated by quantitative real-time PCR. Our results demonstrated that BMPRII, BMPRIB and ALK-5 expression was significantly higher in the granulosa cells of large follicles than of small follicles. Treatment of granulose cells with FSH (1-10ng/ml) alone down-regulated the expression of BMPRIB (P<0.05). BMPRII and ALK-5 mRNA expression was not significantly different at an FSH concentration of 5ng/ml compared to control. A further increase in FSH (10ng/ml) down-regulated the expression of BMPRII and ALK-5 (P<0.05). The combination of FSH (5ng/ml) and E2 (1ng/ml) up-regulated the expression of BMPRII, BMPRIB and ALK-5 in granulose cells (P<0.05). Therefore, the present study establishes the expression levels of the receptor genes of BMP15 and GDF-9 and suggests that the expression of BMPRII, BMPRIB and ALK-5 may be regulated by FSH and E2 in ovine granulosa cells.  相似文献   

9.
We investigated homologous and heterologous downregulation of FSH receptor mRNA in porcine granulosa cells from ovaries of immature pigs. Cultures were treated with 0, 40, or 200 ng/ml porcine FSH or medium and terminated at 24 hr intervals for Northern analysis of FSH receptor and cytochrome P450 side chain cleavage (P450scc) mRNA, and for radioimmunoassay of progesterone. Cells luteinized over 96 hr, and control cultures displayed increases in P450scc (8–10 fold) and FSH receptor (2 fold) mRNA and progesterone (100 fold). FSH reduced FSH receptor mRNA by 50–90%, increased P450scc mRNA 8 fold within 48 hr, and elevated progesterone logarithmically over 96 hr. Luteinized cells, (after 96 hr) received FSH or LH (1–200 ng/ml) or prostaglandin E2 (0.01–1.0 mg/ml) for 6 hr resulting in increased P450scc mRNA (2–8 fold), and progesterone (2–5 fold), and reduced FSH receptor mRNA. FSH (200 ng/ml) or the cAMP analog, dbcAMP (1 mM) for 0–24 hr reduced FSH receptor mRNA to 15% of control from 4–24 hr and elevated P450scc mRNA at 4 and 6 hr, respectively, to maxima at 12–24 hr. Forskolin (1–10 mM) increased P450scc mRNA (2–3 fold) and downregulated FSH receptor mRNA, effects reversed by the inhibitor of cAMP, rpcAMPs. Both epidermal growth factor, and the activator of the protein kinase C pathway, phorbol 12‐myristate, 13‐acetate (PMA) at 10 nM reduced FSH receptor mRNA. We conclude that downregulation of FSH receptor mRNA in luteinized granulosa cells is mediated by both homologous and heterologous ligands which employ cAMP, and that growth factors that activate the PKC pathway reduce FSH receptor and P450scc mRNA abundance. Mol. Reprod. Dev. 53:198–207, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

10.
The effects of estrogens on gonadotropin-stimulated luteinizing hormone (LH) receptor formation were examined in primary cultures of rat granulosa cells. Granulosa cells were cultured for 3 days with increasing concentrations of follicle-stimulating hormone (FSH) in the presence or absence of native and synthetic estrogens. Follicle-stimulating hormone stimulated LH receptor formation in a dose-dependent fashion, and estrogens enhanced the FSH-stimulated LH receptor content by decreasing the apparent ED50 of FSH. At 6.25 ng/ml FSH, the enhancement in LH receptor was estrogen dose dependent, with an ED50 value of about 3 X 10(-9) M for 17 beta-estradiol. The increased LH receptor content seen in cells treated with FSH and estrogen was correlated with increased cAMP production by these cells in response to LH stimulation. Time course studies revealed enhancement of FSH-stimulated LH receptor induction at 48 and 72 h of culture. Granulosa cells were also cultured with FSH for 2 days to induce functional LH receptors, then further cultured for 3 days with LH in the presence or absence of estrogens. At 30 ng/ml LH, increasing concentrations of estrogens maintained LH receptor content in a dose-dependent fashion, with their relative estrogenic potencies in keeping with reported binding affinities to estrogen receptors. An autocrine role of estrogens on LH receptor formation was further tested in granulosa cells treated with FSH and an aromatase substrate (androstenedione) to increase estrogen biosynthesis. Cotreatment with semipurified estrogen antibodies partially blocked the FSH stimulation of LH receptors, whereas nonimmune serum was ineffective. Also, inclusion of diethylstilbestrol prevented the inhibitory effect of the estrogen antibodies. Thus, local estrogens in ovarian follicles may play an autocrine role in granulosa cells to enhance LH receptor formation and to increase granulosa cell responsiveness to the LH surge, with subsequent ovulation and adequate corpus luteum formation.  相似文献   

