首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of lecithin-cholesterol acyltransferase (LCAT) on the transfer of cholesterol esters mediated by lipid transfer protein (LTP) and its affinity for lipid and lipoprotein particles were investigated. When the single bilayer vesicle preparations (containing phosphatidylcholine, cholesterol, cholesteryl ester, and apolipoprotein- (apo) A-I at the molar ratio of 90:30:1.2:0.18) or high density lipoprotein 3 (HDL3) were used as the cholesteryl ester donor and low density lipoproteins (LDL) as the acceptor, the transfer activity of LTP was enhanced by the addition of low concentrations of LCAT. In contrast, no enhancement of cholesteryl ester transfer was observed upon addition of LCAT to either the discoidal bilayer particle preparations (containing phosphatidylcholine, cholesterol, cholesteryl ester, and apo-A-I at the molar ratio of 90:30:1.2:1.0) or high density lipoprotein 2 (HDL2). Although both apo-A-I and apo-A-II promoted the transfer of cholesteryl ester from vesicles to LDL, the additional enhancement of the transfer by LCAT was observed only with the vesicles containing apo-A-I. Gel permeation chromatography of LTP/vesicle and LTP/HDL3 mixtures in the presence and absence of LCAT showed that the affinity of LTP for both the vesicles and HDL3 increased upon addition of LCAT. In contrast, neither HDL2 nor discoidal bilayer particles showed any significant enhancement of LTP binding upon addition of LCAT. By using LCAT covalently bound to Sepharose 4B, a maximal interaction between LTP and bound LCAT was shown to occur at the ionic strength of 0.16. Deviation from this ionic strength reduced the extent of the interaction. At the ionic strength of 0.01 and 0.5, the elution volume of LTP was identical to that of bovine serum albumin.  相似文献   

2.
The paper studies antiatherogenic changes of serum lipid profile in various conditions, namely: 1) the mountain and climatic treatment on Caucasian resorts, 2) periodic hypobaric therapy, 3) trekking in mountains with regular cold tests (the Tibetan yoga gTum-mo). We made the comparison of rate of change of serum total cholesterol, high (HDL), low (LDL) and very low density (VLDL) lipoproteins, and also triglycerides by use of exponential model of changes of lipid profile. By application of new computing algorithm it was proved that the maximal rate of antiatherogenic changes of serum lipid profile (decrease in the total cholesterol and in LDL, increase in HDL) is characteristic for a combination of three conditions: 1) moderate altitude hypoxia, 2) moderate physical activities and 3) special exercises for increase of cold tolerance (the Tibetan yoga gTum-mo).  相似文献   

3.
Baboons from some families have a higher concentration of plasma high density lipoproteins (HDL) on a chow diet and accumulate large HDL (HDL1) when challenged with a high cholesterol and high saturated fat (HCHF) diet. HDL1 from high HDL1 animals contained more (1.5-fold) cholesteryl ester than HDL (HDL2 + HDL3) from high or low HDL1 animals. HDL from high HDL1 baboons had lower triglyceride content than that from low HDL1 baboons. HDL3 or HDL labeled with [3H]cholesteryl linoleate was incubated with entire lipoprotein fraction (d less than 1.21 g/ml) or very low density lipoprotein + low density lipoprotein (VLDL + LDL) (d less than 1.045 g/ml) and with lipoprotein-deficient serum (LPDS), and the radioactive cholesteryl ester and mass floating at d 1.045 g/ml (VLDL + LDL) after the incubation was measured. The transfer of cholesteryl esters from either HDL or HDL3, prepared from plasma of high HDL1 animals fed chow or the HCHF diet, was slower than the transfer from either HDL or HDL3 of low HDL1 animals, regardless of the source of transfer activity or the ratio of LDL:HDL-protein used in the assay. Addition of HDL from high HDL1 baboons into an assay mixture of plasma components from low HDL1 baboons decreased the transfer of cholesteryl ester radioactivity and mass from HDL to VLDL and LDL. In addition to HDL, a fraction of intermediate density lipoprotein (IDL) and denser HDL were also effective in inhibiting the transfer. These observations suggest that accumulation of HDL1 in high HDL1 baboons fed an HCHF diet is associated with a slower transfer of cholesteryl esters from HDL to LDL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Intact rats removed more radiolabelled triacylglycerol, cholesterol, and cholesterol ester but not phosphatidylcholine (PC) in the first 6 min than hepatectomized rats. There was no difference between intact and hepatectomized rats in the transfer of radiolabelled chylomicron lipids to other lipoproteins. Specific radioactivity measurements demonstrated a net transfer of PC (intact and hepatectomized rats) and unesterified cholesterol (intact rats only) onto both the low density lipoprotein/high density lipoprotein-1 (LDL/HDL1) and HDL2 fractions. [3H]Fatty acids were rapidly incorporated into blood cell phospholipids and into HDL and LDL cholesterol esters of both intact and hepatectomized rats. Substantial rearrangements of [3H]palmitate occurred during lipid uptake by liver.  相似文献   

