首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two kinkajous (Potos flavus, Procyonidae) showed marked nycthemeral variations in their rectal temperature. The mean Tr at night was 38.1 +/- 0.4 degrees C SD and 36.0 +/- 0.6 degrees C SD while resting during the day. Body temperature and O2-consumption were measured at ambient temperatures from 5-35 degrees C. With one exception at 35 degrees C, hypo- or hyperthermia was never observed. At air temperatures above 30 degrees C the bears reacted with behavioural responses. O2-consumption was minimal at Ta's from 23-30 degrees C. The mean basal metabolic rate was 0.316 ml O2 g-1 h-1 which is only 65% of the expected value according to the Kleiber formula. Below 23 degrees C heat production followed the equation : y (ml O2 g-1 h-1) = 0.727--0.018 Ta. The minimal thermal conductance was 90% of the predicted value according to the formula : C (ml O2 g-1 h-1 degrees C-1) = 1.02 W-0.505 (HERREID & KESSEL, 1967). Kinkajous are another distinct exception to the mouse to elephant curve.  相似文献   

2.
Metabolic and body temperature (Tb) responses of star-nosed moles (Condylura cristata) exposed to air temperatures ranging from 0 to 33 degrees C were investigated. The thermoneutral zone of this semi-aquatic mole extended from 24.5 to 33 degrees C, over which its basal rate of metabolism averaged 2.25 ml O2 g-1 h-1 (45.16 J g-1 h-1). This rate of metabolism is higher than predicted for terrestrial forms, and substantially higher than for other moles examined to date. Minimum thermal conductance was nearly identical to that predicted for similar-sized eutherians and may represent a compromise between the need to dissipate heat while digging and foraging in subterranean burrows, and the need to conserve heat and avoid hypothermia during exposure to cold. C. cristata precisely regulated Tb (mean +/- SE = 37.7 +/- 0.05 degrees C) over the entire range of test temperatures. Over three separate 24-h periods, Tb of a radio-implanted mole varied from 36.6 to 38.8 degrees C, and generally tracked level of activity. No obvious circadian variation in Tb and activity was apparent, although cyclic 2-4 h intervals of activity punctuated by periods of inactivity lasting 3-5 h were routinely observed. We suggest that the elevated basal metabolic rate and relatively high Tb of star-nosed moles may reflect the semi-aquatic habits of this unique talpid.  相似文献   

3.
We asked what effects hyperoxia may have on the metabolic response to cold of the newborn rat. Whole body gaseous metabolism (VO2 and VCO2) was measured in 2-day old rats by open flow respirometry at ambient temperatures (Tamb) between 40 and 20 degrees C, changed at a rate of 0.5 degrees C/min during normoxia and hyperoxia (100% O2 breathing). In normoxia, the thermoneutral range was very narrow, at Tamb = 33-35 degrees C. A decrease in Tamb at first stimulated VO2; a further drop in Tamb below 28 degrees C reduced metabolic rate. The metabolic response to cold was not sufficient to maintain body temperature (Tb). In hyperoxia average values of VO2 were above the normoxic values at all Tamb, but the difference was mostly apparent at low Tamb; at 20 degrees C, hyperoxic VO2 averaged 73% more than in normoxia. This metabolic increase determined a significant but small rise of Tb. We conclude that in the 2-days-old rat hyperoxia has a stimulatory effect on metabolism which is Tamb-dependent, being much more apparent in the cold. This supports the concept that the normoxic VO2 of the newborn is limited by the supply of O2. However, the fact that in the cold, even in hyperoxia, VO2 did not reach very high values, and Tb was not maintained, suggests that not only O2 availability, but also the rate of O2 utilization limits the aerobic metabolic response of the newborn.  相似文献   