11.
12.
In mice deficient in progesterone receptor (PR), follicles of ovulatory size develop but fail to ovulate, providing evidence for an essential role for progesterone and PR in ovulation in mice. However, little is known about the expression and regulation of PR mRNA in preovulatory follicles of ruminant species. One objective of this study was to determine whether and when PR mRNA is expressed in bovine follicular cells during the periovulatory period. Luteolysis and the LH/FSH surge were induced with prostaglandin F(2alpha) and a GnRH analogue, respectively, and the preovulatory follicle was obtained at 0, 3.5, 6, 12, 18, or 24 h after GnRH treatment. RNase protection assays revealed a transient increase in levels of PR mRNA, which peaked at 6 h after GnRH and declined to the time 0 value by 12 h and a second increase at 24 h. The second objective was to investigate the mechanisms that regulate PR mRNA expression through in vitro studies on follicular cells of preovulatory follicles obtained before the LH/FSH surge. Theca and granulosa cells were isolated and cultured with or without a luteinizing dose of LH or FSH, progesterone, LH + progesterone, or LH + antiprogestin (RU486). Levels of PR mRNA increased in a time-dependent manner in granulosa cells cultured with LH or FSH and in theca cells cultured with LH, peaking at 10 h of culture. In contrast, progesterone (200 ng/ml) did not upregulate mRNA for its own receptor, and neither progesterone nor RU486 affected LH-stimulated PR mRNA accumulation. Furthermore, RU486 completely blocked LH-stimulated expression of oxytocin mRNA, indicating that PR induced by LH in vitro is functional. These results show that the gonadotropin surge induces a rapid and transient increase in expression of PR mRNA in both theca and granulosa cells of bovine periovulatory follicles followed by a second rise close to the time of ovulation and that the first increase in PR mRNA can be mimicked in vitro by gonadotropins but not by progesterone. These results suggest multiple and time-dependent roles for progesterone and PR in the regulation of periovulatory events in cattle.  相似文献   

13.
14.
FSH regulation of inhibin alpha-, beta(B)-subunit and follistatin mRNA was investigated in cultured chicken granulosa cells, which were isolated and pooled according to size from the F(4) + F(5) follicles, small yellow follicles (SYF), and large white follicles (LWF). In experiment 1 (four replicate experiments), granulosa cells were cultured, and the effect of FSH (50 ng/ml) on the growth of cells from the different follicles was examined at 24 and 48 h of culture. Cell viability was >95% for all of the granulosa cell cultures at 24 and 48 h. At 24 h, the number of granulosa cells in both the FSH-treated and the untreated cultures for all follicle types was numerically greater than the number of cells originally plated. At 48 h, FSH-treated cultures for all follicle types had twice (P: < 0. 05) the number of cells as the untreated cultures. In experiment 2 (three replicate experiments), FSH increased expression of the mRNA for inhibin alpha-subunit in LWF granulosa cells at 4 and 24 h to detectable levels and increased inhibin alpha-subunit protein accumulation to detectable levels by 24 h in granulosa cells from the LWF. FSH also increased (P: < 0.05) mRNA levels for the inhibin alpha-subunit at 4 and 24 h in SYF granulosa cells and at 24 h in F(4) + F(5) granulosa cells. The effects of FSH on follistatin and ss(B)-subunit were variable with respect to follicle development and culture duration. These results suggest that FSH plays an important role in stimulating the production of mRNA and protein for the inhibin alpha-subunit in small prehierarchical follicles.  相似文献   

15.
傅衍  牛冬  阮晖  余旭平  陈功  何国庆 《遗传学报》2001,28(12):1129-1136
分别用活化素(Activin)、卵泡抑素(FSP)及其组合(Activin FSP)来处理培养的鸭未成熟卵泡颗粒细胞,发现在FSH存在与不存在的情况下,Activin均能促进FSH受体mRNA的表达,且随着Activin浓度的增大,其刺激作用增强。FSP自身对FSH受体产生无显著作用,但能中和Activin对该受体产生的促进作用。这说明FSP和Activin对颗粒细胞具有自分泌作用,二者通过调节FSH受体mRNA的表达而在卵泡的生长发育过程中起着重要作用。  相似文献   

