首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Earlier studies have shown that rat granulosa cells grown in serum-free medium are exquisitely responsive to exogenously provided lipoprotein cholesterol. In this study we compare the amount of cholesterol (cholesteryl ester) actually delivered from various homologous and heterologous cholesterol-rich lipoproteins and examine the intracellular pathways used in the delivery system. Granulosa cells were incubated for 5 or 24 h with 125I-labeled human (h) HDL3, rat (r) HDL or hLDL equipped with non-releasable apoprotein and cholesteryl ether tags which accumulate within cells, even after degradation. We show that all the tested lipoproteins were similarly efficient in cholesteryl ester delivery; i.e., based on cholesterol: protein ratios of the starting ligands, each delivered approximately the same cholesteryl ester mass and evoked a similar progestin response. However, each lipoprotein was processed quite differently by the granulosa cells: hHDL3-cholesteryl ester was taken up almost exclusively by an non-endocytic pathway, hLDL-cholesteryl ester almost exclusively by an endocytic pathway and rHDL-cholesteryl ester by both pathways. In general, there was no correlation between the total amount of lipoprotein bound or apoprotein internalized and/or degraded by the cells with the amount of cholesteryl ester received or the level of the progestin response. Hormone stimulation upregulated the preferred pathway for each lipoprotein.  相似文献   

2.
We have examined the uptake and distribution of 125I-labeled human high density lipoprotein, apolipoprotein E-free (hHDL3), 125I-rat high density lipoprotein (HDL), and human HDL (hHDL) reconstituted with [3H]cholesteryl linoleate after their in situ vascular perfusion to ovaries of gonadotropin-primed immature rats on days 6-9 post human chorionic gonadotropin (hCG)-injection. Some rats were treated with 4-aminopyrazolopyrimidine to reduce plasma lipoproteins and ovarian cholesteryl ester stores. Perfused ovaries were analyzed biochemically and autoradiographically, and progestin content of the ovarian effluent was quantified. Infusion of ovine luteinizing hormone and hHDL increased ovarian progestin secretion severalfold, indicating that the perfused ovary was functional. After perfusion with HDL reconstituted with [3H]cholesteryl linoleate, radioactive progestin appeared in the effluent; thus, sterol carried by exogenous HDL was converted to steroid. At 37 degrees C, uptake of 125I-hHDL3 was greatest after 15 min of perfusion with label. This was decreased by 80% when the perfusion was carried out at 4 degrees C and by 70-95% when excess unlabeled hHDL, but not human low density lipoprotein (hLDL), was included in the perfusate with 125I-hHDL. Aminopyrazolopyrimidine treatment enhanced 125I-hHDL uptake twofold. After perfusion for 15 min with 125I-hHDL3, radioactivity in the ovary was high for 3-30 min of HDL-free wash, then declined 75% by 30-60 min. With light and electron microscope autoradiography, 125I-hHDL3 was localized to corpora lutea, both along luteal cell surfaces and over their cytoplasm. The plasma membrane grains appeared to be associated with segments that lacked bristle coats. Perfusion with 125I-rat HDL produced a similar pattern of labeling. In ovaries perfused with 125I-BSA, silver grains were concentrated over macrophage-like cells but were sparse over luteal cells. We conclude that the in situ perfused rat ovary takes up 125I-hHDL3 by a temperature-dependent, lipoprotein-specific process, and that this lipoprotein is accumulated by luteal cells.  相似文献   

3.
Metabolism of high density lipoprotein (HDL) cholesteryl ester (CE) by cultured rat adrenal cells was studied. Addition of [3H]CE-HDL to cells pretreated with adrenocorticotrophin in lipoprotein poor media resulted in a time- and concentration-dependent accumulation of [3H]cholesteryl ester and production of [3H]cholesterol and [3H]corticosterone. HDL-CE metabolism could be described as the sum of a high affinity ([ HDL-cholesterol]1/2 max = 16 micrograms/ml) and low affinity ([ HDL-cholesterol]1/2 max greater than 70 micrograms/ml) process. [3H]Cholesterol was found both intracellularly and in the media. Accumulation of [3H]cholesteryl ester could not be attributed to uptake and re-esterification of unesterified cholesterol since addition of Sandoz 58-035, an inhibitor of acyl coenzyme A:cholesterol acyltransferase, did not prevent ester accumulation. Moreover, addition of chloroquine did not inhibit cholesteryl ester hydrolysis indicating that hydrolysis was not lysosomally mediated. Aminoglutethimide prevented conversion of [3H]CE-HDL to steroid hormones but did not inhibit [3H]cholesteryl ester uptake. Cellular accumulation of [3H] cholesteryl ester exceeded accumulation of 125I-apoproteins 5-fold at 1 h and 35-fold at 24 h indicating selective uptake of cholesteryl ester moiety. We conclude that rat adrenal cells possess a mechanism for selective uptake of HDL cholesteryl esters which provides substrate for steroidogenesis. These results constitute the first direct demonstration that cholesteryl esters in HDL can be used as steroidogenic substrate by the rat adrenal cortex.  相似文献   