4.
Nocturnal geckos can actively forage at low temperatures. A low minimum cost of locomotion allows greater sustainable speeds by partially offsetting the decrease in maximal oxygen consumption (VO2max) associated with low nocturnal temperatures. The nocturnality hypothesis (Autumn et al. 1997) proposes that the reduced cost of continuous locomotion is a shared, derived characteristic that increases the capacity to sustain locomotion at low temperatures. Yet many lizards move intermittently at speeds exceeding those that elicit VO2max. We exercised the frog-eyed gecko, Teratoscincus przewalskii, continuously and intermittently on a treadmill. At an exercise speed of 0.90 km h-1 (270% maximum aerobic speed), lizards alternating a 15-s exercise period with a 30-s pause period exhibited a 1.7-fold increase in distance capacity (total distance traveled before fatigue) compared with lizards exercised continuously at the same average speed (0.30 km h-1). The average aerobic cost of intermittent exercise was not significantly different from VO2max. Locomoting intermittently could augment the increase in endurance resulting from the low minimum cost of continuous locomotion in nocturnal geckos. Intermittent behavior could increase the endurance of lizard movement in general.  相似文献   

5.
In six male subjects the sweating thresholds, heart rate (fc), as well as the metabolic responses to exercise of different intensities [40%, 60% and 80% maximal oxygen uptake (VO2max)], were compared at ambient temperatures (Ta) of 5 degrees C (LT) and 24 degrees C (MT). Each period of exercise was preceded by a rest period at the same temperature. In LT experiments, the subjects rested until shivering occurred and in MT experiments the rest period was made to be of exactly equivalent length. Oxygen uptake (VO2) at the end of each rest period was higher in LT than MT (P less than 0.05). During 20-min exercise at 40% VO2max performed in the cold no sweating was recorded, while at higher exercise intensities sweating occurred at similar rectal temperatures (Tre) but at lower mean skin (Tsk) and mean body temperatures (Tb) in LT than MT experiments (P less than 0.001). The exercise induced VO2 increase was greater only at the end of the light (40% VO2max) exercise in the cold in comparison with MT (P less than 0.001). Both fc and blood lactate concentration [1a]b were lower at the end of LT than MT for moderate (60% VO2max) and heavy (80% VO2max) exercises. It was concluded that the sweating threshold during exercise in the cold environment had shifted towards lower Tb and Tsk. It was also found that subjects exposed to cold possessed a potentially greater ability to exercise at moderate and high intensities than those at 24 degrees C since the increases in Tre, fc and [1a]b were lower at the lower Ta.  相似文献   

6.
Tre of the suricates exhibits a marked diurnal rhythm (mean Tre at night 36.3 +/- 0.6 degrees C and 38.3 +/- 0.5 degrees C during the day). Oxygen consumption is lowest at Ta 30-32.5 degrees C (mean 0.365 +/- 0.022 ml O2 g-1 hr-1); this is 42% below the value expected from body mass. At Ta below the TNZ, oxygen uptake rises rapidly, minimal thermal conductance (0.040 ml O2 g-1 h-1 degrees C-1) being 18% above the mass-specific level. Lowest heart rates occur at Ta 30 degrees C (mean 109.6 +/- 9.8 beats min-1) and oxygen pulse is minimal at Ta 30-35 degrees C with 40-45 microliter O2 beat-1. At Ta 15-32.5 degrees C total evaporative water loss is between 0.46-0.63 ml H2O kg-1 hr-1 and increases markedly during heat stress (to a mean of 5.35 ml H2O kg-1 hr-1 at Ta 40 degrees C). This rise of TEWL is mainly attributable to the onset of panting at Ta above 35 degrees C.  相似文献   