5.
The possibility that apoB 100 is cotranslationally translocated to the endoplasmic reticulum lumen and integrated into lipoproteins has been investigated. ApoB 100 nascent polypeptides were shown to be secreted from pulse-labeled Hep G2 cells after treatment with puromycin and chase for 1 or 2 h in the presence of puromycin and cycloheximide. These nascent polypeptides banded during sucrose gradient ultracentrifugation between the position of the high (HDL) and the low (LDL) density lipoproteins, revealing an inverse relationship between the length of the polypeptide and the density of the fraction. ApoB 100 occurred in the position of LDL and very low density lipoproteins (VLDL). Electronmicroscopy studies of the apoB-containing particles from the gradient indicated an increase in size with increasing length of the polypeptide. Furthermore, labeling studies indicated that the triglyceride load increased with the length of the polypeptide. An inverse relationship between the size of C-terminally truncated apoB polypeptides and the density of the assembled lipoproteins was also observed in experiments with transfected minigenes coding for apoB 41, apoB 29, and apoB 23. These proteins appeared on HDL particles. Pulse-chase experiments indicated that 80-200-kDa apoB nascent polypeptides on particles with HDL density, with time, were converted into larger polypeptides on lighter particles, to be fully replaced by apoB 100 on LDL-VLDL particles. The formation of these LDL-VLDL particles could be blocked by cycloheximide. Sixty-five percent of pulse-labeled apoB nascent polypeptides present in the microsomal fraction was released by sodium carbonate treatment, and 77% of these polypeptides could be recovered on the immature particles (banding between HDL and LDL) after sucrose gradient ultracentrifugation. Pulse-chase experiments indicated that these nascent polypeptides, on the immature lipoproteins, had the capacity to be precursors for all the apoB 100-containing LDL and VLDL particles formed in the cell. The obtained results indicate that a major portion of the apoB nascent polypeptides in the cell form lipoproteins cotranslationally during the translocation to the lumen of the endoplasmic reticulum.  相似文献   

6.
Tritiated 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) added to human plasma in vitro associated with the plasma lipoproteins. The effects of plasma and lipoproteins on cellular uptake of dioxin were studied using normal human skin fibroblasts and mutant fibroblasts from a patient with homozygous familial hypercholesterolemia. The latter cells lack the normal cell membrane receptor for low density lipoprotein (LDL). The time- and temperature-dependent cellular uptake of [3H]dioxin was greatest from LDL, intermediate from high density lipoprotein (HDL) and least from serum. A significantly greater uptake from LDL by the normal cells compared to the mutant cells indicated the involvement of the LDL receptor-mediated pathway. Concentration-dependent studies indicated that the cellular uptake at 37 degrees C of [3H]dioxin varied linearly with dioxin concentration at constant LDL concentration. Thin-layer chromatography (TLC) showed that conversion to more polar compounds may have occurred after 24-h incubation with cells. [3H]Dioxin could be removed from cells efficiently by incubation with 20% serum greater than HDL greater than LDL. Since the vehicle of delivery may influence subsequent location and metabolism of this compound in cells, it is concluded that the physiologic vehicles (either serum- or LDL-associated dioxin), rather than organic solvents, should be used in experiments with cultured cells or perfused organs.  相似文献   

