首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The endogenous cannabinoid anandamide (arachidonylethanolamide) produces vasorelaxation in different vascular beds. In the present study, we found that anandamide and a metabolically stable analog, methanandamide, produced dose-dependent (10 nM-10 microM) vasorelaxation of approximately 80% in a rabbit aortic ring preparation in an endothelium-dependent manner. Non-endothelium-dependent vasorelaxation was observed to be a maximum of 20-22% at >10 microM methanandamide. The efficacious CB(1) receptor analogs desacetyllevonantradol (10 microM) and WIN55212-2 (10 microM) failed to produce vasorelaxation; however, the endothelium-dependent vasorelaxation evoked by methanandamide was partially (75%) blocked by the CB(1) receptor antagonist SR141716A. The VR(1) vanilloid receptor antagonist capsazepine or the calcitonin gene-related peptide (CGRP) antagonist CGRP-(8-37) partially attenuated (25%) the vasorelaxation in endothelium-intact preparations and greatly reduced the response in endothelium-denuded preparations. Pretreatment of aortic rings with N(G)-nitro-L-arginine methyl ester completely blocked the methanandamide-, capsaicin-, and CGRP-induced vasorelaxation. Pretreatment of aortic rings with pertussis toxin attenuated the methanandamide-induced vasorelaxation in endothelium-intact aortic rings, indicating the involvement of G(i/o) proteins in the vasorelaxation; however, pertussis toxin treatment failed to block the endothelium-independent response. Thus, in the rabbit aorta, methanandamide-induced vasorelaxation exhibits two components: 1) in endothelium-intact rings, an SR141716A-sensitive, non-CB(1) receptor component that requires pertussis toxin-sensitive G proteins and nitric oxide (NO) production; and 2) in endothelium-denuded rings, a component that is mediated by VR(1) vanilloid receptors and possibly by the subsequent release of CGRP that requires NO production but is independent of pertussis toxin-sensitive G proteins.  相似文献   

2.
Adrenal steroidogenesis is closely correlated with increases in adrenal blood flow. Many reports have studied the regulation of adrenal blood flow in vivo and in perfused glands, but until recently few studies have been conducted on isolated adrenal arteries. The present study examined vasomotor responses of isolated bovine small adrenal cortical arteries to histamine, an endogenous vasoactive compound, and its mechanism of action. In U-46619-precontracted arteries, histamine (10(-9)-5 x 10(-6) M) elicited concentration-dependent relaxations. The relaxations were blocked by the H(1) receptor antagonists diphenhydramine (10 microM) or mepyramine (1 microM) (maximal relaxations of 18 +/- 6 and 22 +/- 6%, respectively, vs. 55 +/- 5% of control) but only partially inhibited by the H(2) receptor antagonist cimetidine (10 microM) and the H(3) receptor antagonist thioperamide (1 microM). Histamine-induced relaxations were also blocked by the nitric oxide synthase inhibitor N-nitro-L-arginine (L-NA, 30 microM; maximal relaxation of 13 +/- 7%) and eliminated by endothelial removal or L-NA combined with the cyclooxgenase inhibitor indomethacin (10 microM). In the presence of adrenal zona glomerulosa (ZG) cells, histamine did not induce further relaxations compared with histamine alone. Histamine (10(-7)-10(-5) M) concentration-dependently increased aldosterone production by adrenal ZG cells. Compound 48/80 (10 microg/ml), a mast cell degranulator, induced significant relaxations (93 +/- 0.6%), which were blocked by L-NA plus indomethacin or endothelium removal, partially inhibited by the combination of the H(1), H(2), and H(3) receptor antagonists, but not affected by the mast cell stabilizer sodium cromoglycate (1 mM). These results demonstrate that histamine causes direct relaxation of small adrenal cortical arteries, which is largely mediated by endothelial NO and prostaglandins via H(1) receptors. The potential role of histamine in linking adrenal vascular events and steroid secretion requires further investigation.  相似文献   