7.
Contractile properties of the fast-twitch glycolytic (FG) portion of the iliofibularis muscle and sprint running performance were studied at approximately 5 degrees C intervals from 15-44 degrees C in the lizard Dipsosaurus dorsalis. Maximal running velocity (VR) and stride frequency (f) were both greatest when body temperature (Tb) was 40 degrees C, the field-active Tb in Dipsosaurus. At 40 degrees C VR was 4.3 +/- 0.2 m/s and f was 13.5 +/- 0.5 s-1. Between 25 and 40 degrees C, the thermal dependencies of VR and f were approximately constant (Q10's of 1.31 and 1.36 got VR and f, respectively). Below 25 degrees C performance declined more markedly with decreasing temperature. At 20 degrees C strides were qualitatively normal, but VR was only half of the value at 25 degrees C. At 15 degrees C the lizards were substantially incapacitated, and VR was 10% of the value at 20 degrees C. Stride length was approximately 0.33 m and changed very little with Tb from 20-44 degrees C. The time dependent contractile properties of FG muscle were affected more by temperature than was sprint performance. The maximal velocity of shortening at zero load (VO) was 18.7 0/s at 40 degrees C and had a Q10 of 1.7 from 25-40 degrees C. Maximal power output (Wmax) determined from the force-velocity curve was 464 W/kg at 40 degrees C. Below 40 degrees C max varied with temperature with a Q10 of 2-3. The shape of the force-velocity curve changed little with temperature (Wmax/POVO = 0.11). Between 25 and 40 degrees C a relatively temperature-independent process must modulate the effects of temperature on the contractile properties of the muscles that supply the power for burst locomotion. Storage and recovery of elastic energy appears to be a likely candidate for such a process. Below 25 degrees C, however, the contraction time is prolonged to such an extent that the f attainable is limited by the minimum time taken to contract and relax the muscles.  相似文献   

8.
1. Circadian rhythms of body temperature (Tb), oxygen consumption (VO2), and minimal thermal conductance (C) were studied in the pouched mouse, Saccostomus campestris under natural photoperiod during February at a constant ambient temperature of 28 degrees C. 2. Circadian rhythms of body temperature were also studied under natural photoperiod and laboratory temperatures (Max: 28.1 degrees C; Min: 23.2 degrees C) during February. 3. The results of the present study suggest that changes in ambient temperature are not the main "zeitgeber" for body temperature rhythm, and it seems that photoperiod plays a major role in this species. 4. The relationship between the rhythms of Tb, VO2, and C are further discussed.  相似文献   

9.
This study was undertaken to investigate whether part of the ammonia formed during muscular exercise was excreted with the sweat. Male medical students volunteered for the experiment. They exercised 30 min on a bicycle ergometer at 80 and 40% of the predetermined maximal O2 uptake (VO2max). Exercise at 80% VO2max was performed twice, at room temperature (20 degrees C) and in a cold room (0 degrees C), whereas exercise at 40% was performed only at room temperature (20 degrees C). Blood was collected from the antecubital vein immediately before and after exercise. Sweat was collected from the hypogastric region by use of gauze pads. It was shown that the plasma ammonia level was elevated after exercise at 80% VO2max and remained stable after exercise at 40% VO2max. The volume of sweat produced during exercise at 80% VO2max at 20 degrees C was 428 +/- 138 ml and at 0 degrees C 245 +/- 86 ml and during exercise at 40% VO2max was 183 +/- 69 ml. The ammonia concentration in the sweat after exercise at 80% VO2max at 20 degrees C was 7,140 mumol/l and at 0 degrees C 11,816 mumol/l. After exercise at 40% VO2max, it was 2,076 mumol/l. The total ammonia lost through the sweat during exercise at 80% VO2max was similar at both temperatures, despite the difference in the sweat volume (at 20 degrees C, 3,360 +/- 2,080 mumol; at 0 degrees C, 3,310 +/- 1,250 mumol). During exercise at 40% VO2max, it was 350 +/- 230 mumol. These results show that part of ammonia formed during exercise is lost with sweat. The amount lost increases with increased work rate and the plasma ammonia concentration.  相似文献   