7.
1. We have recently reported the ability of orally administered l-carnitine to lower plasma triglyceride in the Watanabe Heritable Hyperlipidemic Rabbit (WHHL), an animal model of familial hyperlipoproteinemia. 2. In the present studies we examined the effect of l-carnitine administration upon individual lipoprotein subfractions in this animal model. 3. Carnitine feeding resulted in a reduction in very low density lipoproteins (VLDL) and high density lipoprotein (HDL). 4. Compositional analysis revealed a reduction in core triglyceride content with a concomitant increase in protein and phospholipid in VLDL and low density lipoproteins (LDL). 5. Conversely, electrophoretic mobility and apolipoprotein composition were unchanged with l-carnitine. 6. These results further demonstrate the ability of l-carnitine to modulate lipoprotein lipid composition in this animal model of familial hyperlipoproteinemia.  相似文献   

8.
Human and serum lipoproteins interaction with steroid hormones (corticosterone and hydrocortisone) were studied. Methods of fluorescence quenching titration and equilibrium dialysis were used for quantitative evaluation of VLDL, LDL and HDL glucocorticoids binding ability. Association constants were found to be 0.6-2.0 x 10 M for corticosterone and 4.0-8.0 x 10 M for hydrocortisone. The number of binding sites ranged from 3 to 300 for different classes of lipoproteins. Our data suggest high specificity of serum lipoproteins binding with corticosterone and hydrocortisone.  相似文献   

9.
1. Concentration and composition of the "very low density lipoproteins" (VLDL), "low density lipoproteins" (LDL) and "high density lipoproteins" (HDL) and of non-floatable lipids of fetal rat serum (day 22 of pregnancy) were determined by ultracentrifugation, thin-layer chromatographic separation of the floated lipids and quantitation of the lipid and protein moiety. 2. The concentration of VLDL is in the fetal rat by one order of magnitude lower, and that of LDL, 5fold higher than in the adult animal; the concentration of HDL in fetal serum amounts to 60% of the value of adult animals. 3. The composition of LDL and HDL of fetal serum does not differ from that in the serum of adult animals; in contrast, the fetal VLDL have a higher proportion of protein and cholesterol and a lower proportion of triglycerides than the VLDL of adult serum. The electrophoretic mobility of the fetal VLDL is lower than that of adult VLDL.  相似文献   

10.
Purified preparations of phosphatidylcholine (lecithin): cholesterol acyltransferase (EC 2.3.1.43), were injected into goats to produce antisera reacting with this enzyme. The antisera and the gamma-globulin derived thereform were examined by the technics of immunodiffusion, immunoelectrophoresis and immunoinhibition of the enzyme. The antisera gave no precipitation lines with human high density lipoproteins (HDL) and human low density lipoproteins (LDL). A weak antibody titer towards human serum albumin was noted only after prolonged immunization. The enzymatically active band isolated from acrylamide gels gave a single arc in immunodiffusion and immunoelectrophoresis. The gamma-globulin derived from the antisera inhibited human phosphatidylcholine:cholesterol acyltransferase activity.  相似文献   

11.
Particle diameters of very low density lipoprotein (VLDL)--29.5, 36.3, 22.0; low density lipoprotein (LDL)--18.4, 19.0, 22.0; high density lipoprotein subclass 2 (HDL2)--8.5, 9.7, 15.0; and high density lipoprotein subclass 3 (HDL3)--7.2, 7.6, 14.4 nm were evaluated by means of flotation velocity (FV), optical mixing (OM), and fluorescent probe (FP) respectively. On the basis of the calculated frictional ratio f/f0 from FV and OM data for VLDL, LDL, HDL2, and HDL3--1.51, 1.07, 1.31, and 1.10, assuming the sphericity lipoprotein particles as an index for structural peculiarity a conclusion is made that in contrast to LDL and HDL3 HDL2 have asymmetrical weight distribution per particle volume. A model is suggested suitable for the structural peculiarity of VLDL established on the data of three independent methods which outlines VLDL as particles consisting of several associated subunits with the mean diameter of about 20 nm.  相似文献   