3.
4.
The majority of MDMA (ecstasy) recreational users also consume cannabis. Despite the rewarding effects that both drugs have, they induce several opposite pharmacological responses. MDMA causes hyperthermia, oxidative stress and neuronal damage, especially at warm ambient temperature. However, THC, the main psychoactive compound of cannabis, produces hypothermic, anti-inflammatory and antioxidant effects. Therefore, THC may have a neuroprotective effect against MDMA-induced neurotoxicity. Mice receiving a neurotoxic regimen of MDMA (20 mg/kg ×4) were pretreated with THC (3 mg/kg ×4) at room (21°C) and at warm (26°C) temperature, and body temperature, striatal glial activation and DA terminal loss were assessed. To find out the mechanisms by which THC may prevent MDMA hyperthermia and neurotoxicity, the same procedure was carried out in animals pretreated with the CB1 receptor antagonist AM251 and the CB2 receptor antagonist AM630, as well as in CB1, CB2 and CB1/CB2 deficient mice. THC prevented MDMA-induced-hyperthermia and glial activation in animals housed at both room and warm temperature. Surprisingly, MDMA-induced DA terminal loss was only observed in animals housed at warm but not at room temperature, and this neurotoxic effect was reversed by THC administration. However, THC did not prevent MDMA-induced hyperthermia, glial activation, and DA terminal loss in animals treated with the CB1 receptor antagonist AM251, neither in CB1 and CB1/CB2 knockout mice. On the other hand, THC prevented MDMA-induced hyperthermia and DA terminal loss, but only partially suppressed glial activation in animals treated with the CB2 cannabinoid antagonist and in CB2 knockout animals. Our results indicate that THC protects against MDMA neurotoxicity, and suggest that these neuroprotective actions are primarily mediated by the reduction of hyperthermia through the activation of CB1 receptor, although CB2 receptors may also contribute to attenuate neuroinflammation in this process.  相似文献   

5.
This study investigated the effects and selectivity of ONO-AE-248, ONO-DI-004, ONO-8711 and ONO-8713 on EP1 and EP3 receptors in human pulmonary vessels. The prostanoid receptors involved in the vasoconstriction of human pulmonary arteries (HPA) are TP and EP3 whereas in pulmonary veins (HPV), this response is associated with TP and EP1. The experiments were performed in presence of BAY u3405 (TP antagonist). ONO-DI-004 (EP1 agonist) and ONO-AE-248 (EP3 agonist), exhibited little or no activity in HPV whereas contractions were induced in HPA with ONO-AE-248. In HPV, the contractions produced with sulprostone (EP1,3 agonist) were blocked in a non competitive manner by both EP1 antagonists (ONO-8711, 30 microM; ONO-8713, 10 microM). The involvement of EP1 mediated contraction in HPV was also observed during the vasorelaxations induced with PGE1 and 5-cis-carba-PGI2. In pre-contracted HPV treated with AH6809 (30 microM; EP1 antagonist) the PGE1 vasorelaxations were potentiated, while unchanged in HPA. These results demonstrate the selectivity of ONO-AE-248 for the EP3 receptor in HPA, ONO-DI-004 was ineffective on the EP1 receptor present in HPV while ONO-8713 was the more potent EP1 antagonist used in this tissue.  相似文献   

6.
We investigated whether phenytoin (PHT) and nifedipine (NIF) induce angiotensin II (Ang II) and endothelin-1 (ET-1) generation by cultured gingival fibroblasts derived from guinea pigs and whether Ang II and ET-1 induce proliferation of these cells. Immunohistochemical experiments showed that PHT (250 nM) and NIF (250 nM) increased the immunostaining intensities of immunoreactive Ang II and ET-1 (IRET-1) in these cells. Captopril (3 microM), an angiotensin-converting enzyme inhibitor, reduced these enhanced intensities to control levels. Ang II (100 nM) enhanced the immunostaining intensity of IRET-1. PHT (250 nM) and NIF (250 nM)-induced cell proliferation. Both PHT- and NIF-induced proliferation was inhibited by captopril (3 microM). Ang II (100 nM) and ET-1 (100 nM) also induced cell proliferation. Ang II-induced proliferation was inhibited by CV11974 (1 microM), an AT(1) receptor antagonist and saralasin (1 microM), an AT(1)/AT(2) receptor antagonist, but not by PD123,319 (1 microM), an AT(2) receptor antagonist. ET-1-induced proliferation was inhibited by BQ123 (10 microM), an ET(A) receptor antagonist, but not by BQ788 (1 microM), an ET(B) receptor antagonist. These findings suggest that PHT- and NIF-induced gingival fibroblast proliferation is mediated indirectly through the induction of Ang II and ET-1 and probably mediated through AT(1) and ET(A) receptors present in or on gingival fibroblasts.  相似文献   

