首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transitions of the cell cycle are regulated by the cyclin dependent protein kinases(CDKs). The cyclins activate their respective CDKs and confer substrate recognitionproperties. We report the structure of phospho-CDK2/cyclin B and show that cyclin Bconfers M phase-like properties on CDK2, the kinase that is usually associated with S phase.Cyclin B produces an almost identical activated conformation of CDK2 as that produced bycyclin A. There are differences between cyclin A and cyclin B at the recruitment site, whichin cyclin A is used to recruit substrates containing an RXL motif. Because of sequencedifferences this site in cyclin B binds RXL motifs more weakly than in cyclin A. Despitesimilarity in kinase structures, phospho-CDK2/cyclin B phosphorylates substrates, such asnuclear lamin and a model peptide derived from p107, at sequences SPXX that differ fromthe canonical CDK2/cyclin A substrate recognition motif, SPXK. CDK2/cyclin Bphosphorylation at these non-canonical sites is not dependent on the presence of a RXLrecruitment motif. The p107 peptide contained two SP motifs each followed by a noncanonicalsequence of which only one site (Ser640) is phosphorylated by pCDK2/cyclin Awhile two sites are phosphorylated by pCDK2/cyclin B. The second site is too close to theRXL motif to allow the cyclin A recruitment site to be effective, as previous work has shownthat there must be at least 16 residues between the catalytic site serine and the RXL motif.Thus the cyclins A and B in addition to their role in promoting the activatory conformationalswitch in CDK2, also provide differential substrate specificity.  相似文献   

2.
Inhibitors, activators, and substrates of cyclin-dependent kinases (cdks) utilize a cyclin-binding sequence, known as a Cy or RXL motif, to bind directly to the cyclin subunit. Alanine scanning mutagenesis of the Cy motif of the cdk inhibitor p21 revealed that the conserved arginine or leucine (constituting the conserved RXL sequence) was important for p21's ability to inhibit cyclin E-cdk2 activity. Further analysis of mutant Cy motifs showed, however, that RXL was neither necessary nor sufficient for a functional cyclin-binding motif. Replacement of either of these two residues with small hydrophobic residues such as valine preserved p21's inhibitory activity on cyclin E-cdk2, while mutations in either polar or charged residues dramatically impaired p21's inhibitory activity. Expressing p21N with non-RXL Cy sequences inhibited growth of mammalian cells, providing in vivo confirmation that RXL was not necessary for a functional Cy motif. We also show that the variant Cy motifs identified in this study can effectively target substrates to cyclin-cdk complexes for phosphorylation, providing additional evidence that these non-RXL motifs are functional. Finally, binding studies using p21 Cy mutants demonstrated that the Cy motif was essential for the association of p21 with cyclin E-cdk2 but not with cyclin A-cdk2. Taking advantage of this differential specificity toward cyclin E versus cyclin A, we demonstrate that cell growth inhibition was absolutely dependent on the ability of a p21 derivative to inhibit cyclin E-cdk2.  相似文献   

3.
4.
5.
The optimal amino acid sequence of substrates for recognition by the cyclin-dependent kinases is well established as -Ser/Thr0-Pro+1-Lys+2-Lys+3-. The catalytic efficiency of CDK2-cyclin A is impaired 2000-, 10-, and 150-fold, when Pro+1, Lys+2, or Lys+3, respectively, is substituted with Ala in a short synthetic peptide substrate. Yet, in physiological substrates of both CDK2-cyclin A and CDK2-cyclin E, it is found that Lys+2, and, occasionally, both Lys+2 and Lys+3 together are replaced with suboptimal determinants. Such suboptimal phosphorylation site motifs are invariably associated with a distinct cyclin-binding (Cy) motif, which has been shown to compensate for otherwise poor catalysis. Here we have investigated the kinetic basis for substrate recognition by CDK2-cyclin A. In the optimal motif, Pro+1 serves to dramatically enhance both substrate binding affinity as well as the rate of chemical phosphotransfer, whereas Lys+2 and Lys+3 both serve to enhance mainly substrate binding. When linked to a suboptimal phosphorylation site sequence (Lys+2 --> Pro) the Cy motif increases catalytic efficiency (kcat/Km) by increasing affinity without affecting turnover (kcat). When fused to the optimal sequence, however, catalytic efficiency is only minimally enhanced, because the resulting high substrate affinity impedes the rate of the phosphoryl transfer reaction. Our results provide kinetic insight into the basis for selecting suboptimal specificity determinants for the phosphorylation of cellular substrates.  相似文献   

