首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Photosynthetic characteristics of four high-CO2-requiring mutants of Chlamydomonas reinhardtii were compared to those of wild type before and after a 24-hour exposure to limiting CO2 concentrations. The four mutants represent two loci involved in the CO2-concentrating system of this unicellular alga. All mutants had a lower photosynthetic affinity for inorganic carbon than did the wild type when grown at an elevated CO2 concentration, indicating that the genetic lesion in each is expressed even at elevated CO2 concentrations. Wild type and all four mutants exhibited adaptive responses to limiting CO2 characteristic of the induction of the CO2-concentrating system, resulting in an increased affinity for inorganic carbon only in wild type. Although other components of the CO2-concentrating system were induced in these mutants, the defective component in each was sufficient to prevent any increase in the affinity for inorganic carbon. It was concluded that the genes corresponding to the ca-1 and pmp-1 loci exhibit at least partially constitutive expression and that all components of the CO2-concentrating system may be required to significantly affect the photosynthetic affinity for inorganic carbon.  相似文献   

2.
The activity of two photorespiratory enzymes, phosphoglycolate phosphatase (PGPase) and glycolate dehydrogenase (glycolate DH), changes when CO2-enriched wild-type (WT) Chlamydomonas reinhardtii cells are transferred to air levels of CO2. Adaptation to air levels of CO2 by Chlamydomonas involves induction of a CO2-concentrating mechanism (CCM) which increases the internal inorganic carbon concentration and suppresses oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase. PGPase in cell extracts shows a transient increase in activity that reaches a maximum 3 to 5 hours after transfer and then declines to the original level within 48 hours. The decline in PGPase activity begins at about the time that physiological evidence indicates the CCM is approaching maximal activity. Glycolate DH activity in 24 hour air-adapted WT cells is double that seen in CO2-enriched cells. Unlike WT, the high-CO2-requiring mutant, cia-5, does not respond to limiting CO2 conditions: it does not induce any known aspects of the CCM and it does not show changes in PGPase or glycolate DH activities. Other known mutants of the CCM show patterns of PGPase and glycolate DH activity after transfer to limiting CO2 which are different from WT and cia-5 but which are consistent with changes in activity being initiated by the same factor that induces the CCM, although secondary regulation must also be involved.  相似文献   

3.
Unicellular green algae have a mechanism for concentrating dissolved inorganic carbon (DIC) only when grown in low CO2. To find proposed transporter protein(s) for DIC, we isolated intact chloroplasts from Dunaliella tertiolecta cells, separated the chloroplast envelopes by isopyknic centrifugation, and separated their polypeptides by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Two peptides of apparent molecular masses of 45 and 47 kD were constituents of the inner chloroplast envelope only if the cells had been adapted to low CO2 in the light or grown in low CO2. These two low CO2-induced peptides appear to be part of the algal DIC pump.  相似文献   

4.
The biosynthesis of a 36 kilodalton polypeptide of Chlamydomonas reinhardtii was induced by photoautotrophic growth on low CO2. Fractionation studies using the cell-wall-deficient strain of C. reinhardtii, CC-400, showed that this polypeptide was different from the low CO2-induced periplasmic carbonic anhydrase. In addition, the 36 kilodalton polypeptide was found to be localized in intact chloroplasts isolated from low CO2-adapting cultures. This protein may, in part, account for the different inorganic carbon uptake characteristics observed in chloroplasts isolated from high and low CO2-grown C. reinhardtii cells.  相似文献   

5.
When Chlamydomonas reinhardtii cells are transferred to limiting CO2, one response is the induction of a CO2-concentrating mechanism (CCM) with components that remain to be identified. Characterization of membrane-associated proteins induced by this transfer revealed that synthesis of the 21-kD protein (LIP-21) was regulated at the level of translatable message abundance and correlated well with the induction of CCM activity. Phase partitioning of LIP-21 and the previously characterized LIP-36 showed that both appeared to be peripherally associated with membranes, which limits their potential to function as transporters of inorganic carbon. Ultrastructural changes that occur when cells are transferred to limiting CO2 were also examined to help form a model for the CCM or other aspects of adaptation to limiting CO2. Changes were observed in vacuolization, starch distribution, and mitochondrial location. The mitochondria relocated from within the cup of the chloroplast to between the chloroplast envelope and the plasma membrane. In addition, immunogold labeling demonstrated that LIP-21 was localized specifically to the peripheral mitochondria. These data suggest that mitochondria, although not previously incorporated into models for the CCM, may play an important role in the cell's adaptation to limiting CO2.  相似文献   