7.
We have recently described, in the mouse aorta, the vasodilator effect of angiotensin-(1-7) (Ang-(1-7)) was mediated by activation of the Mas Ang-(1-7) receptor and that A-779 and D-Pro7-Ang-(1-7) act as Mas receptor antagonists. In this work we show pharmacological evidence for the existence of a different Ang-(1-7) receptor subtype mediating the vasodilator effect of Ang-(1-7) in the aorta from Sprague-Dawley (SD) rats. Ang-(1-7) induced an endothelium-dependent vasodilator effect in aortic rings from SD rats which was inhibited by removal of the endothelium and by L-NAME (100 microM) but not by indomethacin (10 microM). The Ang-(1-7) receptor antagonist D-Pro7-Ang-(1-7) (0.1 microM) abolished the vasodilator effect of the peptide. However, the other specific Ang-(1-7) receptor antagonist, A-779 in concentrations up to 10 microM, did not affect vasodilation induced by Ang-(1-7). The Ang II AT1 and AT2 receptors antagonists CV11974 (0.01 microM) and PD123319 (1 microM), respectively, the bradykinin B2 receptor antagonist HOE 140 (1 microM) and the inhibitor of ACE captopril (10 microM) did not change the effect of Ang-(1-7). Our results show that in the aorta of SD rats, the vasodilator effect of Ang-(1-7) is dependent on endothelium-derived nitric oxide. This effect is mediated by the activation of Ang-(1-7) receptors sensitive to D-Pro7-Ang-(1-7), but not to A-779, which suggests the existence of a different Ang-(1-7) receptor subtype.  相似文献   

8.
9.
We have reported that eucapnic intermittent hypoxia (E-IH) causes systemic hypertension, elevates plasma endothelin 1 (ET-1) levels, and augments vascular reactivity to ET-1 and that a nonspecific ET-1 receptor antagonist acutely lowers blood pressure in E-IH-exposed rats. However, the effect of chronic ET-1 receptor inhibition has not been evaluated, and the ET receptor subtype mediating the vascular effects has not been established. We hypothesized that E-IH causes systemic hypertension through the increased ET-1 activation of vascular ET type A (ET(A)) receptors. We found that mean arterial pressure (MAP) increased after 14 days of 7 h/day E-IH exposure (109 +/- 2 to 137 +/- 4 mmHg; P < 0.005) but did not change in sham-exposed rats. The ET(A) receptor antagonist BQ-123 (10 to 1,000 nmol/kg iv) acutely decreased MAP dose dependently in conscious E-IH but not sham rats, and continuous infusion of BQ-123 (100 nmol.kg(-1).day(-1) sc for 14 days) prevented E-IH-induced increases in MAP. ET-1-induced constriction was augmented in small mesenteric arteries from rats exposed 14 days to E-IH compared with those from sham rats. Constriction was blocked by the ET(A) receptor antagonist BQ-123 (10 microM) but not by the ET type B (ET(B)) receptor antagonist BQ-788 (100 microM). ET(A) receptor mRNA content was greater in renal medulla and coronary arteries from E-IH rats. ET(B) receptor mRNA was not different in any tissues examined, whereas ET-1 mRNA was increased in the heart and in the renal medulla. Thus augmented ET-1-dependent vasoconstriction via vascular ET(A) receptors appears to elevate blood pressure in E-IH-exposed rats.  相似文献   

