首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.

Background  

Burkholderia cenocepacia are opportunistic Gram-negative bacteria that can cause chronic pulmonary infections in patients with cystic fibrosis. These bacteria demonstrate a high-level of intrinsic antibiotic resistance to most clinically useful antibiotics complicating treatment. We previously identified 14 genes encoding putative Resistance-Nodulation-Cell Division (RND) efflux pumps in the genome of B. cenocepacia J2315, but the contribution of these pumps to the intrinsic drug resistance of this bacterium remains unclear.  相似文献   

2.

Background  

Burkholderia cenocepacia is recognized as opportunistic pathogen that can cause lung infections in cystic fibrosis patients. A hallmark of B. cenocepacia infections is the inability to eradicate the organism because of multiple intrinsic antibiotic resistance. As Resistance-Nodulation-Division (RND) efflux systems are responsible for much of the intrinsic multidrug resistance in Gram-negative bacteria, this study aims to identify RND genes in the B. cenocepacia genome and start to investigate their involvement into antimicrobial resistance.  相似文献   

3.
4.
Bacterial infections of the lungs of cystic fibrosis (CF) patients cause major complications in the treatment of this common genetic disease. Burkholderia cenocepacia infection is particularly problematic since this organism has high levels of antibiotic resistance, making it difficult to eradicate; the resulting chronic infections are associated with severe declines in lung function and increased mortality rates. B. cenocepacia strain J2315 was isolated from a CF patient and is a member of the epidemic ET12 lineage that originated in Canada or the United Kingdom and spread to Europe. The 8.06-Mb genome of this highly transmissible pathogen comprises three circular chromosomes and a plasmid and encodes a broad array of functions typical of this metabolically versatile genus, as well as numerous virulence and drug resistance functions. Although B. cenocepacia strains can be isolated from soil and can be pathogenic to both plants and man, J2315 is representative of a lineage of B. cenocepacia rarely isolated from the environment and which spreads between CF patients. Comparative analysis revealed that ca. 21% of the genome is unique in comparison to other strains of B. cenocepacia, highlighting the genomic plasticity of this species. Pseudogenes in virulence determinants suggest that the pathogenic response of J2315 may have been recently selected to promote persistence in the CF lung. The J2315 genome contains evidence that its unique and highly adapted genetic content has played a significant role in its success as an epidemic CF pathogen.  相似文献   

5.
Inhibitors of drug efflux pumps have great potential as pharmacological agents that restore the drug susceptibility of multidrug resistant bacterial pathogens. Most attention has been focused on the discovery of small molecules that inhibit the resistance nodulation division (RND) family drug efflux pumps in Gram-negative bacteria. The prototypical inhibitor of RND-family efflux pumps in Gram-negative bacteria is MC-207,110 (Phe-Arg-β-naphthylamide), a C-capped dipeptide. Here, we report that C-capped dipeptides inhibit two chloramphenicol-specific efflux pumps in Streptomyces coelicolor, a Gram-positive bacterium that is a relative of the human pathogen Mycobacterium tuberculosis. Diversity-oriented synthesis of a library of structurally related C-capped dipeptides via an Ugi four component reaction and screening of the resulting compounds resulted in the discovery of a compound that is threefold more potent as a suppressor of chloramphenicol resistance in S. coelicolor than MC-207,110. Since chloramphenicol resistance in S. coelicolor is mediated by major facilitator superfamily drug efflux pumps, our findings provide the first evidence that C-capped dipeptides can inhibit drug efflux pumps outside of the RND superfamily.  相似文献   