6.
Mass spectrometric measurements of dissolved free 13CO2 were used to monitor CO2 uptake by air grown (low CO2) cells and protoplasts from the green alga Chlamydomonas reinhardtii. In the presence of 50 micromolar dissolved inorganic carbon and light, protoplasts which had been washed free of external carbonic anhydrase reduced the 13CO2 concentration in the medium to close to zero. Similar results were obtained with low CO2 cells treated with 50 micromolar acetazolamide. Addition of carbonic anhydrase to protoplasts after the period of rapid CO2 uptake revealed that the removal of CO2 from the medium in the light was due to selective and active CO2 transport rather than uptake of total dissolved inorganic carbon. In the light, low CO2 cells and protoplasts incubated with carbonic anhydrase took up CO2 at an apparently low rate which reflected the uptake of total dissolved inorganic carbon. No net CO2 uptake occurred in the dark. Measurement of chlorophyll a fluorescence yield with low CO2 cells and washed protoplasts showed that variable fluorescence was mainly influenced by energy quenching which was reciprocally related to photosynthetic activity with its highest value at the CO2 compensation point. During the linear uptake of CO2, low CO2 cells and protoplasts incubated with carbonic anhydrase showed similar rates of net O2 evolution (102 and 108 micromoles per milligram of chlorophyll per hour, respectively). The rate of net O2 evolution (83 micromoles per milligram of chlorophyll per hour) with washed protoplasts was 20 to 30% lower during the period of rapid CO2 uptake and decreased to a still lower value of 46 micromoles per milligram of chlorophyll per hour when most of the free CO2 had been removed from the medium. The addition of carbonic anhydrase at this point resulted in more than a doubling of the rate of O2 evolution. These results show low CO2 cells of Chlamydomonas are able to transport both CO2 and HCO3 but CO2 is preferentially removed from the medium. The external carbonic anhydrase is important in the supply to the cells of free CO2 from the dehydration of HCO3.  相似文献   

7.
Using manometric and enzymic techniques, H2 and CO2 evolution in darkness and light has been studied in the green alga Chlamydomonas reinhardtii F-60. F-60 is a mutant strain characterized by an incomplete photosynthetic carbon reduction cycle but an intact electron transport chain.  相似文献   

8.
Davies DD  Patil KD 《Plant physiology》1973,51(6):1142-1144
Contrary to earlier reports, CO2 fixation by extracts of Chlamydomonas is inhibited by glutamate and aspartate. These amino acids and some organic acids are shown to be inhibitors of phosphoenolpyruvate carboxylase. Inorganic phosphate is shown to activate CO2 fixation, but there is a time lag before inorganic phosphate exerts its full activating effect.  相似文献   

9.
The green alga, Chlamydomonas reinhardtii, was grown under high and low CO2 regimes inducing significantly different activities of the extracellular carbonic anhydrase (CA). In close relation to the CA activities, the algae exhibited different consumption rates of the climatically relevant atmospheric trace gas, carbonyl sulphide (COS), thus indicating that CA is responsible for uptake of COS from the medium.  相似文献   

10.
Using a gas chromatography-mass spectrometry-time of flight technique, we determined major metabolite changes during induction of the carbon-concentrating mechanism in the unicellular green alga Chlamydomonas reinhardtii. In total, 128 metabolites with significant differences between high- and low-CO2-grown cells were detected, of which 82 were wholly or partially identified, including amino acids, lipids, and carbohydrates. In a 24-h time course experiment, we show that the amino acids serine and phenylalanine increase transiently while aspartate and glutamate decrease after transfer to low CO2. The biggest differences were typically observed 3 h after transfer to low-CO2 conditions. Therefore, we made a careful metabolomic examination at the 3-h time point, comparing low-CO2 treatment to high-CO2 control. Five metabolites involved in photorespiration, 11 amino acids, and one lipid were increased, while six amino acids and, interestingly, 21 lipids were significantly lower. Our conclusion is that the metabolic pattern during early induction of the carbon-concentrating mechanism fit a model where photorespiration is increasing.Most microalgae express a carbon-concentrating mechanism (CCM; Raven et al., 2005). The green alga Chlamydomonas reinhardtii is one of the species with a CCM (Giordano et al., 2005). The CCM in C. reinhardtii is typically induced when the concentration of CO2 in the air bubbled through the cultures is decreased to around 0.5% or lower (Vance and Spalding, 2005). Within the first few hours after starting the induction, numerous genes are either up- or down-regulated (Miura et al., 2004; Yamano et al., 2008; Yamano and Fukuzawa, 2009). However, the change in gene expression is only manifested as rather limited detectable changes in the abundance of proteins (Manuel and Moroney, 1988; Spalding and Jeffrey, 1989). Even though the response to decreased concentrations of inorganic carbon (Ci) is fast (Eriksson et al., 1998), the algal cells go through a transient phase before the CCM is fully operational.Many genes coding for enzymes of the photorespiratory pathway are up-regulated (Marek and Spalding, 1991; Miura et al., 2002, 2004) within 20 min and show a transient expression pattern (Tural and Moroney, 2005; Yamano et al., 2008). A decline in starch content is also detectable within 30 min after transfer to low CO2 (Kuchitsu et al., 1988). This decline in starch is followed, after about 2 h, by a net synthesis of starch (Thyssen et al., 2001) that is mainly deposited around the pyrenoid, rather than as the starch grains distributed in the stroma normally found in high-CO2-grown cells. When the CCM is fully induced, the alga can concentrate Ci inside the cell/chloroplast against a free-energy gradient. Accumulation of Ci increases the CO2-oxygen ratio at the site of Rubisco (Giordano et al., 2005), with a corresponding increase in photosynthesis, a decrease in photorespiration, and a greater capacity for net organic carbon production at low external Ci (Giordano et al., 2003).Induction of the CCM is thus known to affect genes of many different pathways, and especially the photorespiratory pathway has been studied extensively (Moroney et al., 1986; Tural and Moroney, 2005). The aim of this work was to screen for metabolic changes in order to find key metabolites that could trigger the expression of genes that regulate the CCM. We have extended the analyses by using metabolomics to detect changes in major metabolites, particularly in the beginning of the induction period but also in preliminary experiments, over a 24-h time period. The resulting metabolic changes have enabled us to propose a working model for the coordinated regulation of cellular metabolism during the induction of the CCM in C. reinhardtii.  相似文献   