4.
Rat plasma low- and high-density lipoproteins were labeled with [3H]cholesteryl linoleyl ether and isolated by rate-zonal ultracentrifugation into apolipoprotein B-containing LDL, apolipoprotein E-containing HDL1 and apolipoprotein E-poor HDL2. These fractions were incubated with cultured rat hepatocytes and comparable amounts of all lipoproteins were taken up by the cells. Rat HDL was isolated at d 1.085-1.21 g/ml and apolipoprotein E-free HDL was prepared by heparin Sepharose chromatography. The original HDL and the apolipoprotein E-free HDL were labeled with 125I or with [3H]cholesteryl linoleyl ether and incubated with rat hepatocytes or adrenal cells in culture. The uptake of apolipoprotein E-free [3H]cholesterol linoleyl ether HDL by the cultured hepatocytes was 20-40% more than that of the original HDL. Comparison of uptake of cholesteryl ester moiety (represented by uptake of [3H]cholesteryl linoleyl ether) and of protein moiety (represented by metabolism of 125I-labeled protein) was carried out using both original and apolipoprotein E-free HDL. In experiments in which low concentrations of HDL were used, the ratio of 3H/125I exceeded 1.0. In cultured adrenal cells, the uptake of [3H]cholesteryl linoleyl ether-labeled HDL was stimulated 3-6-fold by 1 X 10(-7) M ACTH, while the uptake of 125I-labeled HDL increased about 2-fold. The ratio of 3H/125I representing cellular uptake was 2-3 and increased to 5 in ACTH-treated cells. The present results indicate that in cultured rat hepatocytes the uptake of homologous HDL does not depend on the presence of apolipoprotein E. Evidence was also presented for an uptake of cholesteryl ester independent of protein uptake in cultured rat adrenal cells and to a lesser extent in rat hepatocytes.  相似文献   

5.
Rat adrenal cells in culture were used to study the uptake of cholesteryl linoleyl ether [( 3H]cholesteryl linoleyl ether), a nonhydrolyzable analog of cholesteryl ester. When [3H]cholesteryl linoleyl ether was added in the form of liposomes, its uptake was enhanced by adrenocorticotropin (ACTH) and by addition of milk lipoprotein lipase and interfered by heparin. When the adrenal cells were incubated with homologous [3H]cholesteryl linoleyl ether-HDL, ACTH treatment also resulted in an increase in [3H]cholesteryl linoleyl ether uptake. The uptake of [3H]cholesteryl linoleyl ether was in excess of the uptake and metabolism of 125I-labeled HDL protein and was not sensitive to heparin. Unlabeled HDL or delipidated HDL reduced very markedly the uptake of [3H]cholesteryl linoleyl ether, while addition of phosphatidylcholine liposomes had little effect. Attempts were made to deplete and enrich the adrenal cells in cholesterol and, while depletion resulted in a decrease in [3H]cholesteryl linoleyl ether-HDL uptake, enrichment of cells with cholesterol had no effect. Among the individual apolipoproteins tested, apolipoprotein A-I and the C apolipoproteins reduced [3H]cholesteryl linoleyl ether uptake, while apolipoprotein E was not effective. Since the labeled ligand studied was a lipid, these effects could not be due to an exchange of apolipoproteins, but indicated competition for binding sites. Preferential uptake of human [3H]cholesteryl linoleyl ether-HDL3 by bovine adrenal cells was found when compared to the uptake and metabolism of 125I-labeled HDL. The present results suggest that the preferential uptake of HDL cholesteryl ester (as studied with [3H]cholesteryl linoleyl ether) requires an interaction between the apolipoproteins of HDL and cell surface components.  相似文献   

