首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 113 毫秒
1.
The DNA of UV-irradiated Bacillus subtilis spores, which contains 5-thyminyl-5,6-dihydrothymine (TDHT) as the major thymine photoproduct, is known to be repaired during germination by two complementary mechanisms: (I) the well-known excision repair, and (2) a special process, "spore repair", which destroys TDHT in situ without rendering it acid-soluble. In the absence of both mechanisms TDHT is not removed, and spores are highly UV-sensitive. When either of two mutations (pol-59 and pol-151) giving defective DNA polymerase, or one (rec-A1) giving a recombination deficiency are introduced into strains defective in one of these known TDHT removal processes, the chemically measured elimination of TDHT from spore DNA is unaltered, but spore UV-sensitivity is increased. The pol mutations produce their greatest sensitivity increase in spores of strains already deficient for the in situ destruction of TDHT, while the rec mutation gives its maximum sensitivity increase to spores of strains lacking excision. These facts argue that the pol mutations interfere mostly with excision repair (presumably its later resynthesis step), shile the rec mutation impairs "spore repair" in some step occurring subsequent to the TDHT destruction in situ. With either of these impairments of the later repair steps, DNA of UV-irradiated and germinated spores is considerably degraded, unless germination is carried out in the presence of chloramphenicol.  相似文献   

2.
The heat and UV light resistance of spores and vegetative cells of Bacillus subtilis BD170 (rec+) were greater than those of B. subtilis BD224 (recE4). Strain BD170 can repair DNA whereas BD224 is repair deficient due to the presence of the recE4 allele. Spores of a GSY Rec+ strain were more heat resistant than spores of GSY Rec- and Uvr- mutants. The overall level of heat and UV light resistance attained by spores may in part be determined by their ability to repair deoxyribonucleic acid after exposure to these two physical mutagens.  相似文献   

3.
4.
5.
6.
7.
Summary A DNA protein complex has been isolated from vegetative cells and spores of Bacillus subtilis. Properties of the DNA protein complex prepared from vegetative cells were studied and SDS gel electrophoresis was employed to compare the different DNase-untreated and-treated DNA protein complexes. It is concluded that proteins are associated with the DNA and differences in protein pattern in polyacrylamide gels indicates the involvement of DNA-binding proteins in the regulation of spore formation.  相似文献   

8.
9.
ytkD and mutT of Bacillus subtilis encode potential 8-oxo-dGTPases that can prevent the mutagenic effects of 8-oxo-dGTP. Loss of YtkD but not of MutT increased the spontaneous mutation frequency of growing cells. However, cells lacking both YtkD and MutT had a higher spontaneous mutation frequency than cells lacking YtkD. Loss of either YtkD or MutT sensitized growing cells to hydrogen peroxide (H2O2) and t-butylhydroperoxide (t-BHP), and the lack of both proteins sensitized growing cells to these agents even more. In contrast, B. subtilis spores lacking YtkD and MutT were not sensitized to H2O2, t-BHP, or heat. These results suggest (i) that YtkD and MutT play an antimutator role and protect growing cells of B. subtilis against oxidizing agents, and (ii) that neither YtkD nor MutT protects spores against potential DNA damage induced by oxidative stress or heat.  相似文献   

10.
It is now established that the light-harvesting chlorophyll—protein complex (LHCP) of chloroplasts becomes phosphorylated in the light. In this study subfractionation of phosphorylated intact chloroplasts has been carried out to compare the phosphorylation of LHCP in non-appressed and appressed thylakoid regions. The results show around 10-times higher relative phosphorylation in the non-appressed regions than in the appressed ones. Since the non-appressed thylakoids also contain almost all photosystem 1, this region is likely to be the site for energy transfer from LHCP to photosystem 1 under phosphorylated conditions.  相似文献   

11.
Bacillus subtilis forms both vegetative cells and spores. The fluidity of the membranes in these forms was measured by using fluorescent anisotropy of 1,6‐diphenyl‐1,3,5‐hexatriene (DPH). The spores were more rigid than the vegetative cells, suggesting that the structure of the spores and vegetative cells was different. This difference was thought to be due to the structure of the cell membranes. The anisotrophy of DPH in the cell membranes of spores gave higher values at all temperatures. The anisotrophy of DPH in the cell membranes of vegetative cells was lower than that of the spores and the value depended upon the temperature. Time Domain Reflectometry (TDR) was used to measure the quantities of bound and free water in the vegetative cells and spores. The spores were dehydrated, and the amount of bound and free water in the spores was about two‐thirds of the levels in the vegetative cells. The spores have fewer sugars molecules on their cell surface membranes, but contained as much sugars within the cell. Almost 100 per cent of the vegetative cells wee absorbed toward chitin, but the spores were not absorbed toward it at all. It was felt that the surface membrane of the vegetative cell had a high mobility because it was sugar‐rich, while the surface membrane of the spore showed a lower mobility because there are fewer sugars on the outer membrane. The spores survive in high temperatures because the surface membrane of the spore is tight and has relatively few sugars. Dehydration causes the rigidity of the spores. On the other hand, the vegetative cells are sugar‐ and water‐rich, which makes them more fluid. The difference between the vegetative cells and spores is the glycosylation of their surface membranes. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
13.
Summary Mutation induction (resistance to sodium azide) in spores ofBacillus subtilis was investigated after irradiation with heavy ions from Neon to Uranium with specific particle energies between 0.17 and 18.6 MeV/u. A strong dependence of the mutation induction cross section on particle charge and energy was observed. From the results it was concluded that mutation induction in bacterial spores by very heavy ions is mainly caused by secondary electrons.  相似文献   

14.
The localization of ATP-hydrolysing activity in vegetative cells, spores and isolated membranes of Bacillus subtilis 168 was studied by a cytochemical method combined with electron microscopy. The activity was located mainly in the cytoplasmic membrane and the mesosomes, and was also found in the inner layer of the cell wall facing the cytoplasmic membrane. Activity was also detected in the cross-membranes of dividing cells and in spore coats. The product of the reaction was observed either as fine electron-dense granules incorporated into the membranes, or as high-contrast lead precipitates on the surfaces of the membranes.  相似文献   

15.
16.
A simple experimental system for detection of sporulation promoting factors was presented. This system showed that there was a sporulation promoting factor in the vegetative cells of Bacillus subtilis cultivated on nutrient agar for 9 hr (at stage T0). The factor was partially purified from the sonicate of vegetative cells by ethanol fractionation, gel filtration, chromatography and preparative gel electrophoresis, and it was identified as manganese-containing protein.  相似文献   

17.
Polymyxin B combined with the resting spores of Bacillus subtilis and inhibited outgrowth and vegetative growth after germination. The antibiotic was released from the resting spores and its inhibitory action was reversed by the addition of di- and trivalent metallic cations.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号