首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The diencephalon is a central area of the vertebrate developing brain, where the thalamic nuclear complex, the pretectum and the anterior tegmental structures are generated. It has been subdivided into prosomeres, which are transversal domains defined by morphological and molecular criteria. The zona limitans intrathalamica is a central boundary in the diencephalon that separates the posterior diencephalon (prosomeres 1 and 2), from the anterior diencephalon (prosomere 3). This intrathalamic limit appears early on in neural tube development, and the molecular pattern that it reveals suggests an important role in the diencephalic histogenesis. We hereby present a fate map of the presumptive territories in the diencephalon of a chick embryo at the 10-11 somite stages (HH9-10), by homotopic and isochronic quail-chick grafts. The anatomical interpretation of chimeric brains was aided by correlative whole-mount in situ hybridization with RNA probes for chicken genes expressed in specific diencephalic territories. The resulting fate map describes the distribution of the presumptive diencephalic prosomeres in the neural tube, and demonstrates their topologically conserved relationships throughout the neural development. Moreover, we show that the presumptive epithelium of ZLI can be localized at early developmental stages in the diencephalic alar plate at the anterior limit of the Wnt8b gene expression domain.  相似文献   

3.
4.
A previous study revealed that segments of bowel grafted between the neural tube and somites of a younger chick host embryo would induce a unilateral increase in cellularity of the host's neural tube. The current experiments were done to test the hypotheses that muscle tissue in the wall of the gut is responsible for this growth-promoting effect and that the spinal cord enlargement is the result of a mitogenic action on the neuroepithelium. Fragments of skeletal (E8-15) or cardiac muscle (E4-14) were removed from quail embryos and grafted between the neural tube and somites of chick host embryos (E2). Both skeletal and cardiac muscle grafts mimicked the effect of bowel and induced an increase in cell number as well as a unilateral enlargement of the region of the host's neural tube immediately adjacent to the grafts. The growth-promoting effect of muscle-containing grafts was restricted to the neural tube itself and was not seen in proximate dorsal root or sympathetic ganglia. The action of the grafts of muscle was neither species- nor class-specific, since enlargement of the neural tube was observed following implantation of fetal mouse skeletal muscle into quail hosts. Grafts of skeletal muscle or gut increased the number of cells taking up [3H]thymidine in the host's neuroepithelium as early as 9 h following implantation of a graft. The increase in the number of cells entering the S phase of the cell cycle preceded the increase in cell number. These observations demonstrate that muscle-containing tissues can increase the rate of proliferation of neuroepithelial cells when these tissues are experimentally placed together.  相似文献   

5.
We have cloned a cDNA encoding the chick HNF-3β gene and have used RNA and antibody probes that detect HNF-3β to monitor the normal and induced expression of the gene in early embryos. HNF-3β is expressed in Koller's sickle, at the onset of primitive streak formation, and later in Hensen's node. At neural plate and neural tube stages, HNF-3 β is expressed transiently in the notochord and is then expressed by floor plate cells. Prospective floor plate cells that are located in the epiblast immediately anterior to Hensen's node prior to its regression do not express HNF-3β, providing evidence that floor plate fate is normally determined only after these cells populate the midline of the neural plate and overlie the notechord. Removal of the notochord in vivo prevents floor plate development and in this condition HNF-3β is not expressed by cells at the ventral midline of the neural tube. Notochord grafts induce ectopic floor plate development and ectopic neural expression of HNF-3 β. In vitro, neural plate explants are induced to express HNF-3β by notochord cells in a contact-dependent but cycloheximide-resistant manner, providing evidence that expression of HNF-3 β is a direct response of neural plate cells to notochord-derived inducing signals.  相似文献   

6.
7.
8.
9.
10.
11.
12.
We have investigated the cell interactions and signalling molecules involved in setting up and maintaining the border between the neural plate and the adjacent non-neural ectoderm in the chick embryo at primitive streak stages. msx-1, a target of BMP signalling, is expressed in this border at a very early stage. It is induced by FGF and by signals from the organizer, Hensen's node. The node also induces a ring of BMP-4, some distance away. By the early neurula stage, the edge of the neural plate is the only major site of BMP-4 and msx-1 expression, and is also the only site that responds to BMP inhibition or overexpression. At this time, the neural plate appears to have a low level of BMP antagonist activity. Using in vivo grafts and in vitro assays, we show that the position of the border is further maintained by interactions between non-neural and neural ectoderm. We conclude that the border develops by integration of signals from the organizer, the developing neural plate, the paraxial mesoderm and the non-neural epiblast, involving FGFs, BMPs and their inhibitors. We suggest that BMPs act in an autocrine way to maintain the border state.  相似文献   

13.
14.
15.
16.
Shaping and bending of the avian neuroepithelium: morphometric analyses   总被引:1,自引:0,他引:1  
Changes in the size and shape of the neuroepithelium were measured from serial transverse sections of 30 plastic-embedded chick embryos at stages 4-11. The neural plate folds into a neural tube during this period. Changes in volume, length, apical and basal widths, apical and basal surface areas, and thickness of the neuroepithelium were measured and correlated with the amount of folding that had occurred. These measurements were made to provide data for comparison with those available from other systems, to gain insight into the mechanisms of shaping and bending of the neuroepithelium, and to obtain normal parameters for eventual comparison with those obtained from embryos with induced neural tube defects. During stages 4-11, the volume, length, apical and basal surface areas, and lateral thickness of the neuroepithelium increase, whereas apical and basal widths and median thickness of the neuroepithelium decrease. Models are presented to demonstrate the effects of possible changes in neuroepithelial cell number, position, and size on the shaping of the neural plate.  相似文献   