6.
We have developed a generalized profile that identifies members of the root-nodulation-cell-division (RND) family of efflux pumps and classifies them into four functional subfamilies. According to Z-score values, efflux pumps can be grouped by their metabolic function, thus making it possible to distinguish pumps involved in antibiotic resistance (group 1) from those involved in metal resistance (group 3). In silico data regarding efflux pumps in group 1 were validated after identification of RND efflux pumps in a number of environmental microbes that were isolated as resistant to ethidium bromide. Analysis of the Pseudomonas putida KT2440 genome identified efflux pumps in all groups. A collection of mutants in efflux pumps and a screening platform consisting of 50 drugs were created to assign a function to the efflux pumps. We validated in silico data regarding efflux pumps in groups 1 and 3 using 9 different mutants. Four mutants belonging to group 2 were found to be more sensitive than the wild-type to oxidative stress-inducing agents such as bipyridyl and methyl viologen. The two remaining mutants belonging to group 4 were found to be more sensitive than the parental to tetracycline and one of them was particularly sensitive to rubidium and chromate. By effectively combining in vivo data with generalized profiles and gene annotation data, this approach allowed the assignment, according to metabolic function, of both known and uncharacterized RND efflux pumps into subgroups, thereby providing important new insight into the functions of proteins within this family.  相似文献   

7.

Background

Efflux systems are involved in multidrug resistance in most Gram-negative non-fermentative bacteria. We have chosen Burkholderia thailandensis to dissect the development of multidrug resistance phenotypes under antibiotic pressure.

Methodology/Principal Findings

We used doxycycline selection to obtain several resistant B. thailandensis variants. The minimal inhibitory concentrations of a large panel of structurally unrelated antibiotics were determined ± the efflux pump inhibitor phenylalanine-arginine ß-naphthylamide (PAßN). Membrane proteins were identified by proteomic method and the expressions of major efflux pumps in the doxycycline selected variants were compared to those of the parental strains by a quantitative RT-PCR analysis. Doxycycline selected variants showed a multidrug resistance in two major levels corresponding to the overproduction of two efflux pumps depending on its concentration: AmrAB-OprA and BpeEF-OprC. The study of two mutants, each lacking one of these pumps, indicated that a third pump, BpeAB-OprB, could substitute for the defective pump. Surprisingly, we observed antagonistic effects between PAßN and aminoglycosides or some ß-lactams. PAßN induced the overexpression of AmrAB-OprA and BpeAB-OprB pump genes, generating this unexpected effect.

Conclusions/Significance

These results may account for the weak activity of PAßN in some Gram-negative species. We clearly demonstrated two antagonistic effects of this molecule on bacterial cells: the blocking of antibiotic efflux and an increase in efflux pump gene expression. Thus, doxycycline is a very efficient RND efflux pump inducer and PAßN may promote the production of some efflux pumps. These results should be taken into account when considering antibiotic treatments and in future studies on efflux pump inhibitors.  相似文献   

8.
Resistance-Nodulation-Cell Division (RND) pumps play important roles in bacterial resistance to antibiotics. Pseudomonas aeruginosa is an important human pathogen which exhibits high level resistance to antibiotics. There are total of 12 RND pumps present in the P. aeruginosa PAOl genome. The recently characterized MuxABC-OpmB system has been shown to play a role in resistance to novobiocin, aztreonam, macrolides, and tetracycline in a multiple knockout mutation. In this study, we examined the expression levels of all the 12 RND pump gene clusters and tested the involvement of MuxABC-OpmB in pathogenicity. The results indicated that in addition to the four known constitutively expressed RND pumps, mexAB-oprM, mexGHI-opmD, mexVW, and mexXY, relatively high levels of expression were observed with mexJK and muxABC-opmB in the conditions tested. Inactivation of muxA in the muxABC-opmB operon resulted in elevated resistance to ampicillin and carbenicillin. The mutant also showed attenuated virulence in both Brassica rapa pekinensis and Drosophila melanogaster infection models. The decreased virulence at least in part was due to decreased twitching motility in the mutant. These results indicate that the RND pump MuxABC-OpmB is associated with ampicillin and carbenicillin susceptibility and also involved in pathogenesis in P. aeruginosa.  相似文献   