12.
We investigated in vitro the influence of low density lipoprotein (LDL) cholesterol and high density lioprotein (HDL) cholesterol separated from human serum on prostaglandin I2 synthetase activity studied by the conversion of prostaglandin H2 to prostaglandin I2 by the microsomal fraction of pig aorta. 6-Oxo-prostaglandin F1 alpha was analyzed by gas-liquid chromatography using prostaglandin F1 alpha as internal standard. We found a linear negative correlation (P less than 0.001) between the amount of LDL cholesterol in the incubation solution and prostaglandin I2 synthetase activity, whereas there was a positive correlation (P less than 0.01) between HDL cholesterol and prostaglandin I2 synthesis. A very low concentration of LDL cholesterol and a high concentration of HDL cholesterol stimulated prostaglandin I2 synthesis, whereas a high LDL cholesterol concentration inhibited prostaglandin I2 biosynthesis by 64%. The concentration range of LDL and HDL cholesterol was representative of physiologically low, normal or elevated levels of lipoproteins.  相似文献   

13.
When incubated with intact erythrocytes, low density lipoproteins (LDL) decrease the phosphate content of erythrocyte spectrin allowing the cells to undergo morphological transformation. The phosphate content of spectrin depends on the balance between the activity of membrane-associated cyclic AMP-independent protein kinases and phosphoprotein phosphates. LDL do not influence the activity of membrane-associated cyclic AMP-independent protein kinases; these lipoproteins activate by 2-fold and greater membrane-associated phosphatases as determined by hydrolysis of p-nitrophenyl phosphate and by phosphate hydrolysis of phosphorylated erythrocyte membrane proteins. We conclude that LDL interact at the exterior surface of the erythrocyte to stimulate dephosphorylation of spectrin. The significance of this conclusion is augmented by the fact that spectrin, the target for LDL-induced dephosphorylation, specifies cell morphology and modulates the distribution of cell-surface receptors. LDL also render erythrocyte acetylcholinesterase less susceptible to inhition by F-. Lipoproteins in the high density class (HDL) do not stimulate dephosphorylation of spectrin, and they are consequently unable to alter erythrocyte morphology. HDL do prevent the LDL-induced activation of membrane phosphatase. The inhibitory capacity of HDL is observed over the range of LDL:HDL (w/w) which exists in the plasma of normolipemic humans.  相似文献   

14.
We compare the adsorption behavior of high density lipoproteins (HDL) and low density lipoproteins (LDL) on "fibrogenic" and "nonfibrogenic" mineral dusts. The adsorption tests with bovine lipoprotein concentrate and human serum produced the following results: 1) All seven examined fibrogenic dusts (SiO2 DQ12, SiO2 F600, silica, graphite, TiC, kaolin, talc) adsorbed significantly more high density lipoproteins (HDL), than the five examined nonfibrogenic (inert) dusts (TiO2, SnO2, Al2O3, Fe2O3, Fe3O4). This different behavior was particularly conspicuous in the presence of competing adsorbates (serum proteins). 2) In contrast, the adsorption of LDL did not correlate with the fibrogenicity of the mineral dusts. 3) The known silicosis-protective substance polyvinylpyridine-N-oxide inhibits the HDL adsorption of alpha-quartz. These results indicate that the adsorption of HDL could have a causal relationship with the triggering of a fibrotic reaction. The adsorption on the surface of fibrogenic dust particles provides an exceptional opportunity for the intake of HDL by macrophages. During the phagocytosis of the inhaled dust particles, the HDL adsorbed on the surface of the particles could be taken up by macrophages regardless of the receptor. There the HDL particles and/or compounds associated with them, such as lecithin-cholesterol-acyltransferase, could stimulate the macrophages to release fibrogenic mediators by some yet unknown mechanism.  相似文献   

15.
Isolated human plasma low density lipoprotein (LDL) was observed to possess sphingomyelinase activity. Accordingly, the formation of ceramide was catalyzed by LDL at 37 degrees C using tertiary liposomes composed of sphingomyelin (mole fraction (x) = 0.2), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (x = 0.7), 1, 2-dimyristoyl-sn-glycero-3-phospho-rac-glycerol (x = 0.1), and either the fluorescent sphingomyelin analog Bodipy-sphingomyelin or [(14)C]sphingomyelin as substrates. However, this activity was not present in either very low density lipoprotein or the high density lipoprotein subfractions HDL(2) and HDL(3). Oxidation of LDL abrogated its sphingomyelinase activity. Aggregation of the liposomes upon incubation with LDL was evident from the light scattering measurements. Microinjection of LDL to the surface of giant liposomes composed of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), N-palmitoyl-d-sphingomyelin (C16:0-sphingomyelin), and Bodipy-sphingomyelin as a fluorescent tracer (0.75:- 0.20:0.05, respectively) revealed the induction of vectorial budding of vesicles, resembling endocytosis.  相似文献   