10.
The vascular relaxation sensitivity to calcitonin gene-related peptide (CGRP) is enhanced during pregnancy, compared with nonpregnant human and rat uterine arteries. In the rat uterine artery, two types of CGRP receptors have been shown to coexist, CGRP-A receptor, which is a complex of calcitonin receptor-like receptor (CRLR), and receptor activity-modifying protein (RAMP(1)) and CGRP-B receptor, which is different from CRLR. In the present study, we hypothesized that: 1) CGRP-induced vasorelaxation in rat uterine artery is mediated through CGRP-A receptor and 2) N-terminal (Nt) domain of CRLR (Nt-CRLR) has a major contribution in ligand binding and mediating CGRP- induced relaxation effects in rat uterine artery. Polyclonal antibodies against Nt-domain of CRLR and RAMP(1) (Nt-RAMP(1)) were raised in rabbits and characterized for their specificity and were used to inhibit CGRP-induced vasorelaxation in rat uterine artery. For vascular relaxation studies, uterine arteries from Day 18 pregnant rats were isolated, and responsiveness of the vessels to CGRP was examined with a small vessel myograph. CGRP (10(-10) to 10(-7) M) produced a concentration-dependent relaxation of norepinephrine-induced contractions in Day 18 pregnant rat uterine arteries. These effects were significantly (P < 0.05) inhibited when uterine arteries were incubated with the antibody raised against Nt-CRLR (PD(2) = 6.75 +/- 0.20) and were totally abolished in presence of antibodies for both Nt-CRLR and Nt-RAMP(1) (PD(2) = 6.14 +/- 0.35). In contrast, a monoclonal antibody for CGRP-B receptor had no effect on CGRP-induced rat uterine artery relaxation. These studies suggest that CGRP effects in rat uterine artery are mediated through CGRP-A receptor and that Nt-domain of CRLR may play a predominant role in CGRP binding and thus in causing CGRP-induced uterine artery relaxation.  相似文献   

11.
Estrogens exert protective effects against neurotoxic changes induced by over-activation of ionotrophic glutamate receptors, whereas little is known about their interaction with changes mediated by metabotropic glutamate receptors. We evaluated effects of estrone on quisqualate (QA)-induced toxicity in neuronal cell cultures on 7 and 12 day in vitro (DIV). Twenty four hour exposure to QA (150 microM and 300 microM) significantly decreased cell survival in 7 day old cultures, but the 12 day old cultures were more resistant to its toxicity. DNQX (10 microM), an AMPA/kainate receptor antagonist, partly attenuated the toxic effects of QA, whereas LY 367 385 (100 microM), a selective mGluR1a antagonist, completely reversed the above effect. QA did not activate, but suppressed spontaneous caspase-3-like activity. Estrone (100 nM and 500 nM) attenuated QA-mediated neurotoxic effects independently of estrogen receptors, as indicated with ICI 182, 780 and without affecting the caspase-3-like activity. At early stage of development in vitro (7 DIV) toxic effects of QA were more profound and mediated mainly by metabotropic glutamate receptors of group I, whereas later (12 DIV) they were mediated mostly by ionotropic AMPA/kainate receptors. The toxic effects of QA were partly accompanied by anti-apoptotic action against spontaneous caspase-3-like activity, possibly due to modulation of neuronal plasticity.  相似文献   