10.
This study investigated the rectal (Tre), esophageal (Tes), and skin (Tsk) temperature changes in a group of trained traumatic paraplegic men pushing their own wheelchairs on a motor-driven treadmill for a prolonged period in a neutral environment. There were two experiments. The first experiment (Tre and Tsk) involved a homogeneous group (T10-T12/L3) of highly trained paraplegic men [maximum O2 uptake (VO2max) 47.5 +/- 1.8 ml.kg-1.min-1] exercising for 80 min at 60-65% VO2max.Tre and Tsk (head, arm, thigh, and calf) and heart rate (HR) were recorded throughout. O2 uptake (VO2), minute ventilation (VE), CO2 production (VCO2), and heart rate (HR) were recorded at four intervals. During experiment 1 significant changes in HR and insignificant changes in VCO2, VE, and VO2 occurred throughout prolonged exercise. Tre increased significantly from 37.1 +/- 0.1 degrees C (rest) to 37.8 +/- 0.1 degrees C after 80 min of exercise. There were only significant changes in arm Tsk. Experiment 2 involved a nonhomogeneous group (T5-T10/T11) of active paraplegics (VO2max 39.9 +/- 4.3 ml.kg-1.min-1) exercising at 60-65% VO2max for up to 45 min on the treadmill while Tre and Tes were simultaneously recorded. Tes rose significantly faster than Tre during exercise (dT/dt 20 min: Tes 0.050 +/- 0.003 degrees C/min and Tre 0.019 +/- 0.005 degrees C/min), and Tes declined significantly faster than Tre at the end of exercise. Tes was significantly higher than Tre at the end of exercise. Our results suggest that during wheelchair propulsion by paraplegics, Tes may be a better estimate of core temperature than Tre.  相似文献   

11.
The purpose of this study was to examine the seasonal changes in body composition and aerobic performance in elite soccer players. Twelve elite professional soccer players (aged 25 6 5 years, weight 75.7 6 5.3 kg, height 1.79 6 0.06 m) were measured for body fat (%), maximum oxygen consumption (VO2max), running velocity at VO2max (VO2max), running velocity at a fixed blood lactate concentration of 4 mmol · L21 (v-4 mM) at the start of the preseason period, at the beginning of the competitive period, and at midseason. VO2max, v-4 mM, and vVO2max increased significantly (p , 0.05) by 4.5, 10.5, and 7.8,respectively, after the preseason period. Thereafter, the aerobic performance parameters remained relatively constant, with no significant changes throughout the competitive period. The results of this study suggest that moderate improvements were observed in VO2max, and the %VO2max at 4 v-4 mM, whereas higher improvements were observed in VO2max and v-4 mmol · L21 after the preseason training period. On the other hand, during the competitive period, aerobic performance remained unchanged.In addition, this study suggests that heart rate, lactate, vVO2, and VO2max are useful and practical predictors that help monitor aerobic performance changes during a soccer season.  相似文献   

12.
Effects of hypoxia and cold acclimation on thermoregulation in the rat.   总被引:1,自引:0,他引:1  
The effects of hypoxia (inspired O2 fraction = 0.12) on thermoregulation and on the different sources of thermogenesis were studied in rats before and after periods of 1-4 wk of cold acclimation. Measurements of metabolic rate (VO2) and body temperature (Tb) were made at 5-min intervals, and shivering activity was recorded continuously in groups of rats subjected to three protocols. In protocol 1, rats were exposed to normoxia to an ambient temperature (Ta) of 5 degrees C for 2 h. In protocol 2, at Ta of 5 degrees C, rats were exposed for 30 min to normoxia, then for 45 min to hypoxia, and finally for 30 min to normoxia. In protocol 3, in the non-cold-acclimated (NCA) rats, Ta was decreased from 30 to 5 degrees C in steps of 5 degrees C and of 30-min duration while in cold-acclimated (CA) rats at 5 degrees C for 4-wk, Ta was increased from 5 to 30 degrees C in steps of 5 degrees C and of 30-min duration. Recordings were made in normoxia and in hypoxia on different days in the same animals. The results showed that 1) in NCA rats, cold exposure in normoxia induced increases in VO2 and shivering that were proportional to the decrease in Ta; 2) in CA rats in normoxia, for a given Ta, VO2 and Tb were higher than in NCA rats, whereas shivering was generally lower; and 3) in both NCA and CA rats, hypoxia induced a transient decrease in shivering and a sustained decrease in nonshivering thermogenesis associated with a marked decrease in Tb that was about the same in NCA and CA rats. We speculate that hypoxia acts on Tb control to produce a general inhibition of thermogenesis. Nonshivering thermogenesis is markedly sensitive to hypoxia, especially demonstrable in CA rats; a recovery or even an increase in shivering can compensate for the decrease in nonshivering thermogenesis.  相似文献   

