首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Recently, the effort in carrying out an integrated ergonomics approach known as "SHIP" (systemic, holistic, interdisciplinary and participatory) approach has been intensively undertaken in Bali with the aim of sustaining improvements being done. The People's Consultative Assembly of the Republic of Indonesia issued for the 1999-2004 period a "SHIP" Act on the Macro Guidelines of Tourism Development in which ergonomics and other factors must be considered comprehensively to attain sustainable development in tourism. Therefore the night and shift work that is recently increasingly applied in the tourism industry must also be designed and organized through this approach. In fact, however, economic factors have still been the predominant reason for workers to accept any type of night and shift work decided by the management, without taking into account possible impacts and consequences. For example, rapid forward rotation schemes seem more adapted to the hotel industry instead of traditional 6-6-6 rotation. Further, inter-city bus drivers are approved to work a 24-hour shift followed by one day off. These drivers often work an additional risky night shift after two consecutive night shifts so as to meet needed expenses for the family. Cultural or religious activities still presented constraints for workers as they carried out subsequently the night work. Therefore, proactive steps should be taken in a timely manner through the integrated SHIP approach in designing night and shift work so as to achieve work schedules compatible with both social life of shiftworkers and business concerns.  相似文献   

2.
In order to maintain a good environmental status of surface waters, an assessment of water quality carried out at specific intervals to monitor the changes of water quality in function of time. Human knowledge and experience are currently focused on using assessment methods, especially the integration of multiple constraining factors and considering them in conjugation with the correct decision-making process concerning the environment. When surface water is highly exposed to human activities, either from recreational or economic activity, the degree of vulnerability is high, and the quality of surface water is highly compromised. In case of Lake Balaton, there are many activities that can disrupt water dynamics. The first goal of this study is to determine the location of the least and most polluted sites around Lake Balaton. The processing of data was carried out by using multi-criteria decision techniques and environmental impact assessment method based on physical–chemical parameters in comparison with the limiting parameters. Based on the results of those methods water quality needs to be improved in western parts of the lake by using several geoengineering treatment techniques. This work covers a novel approach to comparing methods based on sum of ranking differences, whereas many method comparison studies suffer from ambiguity or from comparisons not being quite fair. This problem can be avoided if there are differences between ideal and actual rankings.  相似文献   

3.
Laboratory animal facilities have been designed to provide a standard environment where animals can be kept in good physical health at the same time as economic and ergonomic considerations are met. Recognizing the potential welfare problem associated with behavioural restriction in such housing systems, a number of attempts have been made to improve this environment, generally described under the term "environmental enrichment". Modifications of cages for mice usually consist of providing material for nest building and structures which can serve as hiding places and/or for climbing. We have reviewed 40 studies carried out between 1987 and 2000, in which preferences as well as the effect of housing modifications have been studied. Mice will work for access to nesting material and make use of this material to make nests in which they rest. They prefer a more complex cage to the standard cage and will also work for access to cages with shelter and raised platforms. On the basis of present knowledge, it is recommended that mice should have access to nesting material. Strategies for future research are outlined in the article.  相似文献   

4.
The selection, testing and application of terrestrial insects as bioindicators   总被引:12,自引:0,他引:12  
Although the uses and merits of terrestrial insects as indicators have been extensively discussed, there is a lack of clear definition, goal directedness and hypothesis testing in studies in the field. In an attempt to redress some of these issues and outline an approach for further studies, three categories of terrestrial insect indicators, corresponding to differences in their application, are proposed, i.e. environmental, ecological and biodiversity indicators. The procedures in terrestrial insect bioindicator studies should start with a clear definition of the study objectives and proposed use of the bioindicator, as well as with a consideration of the scale at which the study is to be carried out. Bioindication studies are conducted at a variety of spatial and temporal scales within the context of earth-system processes, but the objectives of the study will largely determine the scale at which it would be optimally conducted. There is a tendency for studies to be conducted below their space-time scaling functions, giving them apparent predictability. The selection of potential indicator taxa or groups is then based on a priori suitability criteria, the identification of predictive relationships between the indicator and environmental variables and, most importantly, the development and testing of hypotheses according to the correlative patterns found. Finally, recommendations for the use of the indicator in monitoring should be made. Although advocating rigorous, long-term protocols to identify indicators may presently be questionable in the face of the urgency with which conservation decisions have to be made, this approach is critical if bioindicators are to be used with any measurable degree of confidence.  相似文献   