12.
13.
Children exposed in utero to cannabis present permanent neurobehavioral and cognitive impairments. Psychoactive constituents from Cannabis spp., particularly Δ9‐tetrahydrocannabinol (THC), bind to cannabinoid receptors in the fetal brain. However, it is unknown whether THC can trigger a cannabinoid receptor‐driven molecular cascade to disrupt neuronal specification. Here, we show that repeated THC exposure disrupts endocannabinoid signaling, particularly the temporal dynamics of CB1 cannabinoid receptor, to rewire the fetal cortical circuitry. By interrogating the THC‐sensitive neuronal proteome we identify Superior Cervical Ganglion 10 (SCG10)/stathmin‐2, a microtubule‐binding protein in axons, as a substrate of altered neuronal connectivity. We find SCG10 mRNA and protein reduced in the hippocampus of midgestational human cannabis‐exposed fetuses, defining SCG10 as the first cannabis‐driven molecular effector in the developing cerebrum. CB1 cannabinoid receptor activation recruits c‐Jun N‐terminal kinases to phosphorylate SCG10, promoting its rapid degradation in situ in motile axons and microtubule stabilization. Thus, THC enables ectopic formation of filopodia and alters axon morphology. These data highlight the maintenance of cytoskeletal dynamics as a molecular target for cannabis, whose imbalance can limit the computational power of neuronal circuitries in affected offspring.  相似文献   

14.
Angiotensin II (Ang II) acts via its type 1 (AT(1)) receptor in neurons to regulate the activity of multiple intracellular signaling molecules, including intracellular Ca(2+), protein kinase C, phosphatidylinositol 3-kinase (PI3-K), and c-Jun NH(2)-terminal kinase (JNK). The present studies investigated the upstream signaling molecules involved in the Ang II stimulation of activator protein-1 (AP-1) DNA binding in neurons. Treatment of neurons cultured from neonatal rat hypothalamus and brainstem with Ang II (100 nM) showed a time-dependent increase in AP-1 DNA binding and this effect was inhibited by the AT(1) receptor antagonist, losartan (1 microM), the PI3-K inhibitor, LY294002 (10 microM), and the JNK inhibitor, JNK inhibitor II (100 nM). Furthermore, Ang II (100 nM) causes a time-dependent increase in JNK activity which was attenuated by PI3-K inhibition. These data establish, for the first time, a signaling cascade involved in the Ang II activation of AP-1 DNA binding in neurons.  相似文献   

15.
Arachidonic acid (AA), 5,8,11,14-eicosateraenoic acid is abundant, active and necessary in the human body. In the present study, we reported the neuroprotective effects and mechanism of arachidonic acid on hippocampal slices insulted by glutamate, NaN(3) or H(2)O(2)in vitro. Different types of models of brain injury in vitro were developed by 1mM glutamate, 10mM NaN(3) or 2mM H(2)O(2). After 30 min of preincubation with arachidonic acid or linoleic acid, hippocampal slices were subjected to glutamate, NaN(3) or H(2)O(2), then the tissue activities were evaluated by using the 2,3,5-triphenyltetrazolium chloride method. Endogenous antioxidant enzymes activities (SOD, GSH-PX and catalase) in hippocampal slices were evaluated during the course of incubation. MK886 (5 microM; a noncompetitive inhibitor of proliferator-activated receptor [PPAR]alpha), BADGE (bisphenol A diglycidyl ether; 100 microM; an antagonist of PPARgamma) and cycloheximide (CHX; 30 microM; an inhibitor of protein synthesis) were tested for their effects on the neuroprotection afforded by arachidonic acid. Population spikes were recorded in randomly selected hippocapal slices. Arachidonic acid (1-10 microM) dose dependently protected hippocampal slices from glutamate and H(2)O(2) injury (P<0.01), and arachidonic acid (10 microM) can significantly improve the activities of Cu/Zn-SOD in hippocampal slices after 1h incubation. In addition, 10 microM arachidonic acid significantly increased the activity of Mn-SOD and catalase, and decreased the activities of Cu/Zn-SOD to control value after 3h incubation. These secondary changes of SOD during incubation can be reversed by indomethacine (10 microM; a nonspecific cyclooxygenase inhibitor) or AA 861 (20 microM; a 5-lipoxygenase inhibitor). Its neuroprotective effect was completely abolished by BADGE and CHX. These observations reveal that arachidonic acid can defense against oxidative stress by boosting the internal antioxidant system of hippocampal slices. Its neuroprotective effect may be mainly mediated by the activation of PPARgamma and synthesis of new protein in tissue.  相似文献   