6.
Rat sinusoidal liver cells possess the surface receptor for high density lipoprotein (HDL) (Murakami, M., S. Horiuchi, K. Takata, and Y. Morino. 1987. J. Biochem. (Tokyo) 101: 729-741). The present study was undertaken to determine whether cell surface-bound HDL underwent subsequent endocytic internalization by using 125I-labeled HDL and fluorescein isothiocyanate-labeled HDL (FITC-HDL). The cell-associated radioactivity obtained by a 40-min incubation with 125I-labeled HDL at 37 degrees C was released into the medium as acid-precipitable forms upon further incubation at 37 degrees C. When further incubated at 0 degree C instead of 37 degrees C, however, this release was significantly reduced. A similar phenomenon was observed after the cell-associated ligands had been treated with trypsin. The cell-associated ligands obtained after a 1-hr incubation with 125I-labeled HDL at 0 degree C were largely counted for by those bound to the outer surface of the cells, thus suggesting that HDL is internalized into cells at 37 degrees C but not at 0 degree C. Moreover, when cells were incubated with FITC-HDL at 0 degree C, the cell-associated ligands were found in a pH 7.2 +/- 0.1 compartment, whereas when incubated at 37 degrees C, its microenvironmental pH became much more acidic, exhibiting pH 6.2 +/- 0.1. Furthermore, this value returned to 7.1 +/- 0.1 upon treatment with carbonylcyanide m-chlorophenylhydrazone known to dissipate the total protonomotive force. These results suggest, therefore, that the internalization process does follow receptor-mediated binding of HDL in rat sinusoidal liver cells. This notion was also supported by fluorescence microscopic observations.  相似文献   

7.
These studies were done in the rat to correlate the ability of low and high density lipoproteins of rat (rLDL and rHDL) and human (hLDL and hHDL) origin to bind in vivo to specific tissues with the rates at which these same lipoprotein fractions were cleared from the circulation. The adrenal gland and liver manifested the greatest amounts of rLDL binding in vivo, but activity also was found in spleen, lung, kidney, ovary, and intestine. In contrast, little or no such binding was found utilizing either methyl-rLDL or hLDL. rHDL containing E apoprotein bound to the same group of tissues although in lesser amounts, except in the case of ovary and adrenal gland which bound disproportionately greater amounts of rHDL than rLDL. In keeping with these marked differences in tissue binding, the clearance of rLDL from the plasma equaled 847 +/- 36 microliters/h/100 g of rat while that of methyl-rLDL and hLDL was only 368 +/- 8 and 363 +/- 11 microliters/h/100 g of rat, respectively. When the steady state plasma level of rLDL was raised 2.5-fold, the clearance decreased slightly to 705 +/- 20 microliters/h/100 g of rat. The clearance of hLDL remained constant, however, at about 350 microliters/h/100 g of rat even when the plasma hLDL level was raised to very high values. The clearance of rHDL and hHDL equaled 644 +/- 16 and 408 +/- 13 microliters/h/100 g of rat, respectively, reflecting the more similar rate of binding of rHDL and hHDL to the tissues of the rat. Rates of whole animal sterol synthesis were lowered from 28 mumol/h to 8.8 mumol/h or 13 mumol/h by fasting and cholesterol feeding, respectively, and stimulated to 71 mumol/h by cholestyramine treatment. Under these same conditions, hepatic cholesterol synthesis could be lowered from the normal rate of 15 mumol/h to 4.2 mumol/h and raised to 50 mumol/h. None of these treatments, however, affected the plasma clearance of rLDL and rHDL. In contrast, treatment with ethinyl estradiol increased by 3-fold both the hepatic binding and the whole animal plasma clearance of rLDL. Following resection of approximately two-thirds of the liver under carefully controlled metabolic conditions, there was no change in the rate of hepatic cholesterol synthesis or rLDL binding in the remaining liver, but the clearance of chylomicrons, rLDL, and rHDL diminished by 67%, 26%, and 17%, respectively, suggesting that in the rat the liver was responsible for the degradation of approximately 97%, 39%, and 27%, respectively, of these lipoprotein fractions.  相似文献   