5.
Fish populations are increasingly being subjected to anthropogenic changes to their sensory environments. The impact of these changes on inter- and intra-specific communication, and its evolutionary consequences, has only recently started to receive research attention. A disruption of the sensory environment is likely to impact communication, especially with respect to reproductive interactions that help to maintain species boundaries. Aquatic ecosystems around the world are being threatened by a variety of environmental stressors, causing dramatic losses of biodiversity and bringing urgency to the need to understand how fish respond to rapid environmental changes. Here, we discuss current research on different communication systems (visual, chemical, acoustic, electric) and explore the state of our knowledge of how complex systems respond to environmental stressors using fish as a model. By far the bulk of our understanding comes from research on visual communication in the context of mate selection and competition for mates, while work on other communication systems is accumulating. In particular, it is increasingly acknowledged that environmental effects on one mode of communication may trigger compensation through other modalities. The strength and direction of selection on communication traits may vary if such compensation occurs. However, we find a dearth of studies that have taken a multimodal approach to investigating the evolutionary impact of environmental change on communication in fish. Future research should focus on the interaction between different modes of communication, especially under changing environmental conditions. Further, we see an urgent need for a better understanding of the evolutionary consequences of changes in communication systems on fish diversity.  相似文献   

6.
Though widely used in quantitative genetics, in the study of human variation perhaps no statistic is more easily misinterpreted than heritability. While the contribution of genetic heritage to complex biological and behavioral phenotypes cannot be lightly dismissed, nonetheless we remain profoundly ignorant of how that legacy plays out in any environmental context. To be sure, it is not reducible to a single number. Nor does the preference among anthropologists for analyzing biological rather than behavioral phenotypes improve what heritability can reasonably say about the sources of human variation. This paper discusses the meaning of heritability, the methods for its estimation, the fallacies underlying its misuse, and its utility for inquiries in evolutionary anthropology and epidemiology. Progress in anthropological genetics will be realized through greater sophistication in study designs, including the measurement of environmental (physical and sociocultural) variation and the judicious choice of phenotypes for study. Elucidating the ontogenetic processes underlying adaptive plasticity is particularly critical to understanding the evolution of human biological variation. Such advancements will also shed light on the feasibility of genotype-targeted biomedical treatments. Failure to appreciate the limits of such approaches can divert resources from demonstrably effective environmentally based health interventions that benefit entire populations. Simplistic notions of genetic determinism should be challenged for the sake of our theories and the well-being of larger communities. As exemplified by the work of Frank B. Livingstone, anthropological genetics is at its best when incorporating anthropology into the study of human phenotypic variation.  相似文献   

7.
In order to elucidate the taxonomic status of the Fejervarya limnocharis complex relative to Malaysia and Japan populations, morphological observations and molecular phylogenetic analysis were carried out using three populations from Indonesia (type locality), Malaysia, and Japan. In addition, we conducted histological and spermatogenic observations using hybrids among these populations. Principal component and cluster analyses demonstrated that these populations could be clearly separated from one another. Abnormal testes were found in the hybrids between the Japan and Indonesia populations and between the Japan and Malaysia populations, but testes of the controls and hybrids between the Malaysia and Indonesia populations were quite normal. The mean number of univalents per cell was 5.42, 4.58, and 0.20 in hybrids between the Indonesia and Japan populations, Malaysia and Japan populations, and Indonesia and Malaysia populations, respectively. Sequence divergences in 16S rRNA and Cyt b genes were 0-0.4% (xbar=0.2%) and 0.3-1.5% (xbar=1.0%), respectively, between the Malaysia and Indonesia populations, and 2.4-2.6% (xbar=2.5%) and 11.0-12.0% (xbar=11.5%) between the Japan population and F. limnocharis complex, including the Malaysia and Indonesia populations and F. multistriata from China. This study indicated that the Malaysia population and F. multistriata from China should be designated as a subspecies of topotypic F. limnocharis, and that the Japan population should be regarded as a distinct species.  相似文献   

8.
Conclusions Although the results of experiments carried out to date have not given unambiguous answers to the question of which polysaccharides are being utilized byBacterioides in the colon, the results nonetheless encourage us to think that it may be possible to develop methods for answering this and related questions in the furture. Given the complexity of the in vivo environmental and the impossibility of knowing, much less controlling, all parameters, it will probably be necessary to use more than one approach to answering a particular question and assume that if anseers obtained by different approaches are consistent, they are probably correct. For example, the general conclusions from the experiments testing the performance of mutants in the germfree mouse model are in agreement with those arising from direct biochemical analysis of human feces. Also, results from these experiments with help to guide the design of more specific antibody probes because they indicate which polysaccharides are most likely to be important. A bootstrap type of approach in which each successive set of experiments produces information that makes possible a more specific type of probe may be the only approach that makes sense when dealing with metabolically versatile organisms in a highly complex ecosystem.  相似文献   