16.
Delta9-tetrahydrocannabinol (THC), the main psychoactive component in Cannabis sativa preparations, exerts its central effects mainly through the G-protein coupled receptor CB1, a component of the endocannabinoid system. Several in vitro and in vivo studies have reported neuroprotective effects of cannabinoids in excitotoxicity and neurodegeneration models. However, the intraneuronal signaling pathways activated in vivo by THC underlying its central effects remain poorly understood. We report that THC acute administration (10 mg/kg, i.p.) increases the phosphorylation of Akt in mouse hippocampus, striatum, and cerebellum. This phosphorylation was mediated by CB1 receptors as it was blocked by the selective CB1 antagonist rimonabant. Moreover, PI3K inhibition by wortmannin abrogated THC-induced phosphorylation of Akt, but blockade of extracellular signal-regulated protein kinases by SL327 did not modify this activation/phosphorylation of Akt. Moreover, administration of the dopaminergic D1 (SCH 23390) and D2 (raclopride) receptor antagonists did not block the activation of PI3K/Akt pathway induced in the striatum by cannabinoid receptor stimulation, suggesting that this effect is independent of the dopaminergic system. In addition, THC increased the phosphorylation of glycogen synthase kinase 3 beta. Therefore, activation of the PI3K/Akt/GSK-3 signaling pathway may be related to the in vivo neuroprotective properties attributed to cannabinoids.  相似文献   

17.
The goal of this study was to determine whether acetylcholine evokes endothelium-dependent contraction in mouse arteries and to define the mechanisms involved in regulating this response. Arterial rings isolated from wild-type (WT) and endothelial nitric oxide (NO) synthase knockout (eNOS(-/-)) mice were suspended for isometric tension recording. In abdominal aorta from WT mice contracted with phenylephrine, acetylcholine caused a relaxation that reversed at the concentration of 0.3-3 microM. After inhibition of NO synthase [with N(omega)-nitro-l-arginine methyl ester (l-NAME), 1 mM], acetylcholine (0.1-10 microM) caused contraction under basal conditions or during constriction to phenylephrine, which was abolished by endothelial denudation. This contraction was inhibited by the cyclooxygenase inhibitor indomethacin (1 muM) or by a thromboxane A(2) (TxA(2)) and/or prostaglandin H(2) receptor antagonist SQ-29548 (1 microM) and was associated with endothelium-dependent generation of the TxA(2) metabolite TxB(2.) Also, SQ-29548 (1 microM) abolished the reversal in relaxation evoked by 0.3-3 microM acetylcholine and subsequently enhanced the relaxation to the agonist. The magnitude of the endothelium-dependent contraction to acetylcholine (0.1-10 microM) was similar in aortas from WT mice treated in vitro with l-NAME and from eNOS(-/-) mice. In addition, we found that acetylcholine (10 microM) also caused endothelium-dependent contraction in carotid and femoral arteries of eNOS(-/-) mice. These results suggest that acetylcholine initiates two competing responses in mouse arteries: endothelium-dependent relaxation mediated predominantly by NO and endothelium-dependent contraction mediated most likely by TxA(2).  相似文献   

