首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Single-chain urokinase-type plasminogen activator (scu-PA) may be obtained from conditioned cell culture media (natural scu-PA) or by expression of the cDNA encoding human scu-PA in Escherichia coli (recombinant scu-PA). The activation of Glu-plasminogen by natural and recombinant scu-PA can be described by a sequence of three reactions, each of which obeys Michaelis-Menten kinetics. Initial activation of plasminogen to plasmin by scu-PA (reaction I) occurs with a high affinity (Km below 0.8 microM) for both scu-PAs, while the catalytic rate constant (k2) is 0.017 s-1 for recombinant scu-PA but only 0.0009 s-1 for natural scu-PA. Subsequent conversion of scu-PA to urokinase (two-chain urokinase-type plasminogen activator, tcu-PA) by generated plasmin (reaction II) occurs with a comparable affinity (Km about 5 microM) for natural and recombinant scu-PA and with a k2 of 0.23 s-1 for natural and 1.2 s-1 for recombinant scu-PA. Finally, activation of plasminogen by tcu-PA (reaction III) occurs with low affinity (Km 30-50 microM) but with a high catalytic rate constant (k2 about 5 s-1) for both natural and recombinant tcu-PA. The differences in the kinetic parameters of the activation of plasminogen by natural or recombinant scu-PA are thus mainly due to differences in turnover rate in the first reaction. Indeed, the catalytic rate constant of the first reaction is about 20-times higher for recombinant scu-PA than for natural scu-PA. Thus, surprisingly, the artificial, unglycosylated recombinant scu-PA molecule has a better catalytic efficiency than its natural glycosylated counterpart.  相似文献   

2.
Trinitrobenzyl alkylation of poly(D-lysine) provides a novel powerful stimulator of tissue-type plasminogen activator. Its stimulatory effect on plasminogen activation is far greater than that of the original poly(D-lysine), and even surpasses that of fibrin. Its effect on plasmin-catalysed modification of both tissue-type plasminogen activator (t-PA) and native (Glu-1-) plasminogen are also investigated. Cleavage of one-chain t-PA to its two-chain form is monitored by measuring the increase in amidolytic activity which accompanies this transformation. Presupposing apparent first-order reaction kinetics, a theory is developed by which the rate constant, kcat/Km = 1.0 X 10(6) M-1 X s-1 of plasmin cleavage of one-chain t-PA can be calculated. Plasmin-catalysed transformation of 125I-labelled Glu-1- to Lys-77-plasminogen is quantified following separation by polyacrylamide gel electrophoresis at pH 3.2. A rate constant, kcat/Km = 4.4 X 10(3) M-1 X s-1 is obtained for the reaction between plasmin and Glu-1-plasminogen in the presence of 1 mM trans-4-(aminomethyl)cyclohexane-1-carboxylic acid. Both of the above plasmin-catalysed reactions are strongly enhanced by trinitrobenzoylated poly(D-lysine). The mechanism of action of this stimulator is elucidated by studying its binding to both activator and plasmin(ogen), and by direct comparison of the results with measurements of plasminogen activation kinetics in the presence of the stimulator. Binding studies are performed exploiting the observation that an insoluble yellow complex is formed between plasminogen and modified poly(D-lysine). Protein-polymer interactions are also studied with solubilised components in an aqueous two-phase partition system containing dextran and poly(ethylene glycol). The rate enhancement of plasminogen activation is found to be closely correlated to the association of plasminogen to the stimulator. It is proposed that the stimulator effects of this simple polymer on the enzymatic activities of both plasminogen activator and plasmin are brought about by association of the proteinase and its substrate to a common matrix. Similarities between the action of the artificial and the natural stimulator (fibrin) are stressed. These properties of trinitrobenzoylated poly(D-lysine) makes it useful as a model for the study of the regulatory mechanism of the fibrinolytic process at the molecular level.  相似文献   