9.
Properties influencing fluorophore lifetime distributions in lipid bilayers   总被引:3,自引:0,他引:3  
B W Williams  C D Stubbs 《Biochemistry》1988,27(21):7994-7999
The fluorescence lifetime of the membrane fluorophore 1,6-diphenyl-1,3,5-hexatriene has been analyzed according to the distributional approach in a number of lipid bilayer systems. The systems included vesicles of 16:0/18:1-phosphatidylcholine (POPC), egg phosphatidylcholine (EYPC), microsomal phospholipids, and also intact microsomal membranes. With increasing complexity of composition, an increasingly broader width was found in the major component of a bimodal Lorentzian fluorescence lifetime distribution. In order to explain these findings, we propose a model based on environmental heterogeneity and environmental sampling, where the environment is defined as the lipid molecules immediately surrounding the fluorophore. Environmental heterogeneity is thought of as arising from organizational, compositional, and solvent factors. Environmental sampling pertains to the ability of a fluorophore to detect environments in a system and is a function of the fluorophore lifetime and the lipid dynamics. If the fluorescence lifetime is sufficiently short, the fluorophore will only sample a particular environment, and great compositional complexity will mean that each fluorophore in an ensemble will decay to the ground state with a different time. This appears to explain why in our results with DPH a narrow width is obtained for POPC, where vesicles are composed of a single phospholipid molecular species, compared to EYPC and microsomal phospholipid vesicles having complex molecular species composition. This model should serve as a basis for understanding the interrelationships of environmental complexity and lipid dynamics in membranes.  相似文献   

10.
There are so many definitions for ergonomics terms such as human factors, human factors engineering, human engineering, human factors psychology, engineering psychology, applied ergonomics, occupational ergonomics, industrial ergonomics and industrial engineering. The most inclusive terms are ergonomics and human factors. Both represent the study of work and the interaction between people and their work environmental systems. The main objective is especially fitting with the need to design, develop, implement and evaluate human-machine and environment systems that are productive, comfortable, safe and satisfying to use. The work of the ergonomists in Indonesia--most of them are academicians--have one thing in common, i.e. with the appropriate type of ergonomic approaches to interventions; there would be improvements in productivity, quality of working conditions, occupational safety and health (OSH), costs reduction, better environment, and increase in profits. So many researches, training, seminars and socialization about ergonomics and OSH have been done concerning micro-to-macro themes; but it seems that we are practically still running at the same place up to now. In facts, workers are still working using their traditional or obsolete methods in poor working conditions. Accidents are still happening inside and outside industry with the main root-cause being human "unsafe behavior" and errors. Industrial products cannot compete in the global market, and so many manufacturing industries collapsed or relocated to foreign countries. This paper discusses such a roadmap and review what we ergonomists in Indonesia have done and where we are going to? This review will be treated in the field of ergonomics and OSH to take care the future Indonesia challenges. Some of the challenges faced are care for the workers, care for the people, care for the quality and productivity of work, care for the new advanced technologies, care for the environment, and last but not least care for the nation.  相似文献   

11.
Behavioural biologists have typically combined interests in the control, function, development and evolution of behaviour. They have used observational and experimental methods, and their findings have been both attractive and scientifically invigorating. A future to be hoped for is that they will continue to combine an understanding of behaviour with studies carried out at other levels but that they will not become too locked into a purely analytical framework. Methodologies are needed that enable scientists to deal with all the principal factors that influence behaviour. In so doing, behavioural biologists should be able to retain a grasp of what is to be an intact, freely moving animal. I believe that the late Günther Tembrock, to whom this paper is dedicated, would have approved of such a systems approach to behaviour.  相似文献   

12.
When a packet of ions in a buffer gas is exposed to a weak electric field, the ions will separate according to differences in their mobilities through the gas. This separation forms the basis of the analytical method known as ion mobility spectroscopy and is highly efficient, in that it can be carried out in a very short time frame (micro- to milliseconds). Recently, efforts have been made to couple the approach with liquid-phase separations and mass spectrometry in order to create a high-throughput and high-coverage approach for analyzing complex mixtures. This article reviews recent work to develop this approach for proteomics analyses. The instrumentation is described briefly. Several multidimensional data sets obtained upon analyzing complex mixtures are shown in order to illustrate the approach as well as provide a view of the limitations and required future work.  相似文献   