18.
Receptors for purines and pyrimidines are expressed throughout the cardiovascular system. This study investigated their functional expression in porcine isolated pancreatic arteries. Pancreatic arteries (endothelium intact or denuded) were prepared for isometric tension recording and preconstricted with U46619, a thromboxane A2 mimetic; adenosine-5′-diphosphate (ADP), uridine-5′-triphosphate (UTP) and MRS2768, a selective P2Y2 agonist, were applied cumulatively, while adenosine-5′-triphosphate (ATP) and αβ-methylene-ATP (αβ-meATP) response curves were generated from single concentrations per tissue segment. Antagonists/enzyme inhibitors were applied prior to U46619 addition. ATP, αβ-meATP, UTP and MRS2768 induced vasoconstriction, with a potency order of αβ-meATP > MRS2768 > ATP ≥ UTP. Contractions to ATP and αβ-meATP were blocked by NF449, a selective P2X1 receptor antagonist. The contraction induced by ATP, but not UTP, was followed by vasorelaxation. Endothelium removal and DUP 697, a cyclooxygenase-2 inhibitor, had no significant effect on contraction to ATP but attenuated that to UTP, indicating actions at distinct receptors. MRS2578, a selective P2Y6 receptor antagonist, had no effect on contractions to UTP. ADP induced endothelium-dependent vasorelaxation which was inhibited by MRS2179, a selective P2Y1 receptor antagonist, or SCH58261, a selective adenosine A2A receptor antagonist. The contractions to ATP and αβ-meATP were attributed to actions at P2X1 receptors on the vascular smooth muscle, whereas it was shown for the first time that UTP induced an endothelium-dependent vasoconstriction which may involve P2Y2 and/or P2Y4 receptors. The relaxation induced by ADP is mediated by P2Y1 and A2A adenosine receptors. Porcine pancreatic arteries appear to lack vasorelaxant P2Y2 and P2Y4 receptors.  相似文献   

19.
We examined the effects of a novel ETA-selective endothelin (ET) antagonist, BQ-153, on vascular responses to ET-1 and ET-3 in isolated porcine coronary and pulmonary blood vessels, to clarify the roles of ET receptor subtypes in the regulation of vascular smooth muscle tension. With endothelium-denuded vascular tissues, the concentration-contraction curve (CCC) for ET-1 appeared as a single sigmoidal shape for all types of tissue. The CCC for ET-1 was antagonized by BQ-153 (2 and 10 microM) in all tissues, but part of the contraction was resistant. The CCC for ET-3 usually consisted of two different phases with higher (first phase) and lower (second phase) sensitivities to the peptide. Only the second phase of CCC for ET-3 was completely inhibited by BQ-153 (2 microM) in all tissues, while the first phase was resistant. The BQ-153-resistant contractile phases of ET-1 and ET-3-induced vasoconstriction appeared to have similar sensitivity in all tissues, and the contractile activity varied with each type of tissue. With endothelium-intact materials, the potencies of ET-1 and ET-3 for endothelium-dependent vasorelaxation in pulmonary artery were almost equivalent. BQ-153 (10 microM) did not inhibit ET-induced vasorelaxation. These results indicate that ET-induced vasoconstriction is mediated not only through ETA but also through ETnonA (probably ETB), and that the relative proportions of the ET-receptor subtypes mediating contractions vary in different vascular areas. In addition, results showed that ET-induced endothelium-dependent vasorelaxation is mediated through ETB.  相似文献   

20.
Peroxisome proliferators-activated receptor gamma (PPARgamma) has been shown to suppress cell proliferation and tumorigenesis, whereas the gastrointestinal regulatory peptide gastrin stimulates the growth of neoplastic cells. The present studies were directed to determine whether changes in PPARgamma expression might mediate the effects of gastrin on the proliferation of colorectal cancer (CRC). Initially, using growth assays, we determined that the human CRC cell line DLD-1 expressed both functional PPARgamma and gastrin receptors. Amidated gastrin (G-17) attenuated the growth suppressing effects of PPARgamma by decreasing PPARgamma activity and total protein expression, in part through an increase in the rate of proteasomal degradation. G-17-induced degradation of PPARgamma appeared to be mediated through phosphorylation of PPARgamma at serine 84 by a process involving the biphasic phosphorylation of ERK1/2 and activation of the epidermal growth factor receptor (EGFR). These results were confirmed through the use of EGFR antagonist AG1478 and MEK1 inhibitor PD98059. Furthermore, mutation of PPARgamma at serine 84 reduced the effects of G-17, as evident by inability of G-17 to attenuate PPARgamma promoter activity, degrade PPARgamma, or inhibit the growth suppressing effects of PPARgamma. The results of these studies demonstrate that the trophic properties of gastrin in CRC may be mediated in part by transactivation of the EGFR and phosphorylation of ERK1/2, leading to degradation of PPARgamma protein and a decrease in PPARgamma activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号