16.
The bovine dominant follicle (DF) model was used to identify molecular mechanisms potentially involved in initial growth of DF during the low FSH milieu of ovarian follicular waves. Follicular fluid and RNA from granulosa and theca cells were harvested from 10 individual DF obtained between 2 and 5.5 days after emergence of the first follicular wave of the estrous cycle. Follicular fluid was subjected to RIA to determine estradiol (E) and progesterone (P) concentrations and RNA to cDNA microarray analysis and (or) quantitative real-time PCR. Results showed that DF growth was associated with a decrease in intrafollicular E:P ratio and in mRNA for the FSH receptor, estrogen receptor 2 (ER beta), inhibin alpha, activin A receptor type I, and a proliferation (cyclin D2) and two proapoptotic factors (apoptosis regulatory protein Siva, Fas [TNFRSF6]-associated via death domain) in granulosa cells. In contrast, mRNAs for the LH receptor in granulosa cells and for two antiapoptotic factors (TGFB1-induced antiapoptotic factor 1, LAG1 longevity assurance homolog 4 [Saccharomyces cerevisiae]) and one proapoptotic factor (tumor necrosis factor [ligand] superfamily, member 8) were increased in theca cells. We conclude that the bovine DF provides a unique model to identify novel genes potentially involved in survival and apoptosis of follicular cells and, importantly, to determine the FSH-, estradiol-, and LH-target genes regulating its growth and function. Results provide new molecular evidence for the hypothesis that DF experience a reduction in FSH dependence but acquire increased LH dependence as they grow during the low FSH milieu of follicular waves.  相似文献   