13.
When a packet of ions in a buffer gas is exposed to a weak electric field, the ions will separate according to differences in their mobilities through the gas. This separation forms the basis of the analytical method known as ion mobility spectroscopy and is highly efficient, in that it can be carried out in a very short time frame (micro- to milliseconds). Recently, efforts have been made to couple the approach with liquid-phase separations and mass spectrometry in order to create a high-throughput and high-coverage approach for analyzing complex mixtures. This article reviews recent work to develop this approach for proteomics analyses. The instrumentation is described briefly. Several multidimensional data sets obtained upon analyzing complex mixtures are shown in order to illustrate the approach as well as provide a view of the limitations and required future work.  相似文献   

14.
Developing self-organised swarm systems capable of adapting to environmental changes as well as to dynamic situations is a complex challenge. An efficient labour division model, with the ability to regulate the distribution of work among swarm robots, is an important element of this kind of system. This paper extends the popular response threshold model and proposes a new adaptive response threshold model (ARTM). Experiments were carried out in simulation and in real-robot scenarios with the aim of studying the performance of this new adaptive model. Results presented in this paper verify that the extended approach improves on the adaptability of previous systems. For example, by reducing collision duration among robots in foraging missions, our approach helps small swarms of robots to adapt more efficiently to changing environments, thus increasing their self-sustainability (survival rate). Finally, we propose a minimal version of ARTM, which is derived from the conclusions drawn through real-robot and simulation results.  相似文献   

15.
16.
Summary Microbial modeling experiments require an integrated and efficient design to overcome constraints on time and human resources. The choice of an experimental system is effected by first determining the goals and scope of the model to be constructed. Kinetic studies, for example, require a different approach from single end-point models, such as time to toxin detection or growth probability. Studies have been conducted in liquid broth tubes or batch culture, agar plates, and food matrices. These traditional systems are labor intensive, however, which constrains experimental size, and thus, a model's scope and validity. To maximize experimental size, experimental systems should be automated and linked to electronic data manipulation, analysis, and presentation. Microbial modelers should also consider the relationship between the experimental environmental factors, such as pH,a w, or temperature, and their impact on growth, virulence or toxigenesis determinants. Attaining these goals will increase the probability that the model will accurately predict microbial responses in food systems.  相似文献   

17.
At the present time we know little about how microbial communities function in their natural habitats. For example, how do microorganisms interact with each other and their physical and chemical surroundings and respond to environmental perturbations? We might begin to answer these questions if we could monitor the ways in which metabolic roles are partitioned amongst members as microbial communities assemble, determine how resources such as carbon, nitrogen, and energy are allocated into metabolic pathways, and understand the mechanisms by which organisms and communities respond to changes in their surroundings. Because many organisms cannot be cultivated, and given that the metabolisms of those growing in monoculture are likely to differ from those of organisms growing as part of consortia, it is vital to develop methods to study microbial communities in situ. Chemoautotrophic biofilms growing in mine tunnels hundreds of meters underground drive pyrite (FeS(2)) dissolution and acid and metal release, creating habitats that select for a small number of organism types. The geochemical and microbial simplicity of these systems, the significant biomass, and clearly defined biological-inorganic feedbacks make these ecosystem microcosms ideal for development of methods for the study of uncultivated microbial consortia. Our approach begins with the acquisition of genomic data from biofilms that are sampled over time and in different growth conditions. We have demonstrated that it is possible to assemble shotgun sequence data to reveal the gene complement of the dominant community members and to use these data to confidently identify a significant fraction of proteins from the dominant organisms by mass spectrometry (MS)-based proteomics. However, there are technical obstacles currently restricting this type of "proteogenomic" analysis. Composite genomic sequences assembled from environmental data from natural microbial communities do not capture the full range of genetic potential of the associated populations. Thus, it is necessary to develop bioinformatics approaches to generate relatively comprehensive gene inventories for each organism type. These inventories are critical for expression and functional analyses. In proteomic studies, for example, peptides that differ from those predicted from gene sequences can be measured, but they generally cannot be identified by database matching, even if the difference is only a single amino acid residue. Furthermore, many of the identified proteins have no known function. We propose that these challenges can be addressed by development of proteogenomic, biochemical, and geochemical methods that will be initially deployed in a simple, natural model ecosystem. The resulting approach should be broadly applicable and will enhance the utility and significance of genomic data from isolates and consortia for study of organisms in many habitats. Solutions draining pyrite-rich deposits are referred to as acid mine drainage (AMD). AMD is a very prevalent, international environmental problem associated with energy and metal resources. The biological-mineralogical interactions that define these systems can be harnessed for energy-efficient metal recovery and removal of sulfur from coal. The detailed understanding of microbial ecology and ecosystem dynamics resulting from the proposed work will provide a scientific foundation for dealing with the environmental challenges and technological opportunities, and yield new methods for analysis of more complex natural communities.  相似文献   