16.
Using high density and low density lipoproteins (HDL and LDL) labeled with fluorescent analogues of phosphatidylcholine or sphingomyelin it was found that low amounts (10–12 M) of prostaglandins E1 and F2 induced different structural rearrangements of the lipoprotein surface, whereas prostaglandins E2 and F1 had no effect. The effects of prostaglandin E1 on HDL were largely paralled by those of this prostaglandin on synthetic recombinants prepared from pure apolipoprotein A1, phospholipids and cholesterol and were demonstrated to be caused by prostaglandin-apolipoprotein interaction. The interaction resembled that of a ligand with a specific receptor protein because it was specific, reversible, concentration and temperature dependent and saturable. However the retaining capacity of HDL or LDL for prostaglandin E1 as determined by equilibrium dialysis was very low and a single prostaglandin E1 molecule was able to induce structural changes in large numbers of discrete lipoprotein particles. To explain this remarkable fact a non-equilibrium model of ligand-receptor interaction is proposed. According to that model in open systems characterized by weak ligand-receptor binding, high diffusion rate of the ligand and long relaxation times which exceed the interval between two successive receptor occupations, the ligand-induced changes will accumulate, resulting in transformation of the system into a new state which may be far away from equilibrium. It is emphasized that the low mobility of lipids constituting the environment of the receptor protein plays a critcal role in this type of signal amplification.It was further demonstrated that the PGE1-induced changes of the lipoprotein surface resulted in an enhancement of LDL-to-HDL transfer of cholesterol esters and phosphatidylcholine especially in the presence of serum lipid transfer proteins. The acceleration of the interlipoprotein transfer caused by prostaglandin E1 in turn increases the rate of cholesterol esterification in serum. It is suggested that in such a way prostaglandin E1 may influence the homeostasis of cholesterol.Abbreviations LDL low density lioproteins - HDL high density lipoproteins - PG prostaglandin - ASM anthrylvinyl-labeled sphingomyelin (N-12-(9-anthryl)-11-trans-dodecanoylsphingosin-1-phosphocholine - APC anthrylvinylphosphatidylcholine (1-radyl-2-[(9-anthryl)-11-transdodecanoyl)-sn-glycerophosphocholine - NAP-SM nitroazidophenyl labeled sphingomyelin (N-[N-(2-nitro-4azidophenyl)-12-aminododecanoyl]-sphingosin-1-phosphocholine) - NAP-PC adizophenyl labeled phosphatidylcholine (1-radyl-2-[N-(2-nitro-4azidophenyl)-12-aminododecanoyl]-sn-glycero-3-phosphocholine - DPPC dipalmitoylphosphatidylcholine - P fluorescence polarization - E parameter of tryptophanyl to ASM resonance energy transfer - LEP lipid-exchange protein  相似文献   

17.
Single bilayer vesicles (d less than 1.02 g/ml) of 3H-glycosphingolipids and [14C]phosphatidylcholine in the molar ratio of 1:7 were prepared by ethanolic injection of the lipid mixture into buffer, concentrated, and incubated with human serum high density lipoprotein-3 (HDL3; d = .14 g/ml) at 37 degrees C. Equilibrium ultracentrifugation of the incubation mixtures on a 0-22% NaBr gradient revealed the presence of three discrete lipid-protein complexes of density 1.03, 1.06, and 1.12 g/ml (Peaks I, II, and III, respectively). Each peak was homogeneous upon reultracentrifugation and the protein and radioactivity eluted as a single peak upon Sepharose CL-6B chromatography. Compositional analysis showed peak I to contain 2.6% protein (apo-A-I peptide) and 4.3% cholesterol, peak II to contain 17.6% protein (apo-A-I peptide) and 6.3% cholesterol, and peak III to have a composition similar to HDL3. Electron microscopy of negatively stained samples confirmed the homogeneity of the peaks and the similarity between peak III and HDL3. Peak II particles were larger than HDL3; peak I particles resembled fused or aggregated vesicles which could be removed by ultracentrifugation; disc-shaped particles were not seen in any of the fractions. Direct incubation of HDL3 or human serum with 3H-glycosphingolipid dispersions did not yield a glycolipid . HDL3 complex as judged by density gradient ultracentrifugation and Sepharose CL-6B chromatography. However, incubation of 3H-glycolipid/phosphatidylcholine vesicles with serum did result in transfer of 3H-glycolipid to the HDL fraction. It was concluded that glycolipids incorporated into a lipid membrane structure can interact with, and become incorporated into, high density lipoprotein.  相似文献   