8.
The cellular mechanisms responsible for the lipoprotein-mediated stimulation of bile acid synthesis in cultured rat hepatocytes were investigated. Adding 280 micrograms/ml of cholesterol in the form of human or rat low density lipoprotein (LDL) to the culture medium increased bile acid synthesis by 1.8- and 1.6-fold, respectively. As a result of the uptake of LDL, the synthesis of [14C]cholesterol from [2-14C]acetate was decreased and cellular cholesteryl ester mass was increased. Further studies demonstrated that rat apoE-free LDL and apoE-rich high density lipoprotein (HDL) both stimulated bile acid synthesis 1.5-fold, as well as inhibited the formation of [14C]cholesterol from [2-14C]acetate. Reductive methylation of LDL blocked the inhibition of cholesterol synthesis, as well as the stimulation of bile acid synthesis, suggesting that these processes require receptor-mediated uptake. To identify the receptors responsible, competitive binding studies using 125I-labeled apoE-free LDL and 125I-labeled apoE-rich HDL were performed. Both apoE-free LDL and apoE-rich HDL displayed an equal ability to compete for binding of the other, suggesting that a receptor or a group of receptors that recognizes both apolipoproteins is involved. Additional studies show that hepatocytes from cholestyramine-treated rats displayed 2.2- and 3.4-fold increases in the binding of apoE-free LDL and apoE-rich HDL, respectively. These data show for the first time that receptor-mediated uptake of LDL by the liver is intimately linked to processes activating bile acid synthesis.  相似文献   

9.
Steroid hormones are synthesized using cholesterol as precursor. To determine the functional importance of the low density lipoprotein (LDL) receptor and hormone-sensitive lipase (HSL) in adrenal steroidogenesis, adrenal cells were isolated from control, HSL(-/-), LDLR(-/-), and double LDLR/HSL(-/-) mice. The endocytic and selective uptake of apolipoprotein E-free human high density lipoprotein (HDL)-derived cholesteryl esters did not differ among the mice, with selective uptake accounting for >97% of uptake. In contrast, endocytic uptake of either human LDL- or rat HDL-derived cholesteryl esters was reduced 80-85% in LDLR(-/-) and double-LDLR/HSL(-/-) mice. There were no differences in the selective uptake of either human LDL- or rat HDL-derived cholesteryl esters among the mice. Maximum corticosterone production induced by ACTH or dibutyryl cyclic AMP and lipoproteins was not altered in LDLR(-/-) mice but was reduced 80-90% in HSL(-/-) mice. Maximum corticosterone production was identical in HSL(-/-) and double-LDLR/HSL(-/-) mice. These findings suggest that, although the LDL receptor is responsible for endocytic delivery of cholesteryl esters from LDL and rat HDL to mouse adrenal cells, it appears to play a negligible role in the delivery of cholesterol for acute adrenal steroidogenesis in the mouse. In contrast, HSL occupies a vital role in adrenal steroidogenesis because of its link to utilization of selectively delivered cholesteryl esters from lipoproteins.  相似文献   

10.
Primary cultures of rabbit hepatocytes which were preincubated for 20 h in a medium containing lipoprotein-deficient serum subsequently bound, internalized and degraded 125I-labeled high-density lipoproteins2 (HDL2). The rate of degradation of HDL2 was constant in incubations from 3 to 25 h. As the concentration of HDL2 in the incubation medium was increased, binding reached saturation. At 37 degrees C, half-maximal binding (Km) was achieved at a concentration of 7.3 micrograms of HDL2 protein/ml (4.06 X 10(-8)M) and the maximum amount bound was 476 ng of HDL2 protein/mg of cell protein. At 4 degrees C, HDL2 had a Km of 18.6 micrograms protein/ml (1.03 X 10(-7)M). Unlabeled low-density lipoproteins (LDL) inhibited only at low concentrations of 125I-labeled HDL2. Quantification of 125I-labeled HDL2 binding to a specific receptor (based on incubation of cells at 4 degrees C with and without a 50-fold excess of unlabeled HDL) yielded a dissociation constant of 1.45 X 10(-7)M. Excess HDL2 inhibited the binding of both 125I-labeled HDL2 and 125I-labeled HDL3, but excess HDL3 did not affect the binding of 125I-labeled HDL3. Preincubation of hepatocytes in the presence of HDL resulted in only a 40% reduction in specific HDL2 receptors, whereas preincubation with LDL largely suppressed LDL receptors. HDL2 and LDL from control and hypercholesterolemic rabbits inhibited the degradation of 125I-labeled HDL2, but HDL3 did not. Treatment of HDL2 and LDL with cyclohexanedione eliminated their capacity to inhibit 125I-labeled HDL2 degradation, suggesting that apolipoprotein E plays a critical role in triggering the degradative process. The effect of incubation with HDL on subsequent 125I-labeled LDL binding was time-dependent: a 20 h preincubation with HDL reduced the amount of 125I-labeled LDL binding by 40%; there was a similar effect on LDL bound in 6 h but not on LDL bound in 3 h. The binding of 125I-labeled LDL to isolated liver cellular membranes demonstrated saturation kinetics at 4 degrees C and was inhibited by EDTA or excess LDL. The binding of 125I-labeled HDL2 was much lower than that of 125I-labeled LDL and was less inhibited by unlabeled lipoproteins. The binding of 125I-labeled HDL3 was not inhibited by any unlabeled lipoproteins. EDTA did not affect the binding of either HDL2 or HDL3 to isolated liver membranes. Hepatocytes incubated with [2-14C]acetate in the absence of lipoproteins incorporated more label into cellular cholesterol, nonsaponifiable lipids and total cellular lipid than hepatocytes incubated with [2-14C]acetate in the presence of any lipoprotein fraction. However, the level of 14C-labeled lipids released into the medium was higher in the presence of medium lipoproteins, indicating that the effect of those lipoproteins was on the rate of release of cellular lipids rather than on the rate of synthesis.  相似文献   