9.
The bacterium Burkholderia cenocepacia is pathogenic for sufferers from cystic fibrosis (CF) and certain immunocompromised conditions. The B. cenocepacia strain most frequently isolated from CF patients, and which serves as the reference for CF epidemiology, is J2315. The J2315 genome is split into three chromosomes and one plasmid. The strain was sequenced several years ago, and its annotation has been released recently. This information should allow genetic experimentation with J2315, but two major impediments appear: the poor potential of J2315 to act as a recipient in transformation and conjugation and the high level of resistance it mounts to nearly all antibiotics. Here, we describe modifications to the standard electroporation procedure that allow routine transformation of J2315 by DNA. In addition, we show that deletion of an efflux pump gene and addition of spermine to the medium enhance the sensitivity of J2315 to certain commonly used antibiotics and so allow a wider range of antibiotic resistance genes to be used for selection.Burkholderia cenocepacia is part of the Burkholderia cepacia complex (Bcc), a group of closely related bacteria of soil, water, and roots (41) recently updated to at least 15 related species (42). Bcc displays many interesting features (see reference 27 for a review). Originally discovered as responsible for soft onion rot (3), Bcc species also interact beneficently with plants (see reference 34 for a review) and may degrade pollutants such as phthalate or the herbicide 2,4,5-trichlorophenoxyacetic acid (2,4,5,-T) (25, 33). But it is the emergence of Bcc as an opportunistic pathogen of people suffering from cystic fibrosis (CF) (19) and immunocompromizing conditions that has drawn most attention to these bacteria. Among Bcc species, Burkholderia multivorans and B. cenocepacia are the most prevalent in the epidemiology of CF. In particular, strains of the ET12 lineage of B. cenocepacia were responsible for a major transcontinental epidemic among CF patients in the 1990s (20), an outbreak aggravated by the high levels of resistance to nearly all antibiotics that characterizes Bcc. Species of the Bcc have large genomes (7 to 9 Mb) composed of two or three chromosomes and one or more plasmids, an unusual genomic organization among bacteria. The first Bcc genome to be sequenced was that of B. cenocepacia J2315 (also known as LMG16656), the type strain of the ET12 lineage and the reference strain for CF epidemiology; the sequence was completed and made available by the Wellcome Trust Sanger Institute in 2003. It revealed three chromosomes of 3.9, 3.2, and 0.9 Mb and a plasmid of 93 kb. The annotation of this genome was released recently (15).The pathogenicity and multipartite genome of B. cenocepacia make it an important subject for both practical and fundamental study. Genetic modification is essential to the success of many such investigations. Unfortunately, J2315 throws up major barriers to genetic manipulation. Standard electrotransformation techniques are ineffective with this strain, as also found elsewhere (26). Conjugal introduction of DNA has proved unreliable despite adaptations (7) that have enabled occasional successes with B. cenocepacia species (9, 40) including J2315 (39) (see also Results below). Besides, the natural resistance of J2315 to antibiotics, high even on the scale of the generally extensive resistance of B. cenocepacia species (31), severely restricts the use of antibiotic resistance in genetic selections. Circumventing these problems by resorting to a proxy strain, B. cenocepacia K56-2, that has not been sequenced and is more permissive to gene transfer (26, 17, 32, 9) runs the risk that results will be of uncertain relevance to J2315.In the context of our general aim to decipher the role of the four replicon-specific ParABS systems of J2315 (6), we have sought to overcome these obstacles. We report here the reproducible electrotransformation of J2315, and we analyze factors that improve its efficiency. We report also our isolation of a J2315 derivative with reduced antibiotic resistance and the broadened selection possibilities this offers. Detailed protocols are provided which should facilitate studies of this pathogen.  相似文献   

10.
11.