3.
Thrombin converts single-chain urokinase-type plasminogen activator (scu-PA) to an inactive two-chain derivative (thrombin-derived tcu-PA) by hydrolysis of the Arg-156--Phe-157 peptide bond. In the present study, we show that inactive thrombin-derived tcu-PA (specific activity 1000 IU/mg) can be converted with plasmin to active two-chain urokinase-type plasminogen activator (specific activity 43,000 IU/mg) by hydrolysis of the Lys-158--Ile-159 peptide bond. This conversion follows Michaelis-Menten kinetics with a Michaelis constant Km of 37 microM and a catalytic rate constant k2 of 0.013 s-1. The catalytic efficiency (k2/Km) for the activation of thrombin-derived tcu-PA by plasmin is about 500-fold lower than that for the conversion of intact scu-PA to tcu-PA. tcu-PA, generated by plasmin treatment of thrombin-derived tcu-PA, has similar properties to tcu-PA obtained by digestion of intact scu-PA with plasmin (plasmin-derived tcu-PA); its plasminogen activating potential and fibrinolytic activity in an in vitro plasma clot lysis system appear to be unaltered. These observations confirm that the structure of the NH2-terminal region of the B chain of u-PA is an important determinant for its enzymatic activity, whereas that of the COOH-terminal region of the A chain is not.  相似文献   

4.
Matrix metalloproteinase-3 (MMP-3 or stromelysin-1) specifically binds to tissue-type plasminogen activator (t-PA), without however, hydrolyzing the protein. Binding affinity to proMMP-3 is similar to single chain t-PA, two chain t-PA and active site mutagenized t-PA (Ka of 6.3 x 106 to 8.0 x 106 M-1), but is reduced for t-PA lacking the finger and growth factor domains (Ka of 2.0 x 106 M-1). Activation of native Glu-plasminogen by t-PA in the presence of proMMP-3 obeys Michaelis-Menten kinetics; at saturating concentrations of proMMP-3, the catalytic efficiency of two chain t-PA is enhanced 20-fold (kcat/Km of 7.9 x 10-3 vs. 4.1 x 10-4 microM-1.s-1). This is mainly the result of an enhanced affinity of t-PA for its substrate (Km of 1.6 microM vs. 89 microM in the absence of proMMP-3), whereas the kcat is less affected (kcat of 1.3 x 10-2 vs. 3.6 x 10-2 s-1). Activation of Lys-plasminogen by two chain t-PA is stimulated about 13-fold at a saturating concentration of proMMP-3, whereas that of miniplasminogen is virtually unaffected (1.4-fold). Plasminogen activation by single chain t-PA is stimulated about ninefold by proMMP-3, whereas that by the mutant lacking finger and growth factor domains is stimulated only threefold. Biospecific interaction analysis revealed binding of Lys-plasminogen to proMMP-3 with 18-fold higher affinity (Ka of 22 x 106 M-1) and of miniplasminogen with fivefold lower affinity (Ka of 0.26 x 106 M-1) as compared to Glu-plasminogen (Ka of 1.2 x 106 M-1). Plasminogen and t-PA appear to bind to different sites on proMMP-3. These data are compatible with a model in which both plasminogen and t-PA bind to proMMP-3, resulting in a cyclic ternary complex in which t-PA has an enhanced affinity for plasminogen, which may be in a Lys-plasminogen-like conformation. Maximal binding and stimulation require the N-terminal finger and growth factor domains of t-PA and the N-terminal kringle domains of plasminogen.  相似文献   

5.
Single-chain Mr 54,000 u-PA (scu-PA) was isolated, in the presence of aprotinin, from 3-liter batches of 60-h serum-free conditioned media obtained from subcultured (4-6th passage) human umbilical vein endothelial cells (HUVECs, approximately 1.8 x 10(9) cells). In the presence of heparin and endothelial cell growth factor, subcultured human umbilical vein endothelial cells produced u-PA proteins consisting of about 85-90% Mr 54,000 scu-PA and 10-15% two-chain Mr 54,000. The major scu-PA form was purified to homogeneity by ion-exchange chromatography on CM-Sephadex C-50, immunoadsorption on purified anti-u-PA IgG-Sepharose and affinity chromatography on p-amino-benzamidine-Agarose. Typically, about 8-10 micrograms of purified scu-PA protein (antigen/protein ratio = 1) was isolated from 3-liter batches of heparin-containing serum-free conditioned media with a yield of about 41% of the total starting u-PA antigen. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of this purified u-PA protein showed a single Ag-stained band (nonreduced and reduced), with an estimated molecular weight of about 54,000, which exhibited very low fibrinolytic activity. Purified HUVEC-derived scu-PA did not incorporate 3H-labeled diisopropyl fluorophosphate. This protein did, however, exhibit very low amidolytic activity (approximately 5,000 IU/mg) on the u-PA-specific synthetic substrate pyroglu-Gly-Arg-p-nitroanilide, very low plasminogen-dependent fibrinolytic activity on 125I-labeled fibrin coated plates, and directly activated 125I-labeled plasminogen following Michaelis-Menten kinetics with high affinity, Km = 0.72 microM and low turnover number, kcat = 0.0005 s-1. Treatment with plasmin rapidly converted the HUVEC-derived scu-PA to the active two-chain Mr 54,000 u-PA form (approximately 90,000 IU/mg). Binding to fibrin clots, using antigen quantitation, indicated about 20, 10, and 90% binding for equimolar amounts of HUVEC-derived scu-PA, two-chain u-PA, and tissue plasminogen activator standards, respectively. These results indicate that subcultured HUVECs synthesize and secrete their u-PA protein as a single-chain molecule with low intrinsic amidolytic and fibrinolytic activity, high affinity for plasminogen and no specific affinity for fibrin. The role of scu-PA in endothelial cell-mediated vascular function has yet to be clearly defined.  相似文献   