6.
Progression through the eukaryotic cell cycle is driven by the orderly activation of cyclin-dependent kinases (CDKs). For activity, CDKs require association with a cyclin and phosphorylation by a separate protein kinase at a conserved threonine residue (T160 in CDK2). Here we present the structure of a complex consisting of phosphorylated CDK2 and cyclin A together with an optimal peptide substrate, HHASPRK. This structure provides an explanation for the specificity of CDK2 towards the proline that follows the phosphorylatable serine of the substrate peptide, and the requirement for the basic residue in the P+3 position of the substrate. We also present the structure of phosphorylated CDK2 plus cyclin A3 in complex with residues 658-668 from the CDK2 substrate p107. These residues include the RXL motif required to target p107 to cyclins. This structure explains the specificity of the RXL motif for cyclins.  相似文献   

7.
Progression of cell cycle is regulated by sequential expression of cyclins, which associate with distinct cyclin kinases to drive the transition between different cell cycle phases. The complex of Cyclin A with cyclin‐dependent kinase 2 (CDK2) controls the DNA replication activity through phosphorylation of a set of chromatin factors, which critically influences the S phase transition. It has been shown that the direct interaction between the Cyclin A‐CDK2 complex and origin recognition complex subunit 1 (ORC1) mediates the localization of ORC1 to centrosomes, where ORC1 inhibits cyclin E‐mediated centrosome reduplication. However, the molecular basis underlying the specific recognition between ORC1 and cyclins remains elusive. Here we report the crystal structure of Cyclin A‐CDK2 complex bound to a peptide derived from ORC1 at 2.54 å resolution. The structure revealed that the ORC1 peptide interacts with a hydrophobic groove, termed cyclin binding groove (CBG), of Cyclin A via a KXL motif. Distinct from other identified CBG‐binding sequences, an arginine residue flanking the KXL motif of ORC1 inserts into a neighboring acidic pocket, contributing to the strong ORC1‐Cyclin A association. Furthermore, structural and sequence analysis of cyclins reveals divergence on the ORC1‐binding sites, which may underpin their differential ORC1‐binding activities. This study provides a structural basis of the specific ORC1‐cyclins recognition, with implication in development of novel inhibitors against the cyclin/CDK complexes.  相似文献   

8.
Radiation injury to cells enhances C-terminal phosphorylation of p53 at both Ser315 and Ser392 in vivo, suggesting the existence of two cooperating DNA damage-responsive pathways that play a role in stimulating p53-dependent gene expression. Our previous data has shown that cyclin A-cdk2 is the major enzyme responsible for modifying p53 at Ser315 in vivo after irradiation damage and in this report we dissect the mechanism of cyclinA-cdk2 binding to and phosphorylation of p53. Although cyclin B(1)-dependent protein kinases can phosphorylate small peptides containing the Ser315 site, cyclin A-cdk2 does not phosphorylate such small peptides suggesting that additional determinants are required for cyclin A-cdk2 interaction with p53. Peptide competition studies have localized a cyclin A interaction site to a Lys381Lys382Leu383Met384Phe385 sequence within C-terminal negative regulatory domain of human p53. An alanine mutation at any one of four key positions abrogates the efficacy of a synthetic peptide containing this motif as an inhibitor of cyclin A-cdk2 phosphorylation of p53 protein. Single amino acid mutations of full-length p53 protein at Lys382, Leu383, or Phe385 decreases cyclin A-cdk2 dependent phosphorylation at Ser315. Cyclin B(1)-cdk2 complexes are not inhibited by KKLMF motif-containing peptides nor is p53 phosphorylation by cyclin B-cdk2 reduced by mutation of the cyclin A interaction site. These data identifying a KKLMF cyclin A docking site on p53 protein highlight a common cyclin A interaction motif that is shared between the tumour suppressor proteins pRb and p53.  相似文献   

9.
Functionally activated cyclin-dependent kinase 2 (CDK2)/cyclin A complex has been validated as an interesting therapeutic target to develop the efficient antineoplastic drug based on the cell cycle arrest. Cyclin A binds to CDK2 and activates the kinases as well as recruits the substrate and inhibitors using a hydrophobic cyclin-binding groove (CBG). Blocking the cyclin substrate recruitment on CBG is an alternative approach to override the specificity hurdle of the currently available ATP site targeting CDK2 inhibitors. Greater understanding of the interaction of CDK2/cyclin A complex with p27 (negative regulator) reveals that the Leu-Phe-Gly (LFG) motif region of p27 binds with the CBG site of cyclin A to arrest the malignant cell proliferation that induces apoptosis. In the present study, Replacement with Partial Ligand Alternatives through Computational Enrichment (REPLACE) drug design strategies have been applied to acquire LFG peptide-derived peptidomimetics library. The peptidomimetics function is equivalent with respect to substrate p27 protein fashion but does not act as an ATP antagonist. The combined approach of molecular docking, molecular dynamics (MD), and molecular electrostatic potential and ADME/T prediction were carried out to evaluate the peptidomimetics. Resultant interaction and electrostatic potential maps suggested that smaller substituent is desirable at the position of phenyl ring to interact with Trp217, Arg250, and Gln254 residues in the active site. The best docked poses were refined by the MD simulations which resulted in conformational changes. After equilibration, the structure of the peptidomimetic and receptor complex was stable. The results revealed that the various substrate protein-derived peptidomimetics could serve as perfect leads against CDK2 protein.