Background  

The Burkholderia cenocepacia CepIR quorum sensing system has been shown to positively and negatively regulate genes involved in siderophore production, protease expression, motility, biofilm formation and virulence. In this study, two approaches were used to identify genes regulated by the CepIR quorum sensing system. Transposon mutagenesis was used to create lacZ promoter fusions in a cepI mutant that were screened for differential expression in the presence of N-acylhomoserine lactones. A bioinformatics approach was used to screen the B. cenocepacia J2315 genome for CepR binding site motifs.  相似文献   

12.
13.
Therapeutic failures against diseases due to resistant Gram-negative bacteria have become a major threat nowadays as confirmed by surveillance reports across the world. One of the methods of development of multidrug resistance in Escherichia coli and Pseudomonas aeruginosa is by means of RND efflux pumps. Inhibition of these pumps might help to combat the antibiotic resistance problem, for which the structure and regulation of the pumps have to be known. Moreover, judicious antibiotic use is needed to control the situation. This paper focuses on the issue of antibiotic resistance as well as the structure, regulation and inhibition of the efflux pumps present in Escherichia coli and Pseudomonas aeruginosa.  相似文献   

14.
One common mechanism of resistance against antimicrobial peptides in Gram‐negative bacteria is the addition of 4‐amino‐4‐deoxy‐l ‐arabinose (l ‐Ara4N) to the lipopolysaccharide (LPS) molecule. Burkholderia cenocepacia exhibits extraordinary intrinsic resistance to antimicrobial peptides and other antibiotics. We have previously discovered that unlike other bacteria, B. cenocepacia requires l ‐Ara4N for viability. Here, we describe the isolation of B. cenocepacia suppressor mutants that remain viable despite the deletion of genes required for l ‐Ara4N synthesis and transfer to the LPS. The absence of l ‐Ara4N is the only structural difference in the LPS of the mutants compared with that of the parental strain. The mutants also become highly sensitive to polymyxin B and melittin, two different classes of antimicrobial peptides. The suppressor phenotype resulted from a single amino acid replacement (aspartic acid to histidine) at position 31 of LptG, a protein component of the multi‐protein pathway responsible for the export of the LPS molecule from the inner to the outer membrane. We propose that l ‐Ara4N modification of LPS provides a molecular signature required for LPS export and proper assembly at the outer membrane of B. cenocepacia, and is the most critical determinant for the intrinsic resistance of this bacterium to antimicrobial peptides.  相似文献   

15.
16.
Putative penicillin-binding proteins (PBPs) were identified in the genome of the Burkholderia cenocepacia strain J2315 based on homology to E. coli PBPs. The three sequences identified as homologs of E. coli PBP1a, BCAL2021, BCAL0274, and BCAM2632, were cloned and expressed as His6-tagged fusion proteins in E. coli. The fusion proteins were isolated and shown to bind β-lactams, indicating these putative PBPs have penicillin-binding activity.  相似文献   

17.
Bacterial efflux pumps have emerged as antibiotic resistance determinants and confers multi-drug resistance to a broad range of antimicrobials as well as non-antibiotic substances. A study about translocation of antibiotic molecules through the efflux transporter, will contribute in determining substrate specificity. In the present study, we have explored RND family efflux pump extensively found in Acinetobacter baumannii i.e. AdeABC. Besides, another well studied RND efflux pump, AcrAB-TolC together with a non-RND efflux pump, NorM was investigated for comparative analysis. We employed a series of computational techniques ranging from molecular docking to binding free energy estimation and molecular dynamics simulations to determine the binding affinity for different classes of drugs, namely aminoglycosides, polymyxins, β-lactams, tetracyclines, glycylcyclines, quinolones and metronidazole with AdeB, AcrB, and NorM efflux proteins. Our results revealed that class polymyxins has the highest binding affinity with the RND efflux pumps i.e. AcrAB-TolC and AdeABC as well as non-RND efflux pump, NorM. The experimental validation study demonstrated bigger zone of inhibition in presence of efflux pump inhibitor than polymyxin alone thus unveiling its specificity toward efflux pump. The reported experimental data comprising of minimum inhibitory concentration of antibiotics toward these efflux pumps also support our finding based on in silico approach. To recapitulate the outcome, polymyxins shows maximum specificity toward RND as well as non-RND efflux pump and may unlatch the way to rationally develop new potential antibacterial agents as well as efflux pump inhibitors in order to combat resistance.  相似文献   

18.