6.
A low Mr form (Mr 32,000) of single-chain urokinase-type plasminogen activator (scu-PA) was isolated from conditioned culture medium of a human lung adenocarcinoma cell line, CALU-3 (ATCC, HTB-55). The purified material (scu-PA-32k) consists of a single polypeptide chain and is immunologically similar to Mr 33,000 urokinase. Its NH2-terminal sequence is identical to that beginning at Leu-144 of Mr 54,000 urokinase. Whereas low Mr urokinase is derived from mature Mr 54,000 scu-PA by limited hydrolysis by plasmin first of the Lys-158-Ile-159 peptide bond and then of the Lys-136-Lys-137, scu-PA-32k is generated by specific hydrolysis of the Glu-143-Leu-144 peptide bond by an unidentified protease. scu-PA-32k resembles its Mr 54,000 scu-PA counterpart by its very low activity on chromogenic substrates for urokinase, by plasminogen-dependent fibrinolytic activity on fibrin plates, and by the lack of specific binding to fibrin. It activates plasminogen directly with high affinity, Km = 0.9 microM, but low turnover number, kcat = 0.0028 s-1. It is converted to fully active two-chain urokinase by plasmin with Km = 12 microM and kcat = 0.3 s-1. Like Mr 54,000 scu-PA, it causes significant lysis of a 125I-labeled fibrin clot in human plasma with relatively less fibrinogen breakdown as compared to urokinase. scu-PA-32k, which also has conserved fibrin specificity, represents a molecular variant which may be more suitable for large scale production as a fibrin-specific thrombolytic agent by recombinant DNA technology.  相似文献   

7.
The reaction between plasminogen activators and plasminogen activator inhibitor-1 is characterized by an initial rapid formation of an inactive reversible complex. The second-order association rate constant (k1) of complex formation of recombinant two-chain tissue-type plasminogen activator (rt-PA) or recombinant two-chain urokinase-type plasminogen activator (rtcu-PA) by recombinant plasminogen activator inhibitor-1 (rPAI-1) is 2.9 +/- 0.4 x 10(7) M-1 s-1 (mean +/- S.D., n = 30) and 2.0 +/- 0.6 x 10(7) M-1 s-1 (n = 12), respectively. Different molecular forms of tissue- or urokinase-type plasminogen activator which do not form covalent complexes with rPAI-1, including rt-PA-Ala478 (rt-PA with the active-site Ser478 mutagenized to Ala) and anhydro-urokinase (rtcu-PA with the active-site Ser356 converted to dehydroalanine) reduced k1 in a concentration-dependent manner, compatible with 1:1 stoichiometric complex formation between rPAI-1 and these ligands. The apparent dissociation constant (KD) of the complex between rPAI-1 and rt-PA-Ala478, determined as the concentration of rt-PA-Ala478 which reduced k1 to 50% of its control value, was 3-5 nM. Corresponding concentrations of active-site-blocked two-chain rt-PA were 150-250-fold higher. The concentration of anhydro-urokinase which reduced k1 to 50% was 4-6 nM, whereas that of active-site-blocked rtcu-PA was 100-250-fold higher. Recombinant single-chain urokinase-type plasminogen activator had an apparent KD of about 2 microM. These results suggest that inhibition of rt-PA or rtcu-PA by rPAI-1 proceeds via a reversible high affinity interaction which does not require a functional active site but which is markedly reduced following inactivation of the enzymes with active-site titrants.  相似文献   