18.
Intact erythrocytes incubated in the presence of low density lipoproteins (LDL) undergo a time-dependent morphologic transformation from biconcave discs to spherocytes within 4 h. No shape change is observed when erythrocytes are incubated with high density lipoproteins (HDL). The LDL-induced change in erythrocyte morphology occurs without concomitant leakage of hemoglobin from the cell or depletion of intracellular ATP; no change in the distribution of the major lipids of the erythrocyte membranes was detected. The alteration of morphology does require attachment of LDL to the erythrocyte surface. The LDL-induced morphologic alteration is inhibited by HDL, but not by serum albumin. HDL prevent the attachment of LDL to the cell membrane; however, the HDL subfractions, HDL2 and HDL3, are only partially effective. These data suggest that normal erythrocyte morphology and cell function may depend on the concentration and composition of the circulating lipoproteins.  相似文献   

19.
Selectively labelled lipids have been incorporated into the surface monolayer of human serum low density lipoprotein (LDL) and very low density lipoprotein (VLDL). From 3 to 17 mol% of phosphatidylcholine, selectively deuterated at various positions along the sn-2-acyl chain, was transferred from unilamellar vesicles to VLDL using a partially purified phosphatidylcholine transfer protein. Selectively deuterated palmitic acids were incorporated into LDL (6-20 mol%) and into VLDL (7-10 mol%). Electron microscopy, light scattering, and 31P nuclear magnetic resonance indicated that particle size remained unchanged. Gel exclusion chromatography and chemical analysis showed no difference in hydrodynamic properties and only slight alteration to particle component ratios. Biological activity of labelled VLDL was measured from the rate of cholesterol esterification by cultured J774A.1 cells. Effect of labelling LDL was evaluated by monitoring LDL uptake and degradation by cultured human skin fibroblasts. In all cases the lipoproteins containing labels were indistinguishable from their native counterparts.  相似文献   

20.
Cholesterol ester transfer protein (CETP) moves triglyceride (TG) and cholesteryl ester (CE) between lipoproteins. CETP has no apparent preference for high (HDL) or low (LDL) density lipoprotein as lipid donor to very low density lipoprotein (VLDL), and the preference for HDL observed in plasma is due to suppression of LDL transfers by lipid transfer inhibitor protein (LTIP). Given the heterogeneity of HDL, and a demonstrated ability of HDL subfractions to bind LTIP, we examined whether LTIP might also control CETP-facilitated lipid flux among HDL subfractions. CETP-mediated CE transfers from [3H]CE VLDL to various lipoproteins, combined on an equal phospholipid basis, ranged 2-fold and followed the order: HDL3 > LDL > HDL2. LTIP inhibited VLDL to HDL2 transfer at one-half the rate of VLDL to LDL. In contrast, VLDL to HDL3 transfer was stimulated, resulting in a CETP preference for HDL3 that was 3-fold greater than that for LDL or HDL2. Long-term mass transfer experiments confirmed these findings and further established that the previously observed stimulation of CETP activity on HDL by LTIP is due solely to its stimulation of transfer activity on HDL3. TG enrichment of HDL2, which occurs during the HDL cycle, inhibited CETP activity by approximately 2-fold and LTIP activity was blocked almost completely. This suggests that LTIP keeps lipid transfer activity on HDL2 low and constant regardless of its TG enrichment status. Overall, these results show that LTIP tailors CETP-mediated remodeling of HDL3 and HDL2 particles in subclass-specific ways, strongly implicating LTIP as a regulator of HDL metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号