11.
Several hereditary point mutations in human apolipoprotein A-I (apoA-I) have been associated with low HDL-cholesterol levels and/or increased coronary artery disease (CAD) risk. However, one apoA-I mutation, the V19L, recently identified in Icelanders, has been associated with increased HDL-cholesterol levels and decreased CAD risk. In an effort to gain mechanistic insight linking the presence of this mutation in apoA-I with the increase of HDL-cholesterol levels we evaluated the effect of V19L mutation on the conformational integrity and functional properties of apoA-I in lipid-free and lipidated form. ApoA-I[V19L] was found to be thermodynamically destabilized in lipid-free form and displays an increased capacity to associate with phospholipids compared to WT apoA-I. When associated to reconstituted HDL (rHDL), apoA-I[V19L] was more thermodynamically stabilized than WT apoA-I. ApoA-I[V19L] displayed normal capacity to promote ABCA1-mediated cholesterol efflux and to activate the enzyme LCAT, in lipid-free and rHDL-associated forms, respectively. Additionally, rHDL-associated apoA-I[V19L] showed normal capacity to promote ABCG1-mediated cholesterol efflux, but 45% increased capacity to promote SR-BI-mediated cholesterol efflux, while the SR-BI-mediated HDL-lipid uptake was normal. Overall, our findings show that the apoA-I V19L mutation does not affect the first steps of HDL biogenesis pathway. However, the increased capacity of apoA-I[V19L] to associate with phospholipids, in combination with the enhanced thermodynamic stability of lipoprotein-associated apoA-I[V19L] and increased capacity of apoA-I[V19L]-containing lipoprotein particles to accept additional cholesterol by SR-BI could account for the increased HDL-cholesterol levels observed in human carriers of the mutation.  相似文献   

12.
The uptake of high-density lipoprotein (HDL)-associated apolipoprotein A-I and cholesterol esters was estimated in 16 tissues of the rat using rat HDL doubly labeled with nondegradable tracers; covalently attached 125I-tyramine-cellobiose traced apo-A-I, and [3H]cholesteryl linoleyl ether traced cholesterol esters. Both labels remained associated with the HDL fraction in the plasma, adequately traced their unlabeled counterparts, and were well trapped at their sites of uptake. Cholesteryl ether was taken up at a greater fractional rate than apo-A-I by adrenal, ovary, and liver: 7-fold, 4-fold, and 2-fold greater, respectively. The rates of uptake of cholesteryl ether and apo-A-I were about equal in the other tissues (except kidney). The disproportionate uptake of HDL cholesteryl ether relative to HDL apo-A-I was also observed in primary cultures of rat adrenal cells and hepatocytes. Uptake of both moieties in both cell types showed saturability. Both the absolute rate of uptake of [3H]cholesteryl ether and the ratio of ether uptake to apo-A-I uptake were greater in adrenal cells than in hepatocytes, consonant with the in vivo observations. Very similar results were obtained using HDL biologically labeled with [3H]cholesterol esters. The disproportionate uptake of [3H]cholesteryl ether was not significantly decreased by depletion of apo-E from the HDL nor by reductive methylation of the apo-E to block its recognition by receptors. However, apo-A-I uptake was decreased, suggesting that apo-E mediates the uptake of particles containing apo-A-I but does not contribute to the disproportionate uptake of [3H]cholesteryl ether.  相似文献   