18.
Understanding the properties of a system as emerging from the interaction of well described parts is the most important goal of Systems Biology. Although in the practice of Lactic Acid Bacteria (LAB) physiology we most often think of the parts as the proteins and metabolites, a wider interpretation of what a part is can be useful. For example, different strains or species can be the parts of a community, or we could study only the chemical reactions as the parts of metabolism (and forgetting about the enzymes that catalyze them), as is done in flux balance analysis. As long as we have some understanding of the properties of these parts, we can investigate whether their interaction leads to novel or unanticipated behaviour of the system that they constitute. There has been a tendency in the Systems Biology community to think that the collection and integration of data should continue ad infinitum, or that we will otherwise not be able to understand the systems that we study in their details. However, it may sometimes be useful to take a step back and consider whether the knowledge that we already have may not explain the system behaviour that we find so intriguing. Reasoning about systems can be difficult, and may require the application of mathematical techniques. The reward is sometimes the realization of unexpected conclusions, or in the worst case, that we still do not know enough details of the parts, or of the interactions between them. We will discuss a number of cases, with a focus on LAB-related work, where a typical systems approach has brought new knowledge or perspective, often counterintuitive, and clashing with conclusions from simpler approaches. Also novel types of testable hypotheses may be generated by the systems approach, which we will illustrate. Finally we will give an outlook on the fields of research where the systems approach may point the way for the near future.  相似文献   

19.
Local community dynamics are determined by the interaction of environmental variation and the biotic properties of communities. This interaction occurs on many spatial and temporal scales, hence the expectation is that community dynamics will be complex. Previous theoretical approaches to communities have assumed linear, near equilibrium dynamics. An alternative approach suggests that community dynamics are the result of the balance between energy use by the community and its tendency to move towards thermodynamic equilibrium, in this case extinction of all species in the community. Because this balance will be imprecise, community dynamics should be oscillatory. Furthermore, because energy use by a community can be broken down into a hierarchical set of processes occurring on different time scales, community dynamics should reflect multiple periodicities. The above theoretical treatment suggests that since community dynamics are scaled, a hierarchical observational approach should help resolve important aspects of community structure. This approach of scaling community observations provides a technique for evaluation of community responses to environmental change, including human induced perturbations. A thermodynamic approach to community dynamics can also provide the basis for new theoretical and empricial discoveries about biological communities.  相似文献   

20.
The scientific basis of bioassays   总被引:3,自引:3,他引:0  
Cairns  John  Pratt  James R. 《Hydrobiologia》1989,(1):5-20
The ultimate goal of ecotoxicological testing is to predict ecological effects of chemicals and other stressors. Since damage should be avoided rather than corrected after it occurs, the predictive value of such tests is crucial. A modest base of evidence shows that, in some cases, extrapolations from bioassays on one species to another species are reasonably accurate and, in other cases, misleading. Extrapolations from laboratory bioassays to response in natural systems at the population level are effective if the environmental realism of the bioassay is sufficiently high. When laboratory systems are poor simulations of natural systems, gross extrapolation errors may result. The problem of extrapolating among levels of biological organization has not been given the serious attention it deserves, and currently used methodologies have been chosen for reasons other than scientific validity. As the level of biological organization increases, new properties are added (e.g., nutrient cycling, energy transfer) that are not readily apparent at the lower levels. The measured responses (or end points) will not be the same at all levels of biological organization, making the validation of predictions difficult. Evidence indicates that responses of ecologically complex laboratory systems correspond to predicted and documented patterns in stressed ecosystems. The difficulties of improving the ecological evidence used to predict adverse effects are not insurmountable since the essence of predictive capability is the determination of effects thresholds at all levels of organization. The dilemma between basing predictive schemes on either traditional or holistic methods can only be solved by facing scientific and ethical questions regarding the adequacy of evidence used to make decisions of environmental protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号