Electronic supplementary material

The online version of this article (doi:10.1007/s12154-014-0124-y) contains supplementary material, which is available to authorized users.  相似文献   

10.
Phospho-CDK2/cyclin A, a kinase that is active in cell cycle S phase, contains an RXL substrate recognition site that is over 40 A from the catalytic site. The role of this recruitment site, which enhances substrate affinity and catalytic efficiency, has been investigated using peptides derived from the natural substrates, namely CDC6 and p107, and a bispeptide inhibitor in which the gamma-phosphate of ATP is covalently attached by a linker to the CDC6 substrate peptide. X-ray studies with a 30-residue CDC6 peptide in complex with pCDK2/cyclin A showed binding of a dodecamer peptide at the recruitment site and a heptapeptide at the catalytic site, but no density for the linking 11 residues. Kinetic studies established that the CDC6 peptide had an 18-fold lower Km compared with heptapeptide substrate and that this effect required the recruitment peptide to be covalently linked to the substrate peptide. X-ray studies with the CDC6 bispeptide showed binding of the dodecamer at the recruitment site and the modified ATP in two alternative conformations at the catalytic site. The CDC6 bispeptide was a potent inhibitor competitive with both ATP and peptide substrate of pCDK2/cyclin A activity against a heptapeptide substrate (Ki = 0.83 nm) but less effective against RXL-containing substrates. We discuss how localization at the recruitment site (KD 0.4 microm) leads to increased catalytic efficiency and the design of a potent inhibitor. The notion of a flexible linker between the sites, which must have more than a minimal number of residues, provides an explanation for recognition and discrimination against different substrates.  相似文献   

11.
Axin, a negative regulator of Wnt, forms a complex with glycogen synthase kinase 3beta, beta-catenin, and adenomatous polyposis coli and promotes GSK3beta-dependent phosphorylation of beta-catenin, thereby stimulating degradation of the beta-catenin. An essential step in that process is the phosphorylation of Axin. Examination of Axin's amino acid sequence revealed it to contain six arginine-X-leucine (RXL) sequences, the cyclin-dependent kinase 2 (CDK2) binding motif, and 10 CDK2 consensus phosphorylation sequences. We also found that cyclin A/CDK2 phosphorylates Axin, thereby enhancing its association with beta-catenin. This suggests that cyclin A/CDK2 is a negative regulator of beta-catenin-mediated signal transduction, which exerts its effects through phosphorylation of Axin.  相似文献   

12.
The cyclin kinase inhibitor p21 associates with and inhibits cyclin-CDKs to retard the progress of the cell cycle in response to DNA damage. The recognition sites for cyclin binding on the various cell cycle-related molecules have been identified as RXL motifs. In the case of p21, the dependence of the Cy1 (18CRRL) or Cy2 (154KRRL) motifs on cyclin E, but not on cyclin A has been demonstrated by in vitro experiments. In this study, to clarify the mechanism of p21 association with cyclin A, we constructed a p21 expression system in mammalian cells. After transfection with an expression vector containing cDNA of various p21-mutants, cells were irradiated with 10 Gy of gamma-rays to introduce DNA damage, followed by quantification of the p21-cyclin A association. The p21-mutant constructs were single or multiple deletions in Cy1, Cy2, and the CDK2 binding region, and a nonphosphorylatable alanine mutant of the C-terminal phosphorylation site. We demonstrated that the association of p21 and cyclin A in response to gamma-irradiation requires the CDK binding region, 49-71 aa, but not the Cy motifs. We believe the mechanism by which p21 inhibits cyclin-CDKs is distinct in each phase of the cell cycle. Furthermore, the increase in the association of p21 and cyclin A was not correlated with the levels of p21. This suggests that DNA damage triggers a signal to the p21 region between 21 and 96 aa to allow cyclin A association.  相似文献   