13.
Several studies have shown that high-density lipoprotein stimulates steroidogenesis in rat tissues which have been treated with pituitary hormones. To determine whether these hormones can directly affect receptors for high-density lipoprotein, we have incubated cultured rat adrenal cortical cells with 125I-labeled human HDL3 and studied the effect of corticotrophin on the binding, internalization and degradation of this lipoprotein. ACTH stimulated all these parameters of HDL metabolism in a dose-dependent manner with maximal stimulation occurring between 10 and 20 mU/ml. The effect was temperature-dependent and showed target cell specificity. Although the hormone stimulated binding and internalization 5-6-fold, degradation of HDL3 was substantially less (2-fold) than anticipated. This suggests that the lipoprotein was taken up by vesicles resembling receptosomes which escape fusion with lysosomes; thus degradation of entrapped particles does not occur, while transfer of cholesterol for steroidogenesis is unaffected.  相似文献   

14.
In order to determine the role of hepatic lipase in the hepatic uptake and metabolism of high density lipoprotein (HDL) triglycerides, cholesteryl esters, and phospholipids, isolated rat livers were perfused with a reconstituted HDL (rHDL) radiolabeled with [3H]triolein and [14C]cholesteryl oleate or palmitoyl-[14C]linoleoyl phosphatidylcholine. A bolus of radiolabeled rHDL was injected into the portal vein and livers were perfused for 5 min using a nonrecirculating perfusion system. Recovery of rHDL triolein in the liver as intact triolein was used to determine the amount of unmetabolized rHDL remaining in the liver. After correcting for the amount of unmetabolized rHDL remaining in the liver, about 30% of the rHDL triolein was hydrolyzed of which 19% was recovered in the liver and 11% in the perfusate. Moreover, about 7% of the rHDL phosphatidylcholine was hydrolyzed to lysophosphatidylcholine, all of which was recovered in the perfusate. Although there was no hydrolysis of rHDL cholesteryl oleate, about 30% of the cholesteryl oleate was taken up by the liver. Preperfusion of the liver with heparin to deplete the liver of hepatic lipase resulted in about a 70% reduction in rHDL triolein hydrolysis and about a 75% reduction in rHDL cholesteryl oleate uptake. Although hepatic lipase hydrolyzes both triglycerides and phosphatidylcholines, elimination of the triolein from rHDL had no effect on the uptake of rHDL cholesteryl oleate, but replacement of the rHDL phosphatidylcholine with a nonhydrolyzable phosphatidylcholine diether resulted in an 87% reduction in cholesteryl oleate uptake. These results indicate that hepatic lipase is necessary for the hepatic uptake of both HDL triglycerides and cholesteryl esters and that the uptake of cholesteryl esters is not dependent on the hydrolysis of HDL triglycerides but is dependent on the hydrolysis of HDL phospholipids.  相似文献   

15.
The high density lipoprotein (HDL) receptor, scavenger receptor class B, type I (SR-BI), mediates selective cholesteryl ester uptake from lipoproteins into liver and steroidogenic tissues but also cholesterol efflux from macrophages to HDL. Recently, we demonstrated the uptake of HDL particles in SR-BI overexpressing Chinese hamster ovarian cells (ldlA7-SRBI) using ultrasensitive microscopy. In this study we show that this uptake of entire HDL particles is followed by resecretion. After uptake, HDL is localized in endocytic vesicles and organelles en route to the perinuclear area; many HDL-positive compartments were classified as multivesiculated and multilamellated organelles by electron microscopy. By using 125I-labeled HDL, we found that approximately 0.8% of the HDL added to the media is taken up by the ldlA7-SRBI cells within 1 h, and almost all HDL is finally resecreted. 125I-Labeled low density lipoprotein showed a very similar association, uptake, and resecretion pattern in ldlA7-SRBI cells that do not express any low density lipoprotein receptor. Moreover, we demonstrate that the process of HDL cell association, uptake, and resecretion occurs in three physiologically relevant cell systems, the liver cell line HepG2, the adrenal cell line Y1BS1, and phorbol myristate acetate-differentiated THP-1 cells as a model for macrophages. Finally, we present evidence that HDL retroendocytosis represents one of the pathways for cholesterol efflux.  相似文献   