8.
The interaction of urokinase-type plasminogen activators with receptors on the surface of endothelial cells may play an important role in the regulation of fibrinolysis and cell migration. Therefore, we investigated whether human umbilical vein endothelial cells (HUVEC) express receptors for single-chain urokinase (scu-PA) on the cell surface and examined the effect of such binding on plasminogen activator activity. Binding of 125I-labeled scu-PA to HUVEC, performed at 4 degrees C, was saturable, reversible, and specific (k+1 4 +/- 1 X 10(6) min-1 M-1, k-1 6.2 +/- 1.4 X 10(-3) min-1, Kd 2.8 +/- 0.1 nM; Bmax 2.2 +/- 0.1 X 10(5) sites/cell; mean +/- S.E.). Binding of radiolabeled scu-PA was inhibited by both natural and recombinant wild-type scu-PA, high molecular weight two-chain u-PA (tcu-PA), catalytic site-inactivated tcu-PA, an amino-terminal fragment of u-PA (amino acids 1-143), and a smaller peptide (amino acids 4-42) corresponding primarily to the epidermal growth factor-like domain. Binding was not inhibited by low molecular weight urokinase or by a recombinant scu-PA missing amino acids 9-45. Cell-bound scu-PA migrated at its native molecular mass on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In the presence of plasminogen, scu-PA bound to endothelial cells generated greater plasmin activity than did scu-PA in the absence of cells. In contrast, when tcu-PA was added directly to HUVEC, sodium dodecyl sulfate-stable complexes formed with cell or matrix-associated plasminogen activator inhibitors with a loss of plasminogen activator activity. These studies suggest that endothelial cells in culture express high affinity binding sites for the epidermal growth factor domain of scu-PA. Interaction of scu-PA with these receptors may permit plasminogen activator activity to be expressed at discrete sites on the endothelial cell membrane.  相似文献   

9.
The vampire bat salivary plasminogen activator (BatPA) is virtually inactive toward Glu-plasminogen in the absence of a fibrin-like cofactor, unlike human tissue-type plasminogen activator (tPA) (the kcat/Km values were 4 and 470 M-1 s-1, respectively). In the presence of fibrin II, tPA and BatPA activated Glu-plasminogen with comparable catalytic efficiencies (158,000 and 174,000 M-1 s-1, respectively). BatPA's cofactor requirement was partially satisfied by polymeric fibrin I (54,000 M-1 s-1), but monomeric fibrin I was virtually ineffective (970 M-1 s-1). By comparison, a variety of monomeric and polymeric fibrin-like species markedly enhanced tPA-mediated activation of Glu-plasminogen. Fragment X polymer was 2-fold better but 9-fold worse as cofactor for tPA and BatPA, respectively, relative to fibrin II. Fibrinogen, devoid of plasminogen, was a 10-fold better cofactor for tPA than fibrinogen rigorously depleted of plasminogen, Factor XIII, and fibronectin; the enhanced stimulatory effect of the less-purified fibrinogen was apparently due to the presence of Factor XIII. By contrast, the two fibrinogen preparations were equally poor cofactors of BatPA-mediated activation of Glu-plasminogen. BatPA possessed only 23 and 4% of the catalytic efficiencies of tPA and two-chain tPA, respectively, in hydrolyzing the chromogenic substrate Spectrozyme tPA. However in the presence of fibrin II, BatPA and tPA exhibited similar kcat/Km values for the hydrolysis of Spectrozyme tPA. Our data revealed that BatPA, unlike tPA, displayed a strict and fastidious requirement for polymeric fibrin I or II. Consequently, BatPA may preferentially promote plasmin generation during a narrow temporal window of fibrin formation and dissolution.  相似文献   