13.
盐度与体重对台湾罗非鱼耗氧率的影响   总被引:12,自引:1,他引:11  
在盐度为淡水、7、14、2 1、2 8和 35的条件下 ,测定了 3个体重组 (1.5 7~ 4.87g ,7.0 7~ 18.2 3g和31.5 0~ 5 2 .41g)的台湾红罗非鱼的耗氧率 ,方差分析表明 ,盐度对台湾红罗非鱼的耗氧率有极显著的影响(P <0 .0 1) .体重范围为 1.5 7~ 18.2 4g时 ,盐度 7实验组的耗氧率最高 ,分别为 0 .41mgO2 ·g-1·h-1(1.5 7~ 4.78g)和 0 .34mgO2 ·g-1·h-1(7.0 7~ 18.2 3g) ,体重范围为 31.5 0~ 5 2 .41g时 ,耗氧率最高值出现在盐度 35组 ,为 0 .30mgO2 ·g-1·h-1.耗氧率最低值也因体重范围的不同而出现在不同的盐度 ,体重范围为1.5 7~ 4.78g时 ,盐度 14组的耗氧率最低 ,为 0 .2 8mgO2 ·g-1·h-1,体重范围在 7.0 7~ 5 2 .41g时 ,耗氧率的最低值均出现在盐度 2 1组 ,其中体重范围 7.0 7~ 18.2 3g的最低值为 0 .2 2mgO2 ·g-1·h ,而体重范围31 5 0~ 5 2 .41g的最低耗氧率为 0 .13mgO2 ·g-1·h-1.协方差分析表明 ,盐度和体重对台湾红罗非鱼的耗氧率存在极显著的交互作用 (P <0 .0 1) .  相似文献   

14.
This study determined whether marked hyperthermia alone or in combination with dehydration reduces the initial rate of rise in O(2) consumption (VO(2) on-kinetics) and the maximal rate of O(2) uptake (VO(2 max)) during intense cycling exercise. Six endurance-trained male cyclists completed four maximal cycle ergometer exercise tests (402 +/- 4 W) when euhydrated or dehydrated (4% body wt) with normal (starting esophageal temperature, 37.5 +/- 0.2 degrees C; mean skin temperature, approximately 31 degrees C) or elevated (+1 and +6 degrees C, respectively) thermal strain. In the euhydrated and normal condition, subjects reached VO(2 max) (4.7 +/- 0.2 l/min) in 228 +/- 34 s, with a mean response time of 42 +/- 2 s, and fatigued after 353 +/- 39 s. Hyperthermia alone or in combination with dehydration reduced mean response time (17-23%), VO(2 max) (16%), and performance time (51-53%) (all P < 0.01) but did not alter the absolute response time (i.e., the time to reach 63% response in the control trial, 3.2 +/- 0.1 l/min, 42 s). Reduction in VO(2 max) was accompanied by proportional decline in O(2) pulse and significantly elevated maximal heart rate (195 vs. 190 beats/min for hyperthermia vs. normal). Preventing hyperthermia in dehydrated subjects restored VO(2 max) and performance time by 65 and 50%, respectively. These results demonstrate that impaired high-intensity exercise performance with marked skin and internal body hyperthermia alone or in combination with dehydration is not associated with a diminished rate of rise in VO(2) but decreased VO(2 max).  相似文献   