16.
Rat liver parenchymal cell binding, uptake, and proteolytic degradation of rat 125I-labeled high density lipoprotein (HDL) subfraction, HDL3 (1.10 less than d less than 1.210 g/ml), in which apo-A-I is the major polypeptide, were investigated. Structural and metabolic integrity of the isolated cells was verified by trypan blue exclusion, low lactic dehydrogenase leakage, expected morphology, and gluconeogenesis from lactate and pyruvate. 125I-labeled HDL3 was incubated with 10 X 10(6) cells at 37 degrees and 4 degrees in albumin and Krebs-Henseleit bicarbonate buffer, pH 7.4. Binding and uptake were determined by radioactivity in washed cells. Proteolytic degradation was determined by trichloroacetic acid-soluble radioactivity in the incubation medium. At 37 degrees, maximum HDL3 binding (Bmax) and uptake occurred at 30 min with a Bmax of 31 ng/mg dry weight of cells. The apparent dissociation constant of the HDL3 receptor system (Kd) was 60 X 10(-8) M, based on Mr = 28,000 of apo-A-I, the predominant rat HDL3 protein. Proteolytic degradation showed a 15-min lag and then constant proteolysis. After 2 hours 5.8% of incubated 125I-labeled HDL3 was degraded. Sixty per cent of cell radioactivity at 37 degrees was trypsin-releasable. At 37 degrees, 125I-labeled HDL3 was incubated with cells in the presence of varying concentrations of native (cold) HDL3, very low density lipoproteins, and low density lipoproteins. Incubation with native HDL3 resulted in greatest inhibition of 125I-labeled HDL3 binding, uptake, and proteolytic degradation. When 125I-labeled HDL3 was preincubated with increasing amounts of HDL3 antiserum, binding and uptake by cells were decreased to complete inhibition. Cell binding, uptake, and proteolytic degradation of 125I-labeled HDL3 were markedly diminished at 4 degrees. Less than 1 mM chloroquine enhanced 125I-labeled HDL3 proteolysis but at 5 mM or greater, chloroquine inhibited proteolysis with 125I-labeled HDL3 accumulation in cells. L-[U-14C]Lysine-labeled HDL3 was bound, taken up, and degraded by cells as effectively as 125I-labeled HDL3. These data suggest that liver cell binding, uptake, and proteolytic degradation of rat HDL3 are actively performed and linked in the sequence:binding, then uptake, and finally proteolytic degradation. Furthermore, there may be a specific HDL3 (lipoprotein A) receptor of recognition site(s) on the plasma membrane. Finally, our data further support our previous reports of the important role of liver lysosomes in proteolytic degradation of HDL3.  相似文献   

17.
Further studies have been made of the effects of high density lipoprotein (HDL) on the surface binding, internalization and degradation of 125I-labeled low density lipoprotein (125I-labeled LDL) by cultured normal human fibroblasts. In agreement with earlier studies, during short incubations HDL inhibited the surface binding of 125I-labeled LDL. In contrast, following prolonged incubations 125I-labeled LDL binding was consistently greater in the presence of HDL. The increment in 125I-labeled LDL binding induced by HDL was: (a) associated with a decrease in cell cholesterol content; (b) inhibited by the addition of cholesterol or cycloheximide to the incubation medium; and (c) accompanied by similar increments in 125I-labeled LDL internalization and degradation. It is concluded that HDL induces the synthesis of high affinity LDL receptors in human fibroblasts by promoting the efflux of cholesterol from the cells.  相似文献   