Background  

The genus Burkholderia includes a variety of species with opportunistic human pathogenic strains, whose increasing global resistance to antibiotics has become a public health problem. In this context a major role could be played by multidrug efflux pumps belonging to Resistance Nodulation Cell-Division (RND) family, which allow bacterial cells to extrude a wide range of different substrates, including antibiotics. This study aims to i) identify rnd genes in the 21 available completely sequenced Burkholderia genomes, ii) analyze their phylogenetic distribution, iii) define the putative function(s) that RND proteins perform within the Burkholderia genus and iv) try tracing the evolutionary history of some of these genes in Burkholderia.  相似文献   

19.
Taylor DL  Bina XR  Bina JE 《PloS one》2012,7(5):e38208
The resistance-nodulation-division (RND) efflux systems are ubiquitous transporters that function in antimicrobial resistance. Recent studies showed that RND systems were required for virulence factor production in Vibrio cholerae. The V. cholerae genome encodes six RND efflux systems. Three of the RND systems (VexB, VexD, and VexK) were previously shown to be redundant for in vitro resistance to bile acids and detergents. A mutant lacking the VexB, VexD, and VexK RND pumps produced wild-type levels of cholera toxin (CT) and the toxin co-regulated pilus (TCP) and was moderately attenuated for intestinal colonization. In contrast, a RND negative mutant produced significantly reduced amounts of CT and TCP and displayed a severe colonization defect. This suggested that one or more of the three uncharacterized RND efflux systems (i.e. VexF, VexH, and VexM) were required for pathogenesis. In this study, a genetic approach was used to generate a panel of V. cholerae RND efflux pump mutants in order to determine the function of VexH in antimicrobial resistance, virulence factor production, and intestinal colonization. VexH contributed to in vitro antimicrobial resistance and exhibited a broad substrate specificity that was redundant with the VexB, VexD, and VexK RND efflux pumps. These four efflux pumps were responsible for in vitro antimicrobial resistance and were required for virulence factor production and intestinal colonization. Mutation of the VexF and/or VexM efflux pumps did not affect in vitro antimicrobial resistance, but did negatively affect CT and TCP production. Collectively, our results demonstrate that the V. cholerae RND efflux pumps have redundant functions in antimicrobial resistance and virulence factor production. This suggests that the RND efflux systems contribute to V. cholerae pathogenesis by providing the bacterium with protection against antimicrobial compounds that are present in the host and by contributing to the regulated expression of virulence factors.  相似文献   

20.
The overall antibiotic resistance of a bacterial population results from the combination of a wide range of susceptibilities displayed by subsets of bacterial cells. Bacterial heteroresistance to antibiotics has been documented for several opportunistic Gram-negative bacteria, but the mechanism of heteroresistance is unclear. We use Burkholderia cenocepacia as a model opportunistic bacterium to investigate the implications of heterogeneity in the response to the antimicrobial peptide polymyxin B (PmB) and also other bactericidal antibiotics. Here, we report that B. cenocepacia is heteroresistant to PmB. Population analysis profiling also identified B. cenocepacia subpopulations arising from a seemingly homogenous culture that are resistant to higher levels of polymyxin B than the rest of the cells in the culture, and can protect the more sensitive cells from killing, as well as sensitive bacteria from other species, such as Pseudomonas aeruginosa and Escherichia coli. Communication of resistance depended on upregulation of putrescine synthesis and YceI, a widely conserved low-molecular weight secreted protein. Deletion of genes for the synthesis of putrescine and YceI abrogate protection, while pharmacologic inhibition of putrescine synthesis reduced resistance to polymyxin B. Polyamines and YceI were also required for heteroresistance of B. cenocepacia to various bactericidal antibiotics. We propose that putrescine and YceI resemble "danger" infochemicals whose increased production by a bacterial subpopulation, becoming more resistant to bactericidal antibiotics, communicates higher level of resistance to more sensitive members of the population of the same or different species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号