10.
A hybrid human cDNA was constructed by splicing of a cDNA fragment of tissue-type plasminogen activator (t-PA), encoding 5'-untranslated, the pre-pro region and amino acids Ser1-Thr263, with a cDNA fragment of urokinase-type plasminogen activator (u-PA), encoding amino acids Leu144-Leu411. The cDNA fragments were obtained from full length t-PA cDNA, cloned from Bowes melanoma poly(A)+ mRNA, and from full length u-PA cDNA, cloned from CALU-3 lung adenocarcinoma poly(A)+ mRNA. The hybrid (t-PA/u-PA) cDNA was expressed in Chinese hamster ovary cells and the translation product purified from the conditioned cell culture media. On SDS-gel electrophoresis under reducing conditions, the protein migrated as a single band with approximate Mr 70,000. On immunoblotting, it reacted both with rabbit antisera raised against human t-PA and against human u-PA. The urokinase-like amidolytic activity of the protein was only 320 IU/mg but increased to 43,000 IU/mg after treatment with plasmin, which resulted in conversion of the single-chain molecule (t-PA/scu-PA) to a two-chain molecule (t-PA/tcu-PA). The specific activity of the protein on fibrin plates was 57,000 IU/mg by comparison with the International Reference Preparation for Urokinase. Both the single-chain hybrid (t-PA/scu-PA) and the two-chain plasmin derivative (t-PA/tcu-PA) bound specifically to fibrin, albeit more weakly than t-PA. The t-PA/tcu-PA hybrid had a higher selectivity for fibrin than tcu-PA, measured in a system composed of a whole human 125I-fibrin-labeled plasma clot immersed in human plasma. Both hybrid proteins activated plasminogen directly with Km = 1.5 microM and k2 = 0.0058 s-1 for t-PA/scu-PA and with Km = 80 microM and k2 = 5.6 s-1 for t-PA/tcu-PA. CNBr-digested fibrinogen stimulated the activation of plasminogen with t-PA/tcu-PA (Km = 0.20 microM and k2 = 1.2 s-1). It is concluded that these t-PA/u-PA hybrid proteins combine, at least to some extent, the fibrin-affinity of t-PA with the enzymatic properties of u-PA (either scu-PA or tcu-PA), which in some assays result in improved fibrin-mediated plasminogen activation.  相似文献   

11.
The rate of 'Glu'-plasminogen activation by tissue plasminogen activator was repeatedly determined during a fibrinolytic process. The process was found to proceed via two distinct phases. The kinetics of each phase obeyed Michaelis-Menten equation: First phase; kcat about 0.17 s-1 and Km about 1 microM, second phase; kcat about 0.13 s-1 and Km about 0.06 microM. Practically identical results were obtained with one-chain as with two-chain tissue plasminogen activator. Transition from first to second phase occurred when the system had been exposed to a certain degree of plasmin digestion. Electrophoretic analysis demonstrated time correlation between the appearance of minimally degraded fibrin (X-fragments) and the transition. No such correlation was found between transition and conversion of 'Glu'-plasminogen to 'Lys'-plasminogen. The effect can result in an acceleration (up to 13-fold) of the fibrinolytic process once a slight degradation of the fibrin has taken place. In vivo, the effect described may constitute a mechanism that protects a fibrin clot from premature lysis.  相似文献   

12.
Human recombinant single chain urokinase-type plasminogen activator (recombinant scu-PA) and a hybrid between human tissue-type plasminogen activator (t-PA) and scu-PA, obtained by ligation of cDNA fragments encoding the NH2-terminal region (amino acids 1-67) of t-PA and the COOH-terminal region (amino acids 136-411) of scu-PA, were expressed in a mammalian cell system. The proteins were purified from conditioned culture media containing 2% fetal calf serum by chromatography on zinc chelate-Sepharose, immunoadsorption chromatography on an insolubilized murine monoclonal antibody directed against urokinase, benzamidine-Sepharose chromatography, and Ultrogel AcA 44 gel filtration. Between 180 and 230 micrograms of the purified proteins were obtained per liter of conditioned medium, with a yield of approximately 18% and a purification factor of 720-1900. On sodium dodecyl sulfate gel electrophoresis under reducing conditions, the proteins migrated as single bands with approximate Mr 50,000 for recombinant scu-PA and Mr 43,000 for the t-PA/scu-PA hybrid. Following conversion to urokinase with plasmin, the proteins had a specific amidolytic activity comparable to that of natural scu-PA. Both proteins activated plasminogen directly with Km = 0.53 and 1.4 microM and k2 = 0.0034 and 0.0027 s-1, respectively. Both proteins did not bind specifically to fibrin and had a comparable degree of fibrin selectivity as measured in a system composed of a whole human 125I-fibrin-labeled plasma clot suspended in human plasma. It is concluded that this chimeric protein, consisting of the NH2-terminal "finger-like" domain of t-PA and the COOH-terminal region of scu-PA, has very similar enzymatic properties as compared to scu-PA, but has not acquired the fibrin affinity of t-PA.  相似文献   