18.
The cellular metabolism of apoE-free HDL (HDL) was studied in rat hepatoma cells (FU5AH). Cells incubated with HDL showed a dose-dependent decreased incorporation of [14C]acetate into cell sterol, indicating a net cholesterol delivery to the cells. HDL was localized both at the cell surface and inside the cell. This conclusion was drawn from both the association of 125I-labeled HDL with the cells under different experimental conditions and morphological evidence based on the association of colloidal gold-labeled HDL with the cells. Up to 63% of the 125I-labeled HDL protein initially inside the cell was subsequently recovered in the media as trichloroacetic acid precipitable (TCA-ppt) protein after a 30-min, 37 degrees C chase with a 100-fold concentration of unlabeled HDL. About 27% of the TCA-ppt apoprotein originally inside the cell was recovered as TCA-soluble material. Thus, we conclude that of the HDL apoprotein taken up by the cells, the majority is resecreted by a retroendocytosis pathway. The quantity of HDL apoprotein reappearing in the media was stimulated by the presence of unlabeled HDL in the media, while the amount of TCA-soluble material produced was not. Retroendocytosis of HDL was inhibited at 0 degree C and by the presence of 10 mM NaCN, 20 mM 2-deoxy-D-glucose in the media. Thus, the pathway appears to be both temperature- and energy-sensitive. HDL resecreted by the cell were depleted of cholesteryl ester and showed an altered size distribution, indicative of lipoprotein catabolism and remodeling. This study provides evidence for the existence of an endocytosis-retroendocytosis pathway for HDL apoproteins in a rat hepatoma cell and for the possibility that the endocytosis-retroendocytosis pathway may be involved in lipid delivery to the cell.  相似文献   

19.
We have previously shown that the liver and steroidogenic tissues of rats in vivo and a wider range of cells in vitro, including human cells, selectively take up high density lipoprotein (HDL) cholesteryl esters without parallel uptake of HDL particles. This process is regulated in tissues of rats and in cultured rat cells according to their cholesterol status. In the present study, we examined regulation of HDL selective uptake in cultured human fibroblasts and Hep G2 hepatoma cells. The cholesterol content of these cells was modified by a 20-hr incubation with either low density lipoprotein (LDL) or free cholesterol. Uptake of HDL components was examined in a subsequent 4-6-hr assay using intracellularly trapped tracers: 125I-labeled N-methyl-tyramine-cellobiose-apoA-I (125I-NMTC-apoA-I) to trace apoA-I, and [3H]cholesteryl oleyl ether to trace cholesteryl esters. In the case of fibroblasts, pretreatment with either LDL or free cholesterol resulted in decreased selective uptake (total [3H]cholesteryl ether uptake minus that due to particle uptake as measured by 125I-NMTC-apoA-I). In contrast, HDL particle uptake increased with either form of cholesterol loading. The amount of HDL that was reversibly cell-associated (bound) was increased by prior exposure to free cholesterol, but was decreased by prior exposure to LDL. In the case of Hep G2 cells, exposure to free cholesterol only slightly increased HDL particle uptake; selective uptake decreased after both forms of cholesterol loading, and reversibly bound HDL increased after exposure to free cholesterol, but either did not change or decreased after exposure to LDL. It was excluded that either LDL carried over into the HDL uptake assay or that products secreted by the cultured cells influenced these results. Thus, selective uptake by cells of both hepatic and extrahepatic origin was down-regulated by cholesterol loading, under which conditions HDL particle uptake increased. Total HDL binding was not directly correlated with either the rate of selective uptake or the rate of HDL particle uptake or the cholesterol status of the cells, suggesting more than one type of HDL binding site.  相似文献   

20.
In order to investigate the role of rat high-density lipoprotein (HDL) on adrenal cholesterol accumulation and steroidogenic pathways (corticosteroid, i.e., 21-hydroxysteroid biosynthesis and reductive metabolism of progesterone), newborn rat adrenal cells cultured in serum-free medium were used. Incubation of [4-14C]cholesterol-HDL in serum-free medium compared to those in medium with lipoprotein-deficient serum, in serum-free medium with ACTH compared to those without ACTH, both showed an increase of labelled cholesterol in cells and of labelled 21-hydroxysteroids excreted in medium. Substitution of serum-supplemented medium by serum-free and cholesterol-free medium led to a deep decrease of ACTH-induced steroid biosynthesis with a predominance of 20 alpha-reduced steroids; addition of HDL restored the corticosteroid biosynthesis and decreased the reductive metabolism. Addition of increased concentrations of HDL (7-150 micrograms cholesterol/ml) enhanced, in a saturable fashion, the total cholesterol uptake and the corticosteroid biosynthesis. The total cholesterol accumulation in cells exceeded by 4-fold the steroid production at saturation. The ratio between the two steroidogenic pathways increased up to 40 at saturation in favor of corticosteroids. These results suggest that HDL is at least partly internalized and that probably its constituents contribute greatly to the control of the two different steroidogenic pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号