15.
The plasma beta-endorphin (beta-EP) and beta-lipotropin (beta-LPH) response of men, eumenorrheic women, and amenorrheic women (n = 6) to 1 h of rest or to a bicycle ergometer test [20 min at 30% maximum O2 uptake (VO2max), 20 min at 60% VO2max, and at 90% VO2max to exhaustion] was studied in both normal (22 degrees C) and cold (5 degrees C) environments. beta-EP and beta-LPH was measured by radioimmunoassay in venous samples collected every 20 min during rest or after each exercise bout. Exhaustive exercise at ambient temperature (Ta) 22 degrees C induced significant increases in plasma beta-EP and beta-LPH in all subjects as did work at 60% VO2max in amenorrheic and eumenorrheic women. During work at Ta 5 degrees C, the relative increase in beta-EP and beta-LPH was suppressed in eumenorrheic women and completely prevented in amenorrheic women. Although significant lowering of beta-EP and beta-LPH was observed in men and eumenorrheic women during rest at 5 degrees C, amenorrheic women maintained precold exposure levels. These findings suggest that plasma beta-EP and beta-LPH may reflect a thermoregulatory response to heat load. There appears to be a sexual dimorphism in exercise- and cold-induced release of beta-EP and beta-LPH and amenorrhea may be accompanied by alterations in these responses.  相似文献   

16.
To test the hypothesis that maximal O2 uptake (VO2max) can be limited by O2 diffusion in the peripheral tissue, we kept O2 delivery [blood flow X arterial O2 content (CaO2)] to maximally contracting muscle equal between 1) low flow-high CaO2 and 2) high flow-low CaO2 conditions. The hypothesis predicts, because of differences in the capillary PO2 profile, that the former condition will result in both a higher VO2max and muscle effluent venous PO2 (PVO2). We studied the relations among VO2max, PVO2, and O2 delivery during maximal isometric contractions in isolated, in situ dog gastrocnemius muscle (n = 6) during these two conditions. O2 delivery was matched by varying arterial O2 partial pressure and adjusting flow to the muscle accordingly. A total of 18 matched O2 delivery pairs were obtained. As planned, O2 delivery was not significantly different between the two treatments. In contrast, VO2max was significantly higher [10.4 +/- 0.5 (SE) ml.100 g-1.min-1; P = 0.01], as was PVO2 (25 +/- 1 Torr; P less than 0.01) in the low flow-high CaO2 treatment compared with the high flow-low CaO2 treatment (9.1 +/- 0.4 ml.100 g-1.min-1 and 20 +/- 1 Torr, respectively). The rate of fatigue was greater in the high flow-low CaO2 condition, as was lactate output from the muscle and muscle lactate concentration. The results of this study show that VO2max is not uniquely dependent on O2 delivery and support the hypothesis that VO2max can be limited by peripheral tissue O2 diffusion.  相似文献   

17.
The energy cost of walking (Cw) and running (Cr), and the maximal O2 consumption (VO2max) were determined in a field study on 17 Pygmies (age 24 years, SD 6; height 160 cm, SD 5; body mass 57.2 kg, SD 4.8) living in the region of Bipindi, Cameroon. The Cw varied from 112 ml.kg-1.km-1, SD 25 [velocity (v), 4 km.h-1] to 143 ml.kg-1.km-1, SD 16 (v, 7 km.h-1). Optimal walking v was 5 km.h-1. The Cr was 156 ml.kg-1.km-1, SD 14 (v, 10 km.h-1) and was constant in the 8-11 km.h-1 speed range. The VO2max was 33.7 ml.kg-1.min-1, i.e. lower than in other African populations of the same age. The Cr and Cw were lower than in taller Caucasian endurance runners. These findings, which challenge the theory of physical similarity as applied to animal locomotion, may depend either on the mechanics of locomotion which in Pygmies may be different from that observed in Caucasians, or on a greater mechanical efficiency in Pygmies than in Caucasians. The low Cr values observed enable Pygmies to reach higher running speeds than would be expected on the basis of their VO2max.  相似文献   