13.
Inhibition of CDK2/CA (cyclin-dependent kinase 2/cyclin A complex) activity through blocking of the substrate recognition site in the cyclin A subunit has been demonstrated to be an effective method for inducing apoptosis in tumor cells. We have used the cyclin binding motif (CBM) present in the tumor suppressor proteins p21(WAF1) and p27(KIP1) as a template to optimize the minimal sequence necessary for CDK2/CA inhibition. A series of peptides were prepared, containing nonnatural amino acids, which possess nano- to micromolar CDK2-inhibitory activity. Here we present X-ray structures of the protein complex CDK2/CA, together with the cyclin groove-bound peptides H-Ala-Ala-Abu-Arg-Ser-Leu-Ile-(p-F-Phe)-NH(2) (peptide 1), H-Arg-Arg-Leu-Ile-Phe-NH(2) (peptide 2), Ac-Arg-Arg-Leu-Asn-(m-Cl-Phe)-NH(2) (peptide 3), H-Arg-Arg-Leu-Asn-(p-F-Phe)-NH(2) (peptide 4), and H-Cit-Cit-Leu-Ile-(p-F-Phe)-NH(2) (peptide 5). Some of the peptide complexes presented here were obtained through the novel technique of ligand exchange within protein crystals. This method may find general application for obtaining complex structures of proteins with surface-bound ligands.  相似文献   

14.
Cy or RXL motifs have been previously shown to be cyclin binding motifs found in a wide range of cyclin-Cdk interacting proteins. We report the first kinetic analysis of the contribution of a Cy motif on a substrate to phosphorylation by cyclin-dependent kinases. For both cyclin A-Cdk2 and cyclin E-Cdk2 enzymes, the presence of a Cy motif decreased the K(m(peptide)) 75-120-fold while the k(cat) remained unchanged. The large effect of the Cy motif on the K(m(peptide)) suggests that the Cy motif and (S/T)PX(K/R) together constitute a bipartite substrate recognition sequence for cyclin-dependent kinases. Systematic changes in the length of the linker between the Cy motif and the phosphoacceptor serine suggest that both sites are engaged simultaneously to the cyclin and the Cdk, respectively, and eliminate a "bind and release" mechanism to increase the local concentration of the substrate. PS100, a peptide containing a Cy motif, acts as a competitive inhibitor of cyclin-Cdk complexes with a 15-fold lower K(i) for cyclin E-Cdk2 than for cyclin A-Cdk2. These results provide kinetic proof that a Cy motif located a minimal distance from the SPXK is essential for optimal phosphorylation by Cdks and suggest that small chemicals that mimic the Cy motif would be specific inhibitors of substrate recognition by cyclin-dependent kinases.  相似文献   

15.
Phosphorylation often regulates protein-protein interactions to control biological reactions. The Sld2 and Dpb11 proteins of budding yeast form a phosphorylation-dependent complex that is essential for chromosomal DNA replication. The Sld2 protein has a cluster of 11 cyclin-dependent kinase (CDK) phosphorylation motifs (Ser/Thr-Pro), six of which match the canonical sequences Ser/Thr-Pro-X-Lys/Arg, Lys/Arg-Ser/Thr-Pro and Ser/Thr-Pro-Lys/Arg. Simultaneous alanine substitution for serine or threonine in all the canonical CDK-phosphorylation motifs severely reduces complex formation between Sld2 and Dpb11, and inhibits DNA replication. Here we show that phosphorylation of these canonical motifs does not play a direct role in complex formation, but rather regulates phosphorylation of another residue, Thr84. This constitutes a non-canonical CDK-phosphorylation motif within a 28-amino-acid sequence that is responsible, after phosphorylation, for binding of Sld2-Dpb11. We further suggest that CDK-catalysed phosphorylation of sites other than Thr84 renders Thr84 accessible to CDK. Finally, we argue that this novel mechanism sets a threshold of CDK activity for formation of the essential Sld2 to Dpb11 complex and therefore prevents premature DNA replication.  相似文献   

16.
Understanding how cyclin-cdk complexes recognize their substrates is a central problem in cell cycle biology. We identified an E2F1-derived eight-residue peptide which blocked the binding of cyclin A and E-cdk2 complexes to E2F1 and p21. Short peptides spanning similar sequences in p107, p130, and p21-like cdk inhibitors likewise bound to cyclin A-cdk2 and cyclin E-cdk2. In addition, these peptides promoted formation of stable cyclin A-cdk2 complexes in vitro but inhibited the phosphorylation of the retinoblastoma protein by cyclin A- but not cyclin B-associated kinases. Mutation of the cyclin-cdk2 binding motifs in p107 and E2F1 likewise prevented their phosphorylation by cyclin A-associated kinases in vitro. The cdk inhibitor p21 was found to contain two functional copies of this recognition motif, as determined by in vitro kinase binding/inhibition assays and in vivo growth suppression assays. Thus, these studies have identified a cyclin A- and E-cdk2 substrate recognition motif. Furthermore, these data suggest that p21-like cdk inhibitors function, at least in part, by blocking the interaction of substrates with cyclin-cdk2 complexes.  相似文献   