17.
In the turkey, the onset of incubation behavior is associated with altered ovarian steroidogenesis, ovarian regression, decreased, LH secretion, and increased serum prolactin (Prl) levels. To clarify the relative contribution of circulating LH and Prl to the initiation of ovarian regression, laying hens were exposed for 0, 3, 7, or 14 days to a forced molting procedure (exposure to reduced day length of 6L:18D and removal of feed and water for the initial 3 days) that induces ovarian regression and decreased LH levels but does not increase Prl levels. On each of these days, hens were killed and granulosa and theca interna cells from the largest (F1) and fifth largest (F5) preovulatory follicles and total cells from the small white follicles (SWF) were incubated for 5 h in the presence or absence of ovine LH (oLH; 0-1,000 ng/ml). Force-molted hens exhibited diminished levels of circulating LH, Prl, progesterone (P), androgen (A), and estradiol (E) by Day 3 of treatment. Ovarian atresia began in F1 by the third day of treatment, and included F1 and F5 by the seventh day. No preovulatory follicles were present on the fourteenth day. With both F1 and F5 granulosa cells, production of P in the presence of oLH was initially enhanced (Day 3) and later absent (Day 7). In contrast, production of A by F5 theca interna cells in the presence of oLH was initially suppressed (Day 3) and then returned to pretreatment levels (Day 7).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Recent reports suggest that activin (the dimer of inhibin beta subunits with FSH-releasing activity) has specific receptors on ovarian granulosa cells. The present study examined the effects of purified porcine activin on inhibin secretion and mRNA levels in granulosa cells obtained from immature, estrogen-treated rats. Cells were cultured for 48 h in culture media, or media containing FSH (10 ng/ml) and/or activin (30 ng/ml). Western blot analyses performed with affinity-purified antisera to inhibin alpha- and beta A-subunits revealed that treatment with either FSH or activin increased the secretion of inhibin alpha beta dimer (Mr 30,000), with a further increase after cotreatment. These results were confirmed by an inhibin alpha-subunit RIA, which revealed 7-, 14-, and 71-fold increases in the secretion of immunoreactive inhibin-alpha by activin, FSH, and activin plus FSH, respectively. TGF beta, a structural homolog of activin, also stimulated inhibin release, whereas follistatin was ineffective. Total RNA from cultured cells was hybridized with 32P-labeled inhibin alpha-subunit cRNA or beta-actin cDNA probes, and inhibin-alpha message levels were normalized with beta-actin mRNA levels. Northern blot analysis revealed that treatment with FSH and activin increased hybridization of a 1.5 kilobase (kb) message, corresponding to the inhibin alpha-subunit mRNA. Slot blot analyses indicated a 6- and 8-fold stimulation of inhibin alpha-subunit mRNA levels by FSH and activin, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Follicle-stimulating hormone (FSH) enhances the conversion of testosterone or androstenedione into estradiol by stimulating the aromatase enzyme system. Estradiol also enhances FSH action. Thus, a synergistic action of FSH and estradiol may be required for maturation of ovarian follicles. We hypothesized that estradiol may be required for FSH action. Thus, blocking estrogen synthesis should prevent FSH-induced increases in FSH receptors. Hypophysectomized rats were divided into five groups and injected subcutaneously with: 1) saline, 2) cyanoketone (0.05 mg, blocks the conversion of pregnenolone to progesterone), 3) ovine FSH (oFSH, 200 micrograms), 4) cyanoketone then oFSH 24 h later, or 5) cyanoketone plus estradiol [or progesterone, testosterone, promegestrone (R5020), dihydrotestosterone (DHT), 2 mg], then FSH 24 h later. Animals were decapitated at 0, 12 or 24 h after an injection of oFSH, and membrane receptors for FSH and luteinizing hormone (LH), plus nuclear receptors for estradiol from granulosa cells, were measured. LH receptor levels were increased only after administration of FSH and estradiol. At 0 and 24 h, numbers of FSH or estradiol receptors were similar in saline- and cyanoketone-treated animals. FSH alone increased (P less than 0.01) FSH and estradiol receptors 3-fold and 4-fold, respectively, over controls by 12 and 24 h. Cyanoketone prevented these increases in FSH and estradiol receptors. Estradiol replacement fully reversed the effects of cyanoketone on FSH action. Replacement with progesterone and testosterone was able to only partially restore levels of FSH receptors; however, estradiol receptor numbers were also increased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The ovaries of 3-month-old Booroola lambs which were heterozygous carriers of a major gene (F) influencing the ovulation rate in mature ewes (i.e. F + lambs) were compared to those ofsimilarly-aged Booroola lambs which were non-carriers of the F-gene (i.e. ++ lambs). The ovaries of the F + Booroola lambs were significantly lighter (P less than 0.01) than those of ++ lambs even though the mean +/- s.e.m. number of follicles (greater than or equal to 1 mm diam.) in the F + lambs was greater than that in the ++ lambs (i.e. F + lambs, 30.2 +/- 2.5 follicles; ++ lambs, 18.4 +/- 1.2 follicles; P less than 0.01). In granulosa cells from non-atretic follicles (greater than or equal to 1 mm diam.) from F + and ++ Booroola lambs, FSH (NIAMDD-FSH-S16) doses of 100 and 1000 ng/ml caused significant stepwise increases (P less than 0.05) in cyclic adenosine 3',5'-monophosphate (cAMP) production compared to that achieved at FSH doses of 0 and 1 ng/ml or at any FSH dose in cells from atretic follicles. However, no significant differences in FSH-induced cAMP production were noted with regard to Booroola genotype or follicular diameter. None of the granulosa cell preparations from non-atretic follicles of 1-2.5 mm diameter from F + lambs (N = 13) or from non-atretic follicles of 1-4.5 mm diameter from ++ lambs (N = 16) responded to LH (NIAMDD-LH-S24; 10 or 1000 ng/ml) to produce significantly more cAMP than did the controls. In contrast, the granulosa cell preparations from non-atretic follicles of 3-4.5 mm diameter from F + lambs (N = 4) and from non-atretic follicles of greater than or equal to 5 mm diameter of ++ lambs (N = 4) produced significantly more cAMP (P less than 0.05) in response to LH (1000 and/or 10 ng/ml) relative to that in the controls. The theca interna from follicles of lambs of both genotypes had functional LH receptors as judged by the androstenedione responses to exogenous LH although no genotypic differences were noted. In F + lambs, the follicular fluid concentrations of testosterone but not oestradiol (i.e. in 1-4.5 mm diam. follicles) and granulosa cell aromatase activity (i.e. in 3-3.5 mm diam. follicles) were significantly higher (both P less than 0.05) than in corresponding follicles or cells from ++ lambs. Collectively the results suggest that the Booroola F-gene influences the composition and function of sheep ovaries before puberty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号