11.
12.
A mendelian mutant of the unicellular green alga Chlamydomonas reinhardii has been isolated that is deficient in inorganic carbon transport. This mutant strain, designated pmp-1-16-5K (gene locus pmp-1), was selected on the basis of a requirement of elevated CO2 concentration for photoautrophic growth. Inorganic carbon accumulation in the mutant was considerably reduced in comparison to wild type, and the CO2 response of photosynthesis indicated a reduced affinity for CO2 in the mutant. At air levels of CO2 (0.03-0.04%), O2 inhibited photosynthesis and stimulated the synthesis of photorespiratory intermediates in the mutant but not in wild type. Neither strain was significantly affected by O2 at saturating CO2 concentration. Thus, the primary consequence of inorganic carbon transport deficiency in the mutant was a much lower internal CO2 concentration compared to wild type. From these observations, we conclude that enzyme-mediated transport of inorganic carbon is an essential component of the CO2 concentrating system in C. reinhardii photosynthesis.  相似文献   

13.
14.
Chlamydomonas in the resting phase of growth has an equal capacity of about 15 micromole O2 uptake per hour per milligram of chlorophyll for both the cytochrome c, CN-sensitive respiration, and for the alternative, salicylhydroxamic acid-sensitive respiration. Alternative respiration capacity was measured as salicylhydroxamic acid inhibited O2 uptake in the presence of CN, and cytochrome c respiration capacity as CN inhibition of O2 uptake in the presence of salicylhydroxamic acid. Measured total respiration was considerably less than the combined capacities for respiration. During the log phase of growth on high (2-5%) CO2, the alternative respiration capacity decreased about 90% but returned as the culture entered the lag phase. When the alternative oxidase capacity was low, addition of salicylic acid or cyanide induced its reappearance. When cells were grown on low (air-level) CO2, which induced a CO2 concentrating mechanism, the alternative oxidase capacity did not decrease during the growth phase. Attempts to measure in vivo distribution of respiration between the two pathways with either CN or salicylhydroxamic acid alone were inconclusive.  相似文献   

15.
Aquatic photosynthetic organisms live in quite variable conditions of CO(2) availability. To survive in limiting CO(2) conditions, Chlamydomonas reinhardtii and other microalgae show adaptive changes, such as induction of a CO(2)-concentrating mechanism, changes in cell organization, increased photorespiratory enzyme activity, induction of periplasmic carbonic anhydrase and specific polypeptides (mitochondrial carbonic anhydrases and putative chloroplast carrier proteins), and transient down-regulation in the synthesis of Rubisco. The signal for acclimation to limiting CO(2) in C. reinhardtii is unidentified, and it is not known how they sense a change of CO(2) level. The limiting CO(2) signals must be transduced into the changes in gene expression observed during acclimation, so mutational analyses should be helpful for investigating the signal transduction pathway for low CO(2) acclimation. Eight independently isolated mutants of C. reinhardtii that require high CO(2) for photoautotrophic growth were tested by complementation group analysis. These mutants are likely to be defective in some aspects of the acclimation to low CO(2) because they differ from wild type in their growth and in the expression patterns of five low CO(2)-inducible genes (Cah1, Mca1, Mca2, Ccp1, and Ccp2). Two of the new mutants formed a single complementation group along with the previously described mutant cia-5, which appears to be defective in the signal transduction pathway for low CO(2) acclimation. The other mutations represent six additional, independent complementation groups.  相似文献   