18.
The effect of warm-up exercise on energy metabolism and muscle glycogenolysis during sprint exercise (Spr) was examined in six fit Standardbred horses exercised at 115% of maximal O(2) consumption (VO(2 max)) until fatigued, 5 min after each of three protocols: 1) no warm-up (NWU); 2) 10 min at 50% of VO(2 max) [low-intensity warm-up (LWU)]; and 3) 7 min at 50% VO(2 max) followed by 45-s intervals at 80, 90, and 100% VO(2 max) [high-intensity warm-up (HWU)]. Warm-up increased (P < 0.0001) muscle temperature (T(m)) at the onset of Spr in LWU (38.3 +/- 0.2 degrees C) and HWU (40.0 +/- 0. 3 degrees C) compared with NWU (36.6 +/- 0.2 degrees C), and the rate of rise in T(m) during Spr was greater in NWU than in LWU and HWU (P < 0.01). Peak VO(2) was higher and O(2) deficit lower (P < 0. 05) when Spr was preceded by warm-up. Rates of muscle glycogenolysis were lower (P < 0.05) in LWU, and rates of blood and muscle lactate accumulation and anaerobic ATP provision during Spr were lower in LWU and HWU compared with NWU. Mean runtime (s) in LWU (173 +/- 10 s) was greater than HWU (142 +/- 11 s) and NWU (124 +/- 4 s) (P < 0. 01). Warm-up was associated with augmentation of aerobic energy contribution to total energy expenditure, decreased glycogenolysis, and longer run time to fatigue during subsequent sprint exercise, with no additional benefit from HWU vs. LWU.  相似文献   

19.
Control of heat-induced cutaneous vasodilatation in relation to age   总被引:1,自引:0,他引:1  
Well matched unacclimatised older (age 55-68, 4 women, 2 men) and younger (age 19-30, 4 women, 2 men) subjects performed 75 min cycle exercise (approximately 40% VO2max) in a hot environment (37 degrees C, 60% rh). Rectal temperature (Tre), mean skin temperature (Tsk), arm blood flow (ABF, strain gauge plethysmography), and cardiac output (Q, CO2 rebreathing) were measured to examine age-related differences in heat-induced vasodilatation. Tre and Tsk rose to the same extent in each group during the exposure. There was no significant intergroup difference in sweat rate (older: 332 +/- 43 ml.m-2.h-1, younger: 435 +/- 49 ml.m-2.h-1; mean +/- SEM). However, the older subjects responded to exercise in the heat with a lower ABF response which could be attributed to a lower Q for the same exercise intensity. The slope of the ABF-Tre relationship was attenuated in the older subjects (9.3 +/- 1.3 vs 17.9 +/- 3.3 ml.100 ml-1.min-1.degrees C-1, p less than 0.05), but the Tre threshold for vasodilatation was about 37.0 degrees C for both groups. These results suggest an altered control of skin vasodilatation during exercise in the heat in older individuals. This attenuated ABF response appears to be unrelated to VO2max, and may reflect an age-related change in thermoregulatory cardiovascular function.  相似文献   

20.
Despite much focus on species responses to environmental variation through space and time, many higher taxa and geographic areas remain poorly studied. We report the effects of temperature acclimation on thermal tolerance, desiccation rate and metabolic rate for adult Chirodica chalcoptera (Coleoptera: Chrysomelidae) collected from Protea nerifolia inflorescences in the Fynbos Biome in South Africa. After 7 days of acclimation at 12, 19 and 25 degrees C, critical thermal maxima (mean+/-s.e.: 41.8+/-0.2 degrees C in field-fresh beetles) showed less response (<1 degrees C change) to temperature acclimation than did the onset of the critical thermal minima (0.1+/-0.2, 1.0+/-0.2 and 2.3+/-0.2 degrees C, respectively). Freezing was lethal in C. chalcoptera (field-fresh SCP -14.6 degrees C) and these beetles also showed pre-freeze mortality. Survival of 2 h at -10.1 degrees C increased from 20% to 76% after a 2 h pre-exposure to -2 degrees C, indicating rapid cold hardening. Metabolic rate, measured at 25 degrees C and adjusted by ANCOVA for mass variation, did not differ between males and females (2.772+/-0.471 and 2.517+/-0.560 ml CO2 h(-1), respectively), but was higher in 25 degrees C-acclimated beetles relative to the field-fresh and 12 degrees C-acclimated beetles. Body water content and desiccation rate did not differ between males and females and did not respond significantly to acclimation. We place these data in the context of measured inflorescence and ambient temperatures, and predict that climate change for the region could have effects on this species, in turn possibly affecting local ecosystem functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号