17.
Substrates of cyclin-cdk2 kinases contain two distinct primary sequence motifs: a cyclin-binding RXL motif and one or more phosphoacceptor sites (consensus S/TPXK/R or S/TP). To identify novel cyclin-cdk2 substrates, we searched the database for proteins containing both of these motifs. One such protein is human HIRA, the homologue of two cell cycle-regulated repressors of histone gene expression in Saccharomyces cerevisiae, Hir1p and Hir2p. Here we demonstrate that human HIRA is an in vivo substrate of a cyclin-cdk2 kinase. First, HIRA bound to and was phosphorylated by cyclin A- and E-cdk2 in vitro in an RXL-dependent manner. Second, HIRA was phosphorylated in vivo on two consensus cyclin-cdk2 phosphoacceptor sites and at least one of these, threonine 555, was phosphorylated by cyclin A-cdk2 in vitro. Third, phosphorylation of HIRA in vivo was blocked by cyclin-cdk2 inhibitor p21(cip1). Fourth, HIRA became phosphorylated on threonine 555 in S phase when cyclin-cdk2 kinases are active. Fifth, HIRA was localized preferentially to the nucleus, where active cyclin A- and E-cdk2 are located. Finally, ectopic expression of HIRA in cells caused arrest in S phase and this is consistent with the notion that it is a cyclin-cdk2 substrate that has a role in control of the cell cycle.  相似文献   

18.
19.
Human papillomaviral (HPV) origin-containing plasmids replicate efficiently in human 293 cells or cell extracts in the presence of HPV origin-recognition protein E2 and replication initiation protein E1, whereas cervical carcinoma-derived, HPV-18-positive HeLa cells or cell extracts support HPV DNA replication poorly. We recently showed that HPV-11 E1 interacts with cyclin/cyclin-dependent kinase (cdk) complexes through an RXL motif and is a substrate for these kinases. E1 mutations in this motif or in candidate cdk phosphorylation sites are impaired in replication, suggesting a role for cdks in HPV replication. We now demonstrate that one limiting activity in HeLa cells is cyclin E/CDK2. Purified cyclin E/CDK2 or cyclin E/CDK3 complex, but not other cdks, partially complemented HeLa cell extracts. Cyclin E/CDK2 expression vectors also enhanced transient HPV replication in HeLa cells. HeLa cell-derived HPV-18 E1 protein is truncated at the carboxyl terminus but can associate with cyclin E/CDK2. This truncated E1 was replication-incompetent and inhibited cell-free HPV replication. These results indicate that HeLa cells are phenotypically limiting in cyclin E/CDK2 for efficient HPV replication, most likely due to sequestration by the endogenous, defective HPV-18 E1 protein. Further analyses of the regulation of HPV E1 and HPV replication by cyclin E may shed light on the roles of cyclin E/CDK2 in cellular DNA replication.  相似文献   

20.
Ca2+-dependent protein kinase (CDPK-1) was purified from maize seedlings, and its substrate specificity studied using a set of synthetic peptides derived from the phosphorylatable sequence RVLSRLHS15VRER of maize sucrose synthase 2. The decapeptide LARLHSVRER was found to be efficiently phosphorylated as a minimal substrate. The same set of peptides were found to be phosphorylated by mammalian protein kinase Cbeta (PKC), but showed low reactivity with protein kinase A (PKA). Proceeding from the sequence LARLHSVRER, a series of cellulose-membrane-attached peptides of systematically modified structure was synthesised. These peptides had hydrophobic (Ala, Leu) and ionic (Arg, Glu) amino acids substituted in each position. The phosphorylation of these substrates by CDPK-1 was measured and the substrate specificity of the maize protein kinase characterised by the consensus sequence motif A/L-5X-4R-3X-2X-1SX+1R+2Z+3R+4, where X denotes a position with no strict amino acid requirements and Z a position strictly not tolerating arginine compared with the other three varied amino acids. This motif had a characteristic sequence element RZR at positions +2 to +4 and closely resembled the primary structure of the sucrose synthase phosphorylation site. The sequence surrounding the phosphorylatable serine in this consensus motif was similar to the analogous sequence K/RXXS/TXK/R proposed for mammalian PKC, but different from the consensus motif RRXS/TX for PKA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号