17.
A microinjection technique is described for fate mapping the epiblast of avian embryos. It consists of injecting the epiblast of cultured blastoderms with a fluorescent-histochemical marker, examining rhodamine fluorescence at the time of injection in living blastoderms, and assaying for horseradish peroxidase activity in histological sections obtained from the same embryos collected 24 h postinjection. Our results demonstrate that this procedure routinely marks cells, allowing their fates to be determined and prospective fate maps to be constructed. Two such maps are presented for ectodermal derivatives of the epiblast: one for late stages of Hensen's node progression (stages 3c through 4) and one for early stages of node regression (stages 4 + through 5). These new maps have six significant features. First, they show that regardless of whether the node is progressing or regressing, the flat neural plate extends at least 300 microns cranial to, 300 microns bilateral to and 1 mm caudal to the center of Hensen's node. Second, they confirm our previous fate mapping studies based on quail/chick chimeras. Namely, they show that the prenodal midline region of the epiblast forms the floor of the forebrain and the ventrolateral part of the optic vesicles as well as MHP cells (i.e., mainly wedge-shaped neurepithelial cells contained within the median hinge point of the bending neural plate); in contrast, paranodal and postnodal regions contribute L cells (i.e., mainly spindle-shaped neurepithelial cells constituting the lateral aspects of the neural plate). Third, they reveal a second source of MHP cells, Hensen's node, verifying previous studies of others based on tritiated thymidine labeling. Fourth, they demonstrate, in contrast to studies of other based on vital staining, carbon marking, and chorioallantoic grafting but in accordance with our previous studies based on quail/chick chimeras, that the cells contributing to the four craniocaudal subdivisions of the neural tube (i.e., forebrain, midbrain, hindbrain, and spinal cord) are not yet spatially segregated from one another at the flat neural plate stage, although more cranial neural plate cells tend to form more cranial subdivision and more caudal cells tend to form more caudal subdivisions. Thus, single injections routinely mark multiple neural tube subdivisions. Probable reasons for the discrepancy between our present results and the previous results of others is discussed. Fifth, they suggest that cells contributing to the surface ectoderm and neural plate are not yet completely spatially segregated from one another at the flat neural plate stage, particularly in caudal postnodal regions. Sixth, they delineate the locations of the otic placodes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The floor plate, a specialized group of cells in the ventral midline of the neural tube of vertebrates, plays crucial roles in patterning the central nervous system. Recent work from zebrafish, chick, chick-quail chimeras and mice to investigate the development of the floor plate have led to several models of floor-plate induction. One model suggests that the floor plate is formed by inductive signalling from the notochord to the overlying neural tube. The induction is thought to be mediated by notochord-derived Sonic hedgehog (Shh), a secreted protein, and requires direct cellular contact between the notochord and the neural tube. Another model proposes a role for the organizer in generating midline precursor cells that produce floor plate cells independent of notochord specification, and proposes that floor plate specification occurs early, during gastrulation. We describe a temperature-sensitive mutation that affects the zebrafish Nodal-related secreted signalling factor, Cyclops, and use it to address the issue of when the floor plate is induced in zebrafish. Zebrafish cyclops regulates the expression of shh in the ventral neural tube. Although null mutations in cyclops result in the lack of the medial floor plate, embryos homozygous for the temperature-sensitive mutation have floor plate cells at the permissive temperature and lack floor plate cells at the restrictive temperature. We use this mutant allele in temperature shift-up and shift-down experiments to answer a central question pertaining to the timing of vertebrate floor plate induction. Abrogation of Cyc/Nodal signalling in the temperature-sensitive mutant embryos at various stages indicates that the floor plate in zebrafish is induced early in development, during gastrulation. In addition, continuous Cyclops signalling is required through gastrulation for a complete ventral neural tube throughout the length of the neuraxis. Finally, by modulation of Nodal signalling levels in mutants and in ectopic overexpression experiments, we show that, similar to the requirements for prechordal plate mesendoderm fates, uninterrupted and high levels of Cyclops signalling are required for induction and specification of a complete ventral neural tube.  相似文献   

19.
In vertebrates the neural tube, like most of the embryonic organs, shows discreet areas of programmed cell death at several stages during development. In the chick embryo, cell death is dramatically increased in the developing nervous system and other tissues when the midline cells, notochord and floor plate, are prevented from forming by excision of the axial-paraxial hinge (APH), i.e. caudal Hensen's node and rostral primitive streak, at the 6-somite stage ( Charrier, J. B., Teillet, M.-A., Lapointe, F. and Le Douarin, N. M. (1999). Development 126, 4771-4783). In this paper we demonstrate that one day after APH excision, when dramatic apoptosis is already present in the neural tube, the latter can be rescued from death by grafting a notochord or a floor plate fragment in its vicinity. The neural tube can also be recovered by transplanting it into a stage-matched chick embryo having one of these structures. In addition, cells engineered to produce Sonic hedgehog protein (SHH) can mimic the effect of the notochord and floor plate cells in in situ grafts and transplantation experiments. SHH can thus counteract a built-in cell death program and thereby contribute to organ morphogenesis, in particular in the central nervous system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号