16.
Biochemistry (Moscow) - Light-dependent hydrogen production by microalgae attracts attention of researchers because of the potential practical application. It is generally recognized that...  相似文献   

17.
The extremophilic green microalga Chlamydomonas acidophila grows in very acidic waters (pH 2.3–3.4), where CO2 is the sole inorganic carbon source. Previous work has revealed that the species can accumulate inorganic carbon (Ci) and exhibits high affinity CO2 utilization under low-CO2 (air-equilibrium) conditions, similar to organisms with an active CO2 concentrating mechanism (CCM), whereas both processes are down-regulated under high CO2 (4.5 % CO2) conditions. Responses of this species to phosphorus (Pi)-limited conditions suggested a contrasting regulation of the CCM characteristics. Therefore, we measured external carbonic anhydrase (CAext) activities and protein expression (CAH1), the internal pH, Ci accumulation, and CO2-utilization in cells adapted to high or low CO2 under Pi-replete and Pi-limited conditions. Results reveal that C. acidophila expressed CAext activity and expressed a protein cross-reacting with CAH1 (the CAext from Chlamydomonas reinhardtii). Although the function of this CA remains unclear, CAext activity and high affinity CO2 utilization were the highest under low CO2 conditions. C. acidophila accumulated Ci and expressed the CAH1 protein under all conditions tested, and C. reinhardtii also contained substantial amounts of CAH1 protein under Pi-limitation. In conclusion, Ci utilization is optimized in C. acidophila under ecologically relevant conditions, which may enable optimal survival in its extreme Ci- and Pi-limited habitat. The exact physiological and biochemical acclimation remains to be further studied.  相似文献   

18.
The CO2-concentrating mechanism confers microalgae a versatile and efficient strategy for adapting to a wide range of environmental CO2 concentrations. LCIB, which has been demonstrated as a key player in the eukaryotic algal CO2-concentrating mechanism (CCM), is a novel protein in Chlamydomonas lacking any recognizable domain or motif, and its exact function in the CCM has not been clearly defined. The unique air-dier growth phenotype and photosynthetic characteristics in the LCIB mutants, and re-localization of LCIB between different subcellular locations in response to different levels of CO2, have indicated that the function of LCIB is closely associated with a distinct low CO2 acclimation state. Here, we review physiological and molecular evidence linking LCIB with inorganic carbon accumulation in the CCM and discuss the proposed function of LCIB in several inorganic carbon uptake/accumulation pathways. Several new molecular characteristics of LCIB also are presented.  相似文献   

19.
20.
Using a mass-spectrometric disequilibrium technique, net uptake of HCO(3)(-) and CO(2) during steady-state photosynthesis was studied in whole cells and chloroplasts from the green algae Tetraedron minimum and Chlamydomonas noctigama, grown in air enriched with 5% (v/v) CO(2) (high-CO(2) cells) or in air [0.035% (v/v) CO(2); low-CO(2) cells]. High- and low-CO(2) cells of both species were able to take up CO(2) and HCO(3)(-), with maximum rates being largely unaffected by the growth conditions. High- and low-CO(2) cells of T. minimum showed a pronounced preference for HCO(3)(-) while the rates of net HCO(3)(-) and CO(2) uptake were similar in C. noctigama. The most significant differences between high- and low-CO(2) cells of the two species were the 5- to 6-fold increase in the apparent affinities of net HCO(3)(-) uptake and CO(2) uptake after acclimation to air. The high-affinity uptake systems for inorganic carbon were almost completely induced within 4 h in both algae. Photosynthetically active chloroplasts isolated from both species were also able to take up CO(2) and HCO(3)(-). As in whole cells, HCO(3)(-) was the dominant carbon species taken up by chloroplasts from T. minimum while CO(2) and HCO(3)(-) were taken up at similar rates in plastids from C. noctigama. In addition, high-affinity uptake systems for CO(2) and HCO(3)(-) were detected in chloroplasts preparations after acclimation of the parent cells to air. Isolation of ribulose-1,5-bisphosphate carboxylase/oxygenase revealed K(m) values of 13 and 42 micro M CO(2) for the enzymes from T. minimum and C. noctigama, respectively. These results are consistent with the presence of inducible and energy-dependent high-affinity HCO(3)(-) and CO(2) uptake systems associated with chloroplasts, indicating that these organelles play an important role in the CO(2)-concentrating mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号