13.
The cDNA encoding full-length single chain urokinase-type plasminogen activator (scu-PA) was cloned and sequenced, and the recombinant scu-PA (rscu-PA) was expressed in Chinese hamster ovary cells. Two mutants, constructed by in vitro site-specific mutagenesis of Lys158 in rscu-PA to Gly158 (rscu-PA-Gly158) or to Glu158 (rscu-PA-Glu158), were also expressed in Chinese hamster ovary cells. Wild type and mutant rscu-PAs were purified to homogeneity by immunoadsorption on an insolubilized monoclonal antibody raised against natural scu-PA (nscu-PA), followed by gel filtration. The specific activity of the mutant scu-PAs on fibrin plates is very low (less than 1,000 IU/mg) compared to that of the wild type rscu-PA (44,000 IU/mg). The mutants, in contrast to the wild type rscu-PA, are not converted to amidolytically active two chain u-PA (tcu-PA) by plasmin and do not cause lysis of a 125I-fibrin-labeled plasma clot immersed in citrated plasma. However, in a purified system, both rscu-PA-Gly158 and rscu-PA-Glu158 activate plasminogen following Michaelis-Menten kinetics, with a much lower affinity (Km = 60-80 microM) but with a higher turnover rate constant (k2 = 0.01 s-1) as compared to the wild type rscu-PA (Km = 1.0 microM, k2 = 0.002 s-1). We conclude that conversion of scu-PA to tcu-PA is not a prerequisite for the activation of plasminogen. Substitution of Lys158 by Gly158 or Glu158 does, however, markedly decrease the stability of the Michaelis complex.  相似文献   

14.
Vitronectin (VN) has been implicated as a major matrix-associated regulator component of plasminogen activation by serving as a potent stabilizing cofactor of plasminogen activator inhibitor-1 (PAI-1). The direct binding of heparin, plasminogen as well as PAI-1 in its latent and active form to immobilized VN was studied in the absence or presence of competitors. Monoclonal antibodies against the carboxyl-terminal portion of VN inhibited both PAI-1 and plasminogen binding, whereas heparin, heparan sulfate with a high degree of sulfation, or dextran sulfate interfered with PAI-1 binding (KD = 20 nM) only. Utilizing synthetic peptides encompassing overlapping sequences of the heparin-binding domain of VN, adjacent heparin and PAI-1-binding sites were localized within the sequence 348-370 of VN. Although a number of other serine protease inhibitors which do not form binary complexes with VN contain a reactive-site Ser at their P1'-position, a reactive-site P1' mutant of PAI-1 (Met----Ser) showed comparable if not increased binding to VN. Binding of Lys-plasminogen and active-site-blocked plasmin was at least 10-fold higher in affinity (KD = 85-100 nM) compared to Glu-plasminogen (KD approximately 1 microM) and could be inhibited by lysine analogs but not by glycosaminoglycans or PAI-1, indicating that heteropolar plasmin(ogen) binding of VN occurs to an adjacent segment upstream to the heparin and PAI-1-binding sites. This contention was further supported in binding studies with plasmin-modified VN which lost both heparin and PAI-1 binding but exhibited 2-3-fold higher capacity to bind plasminogen. The essential plasmin(ogen)-binding site was mapped by ligand blot analysis to the carboxyl-terminal portion of proteolytically trimmed VN (M(r) = 61,000). Moreover, treatment of the extracellular matrix of human umbilical vein endothelial cells with plasmin resulted in partial degradation of matrix-associated VN and concomitant release of PAI-1, but increased the ability of the matrix by about 2-fold to bind plasminogen. These results are indicative of differential interactions of VN with components of the plasminogen activation system, whereby plasmin itself may provoke the switch of VN from an anti-fibrinolytic into a pro-fibrinolytic cofactor. This process reflects a novel role for the adhesive protein and its degradation product(s) in the possible feedback regulation of localized plasmin formation at extracellular sites.  相似文献   

15.
We have recently shown that Neovastat, an antiangiogenic extract from shark cartilage, stimulates the in vitro activation of plasminogen by facilitating the tissue-type plasminogen activator (tPA)-dependent conversion of plasminogen to plasmin. In this report, we describe the purification and characterization of the stimulatory molecules. Neovastat was subjected to a three-step purification procedure including gel filtration, preparative isoelectric focusing, and preparative SDS-PAGE. Two 28-kDa proteins with pIs of approximately 4.5 and 6.5 were purified to apparent homogeneity and identified as immunoglobulin (Ig) kappa light chains by N-terminal microsequencing. Ig light chains do not directly stimulate the activity of tPA or plasmin, suggesting a mechanism of action involving an interaction with plasminogen. Kinetic analysis showed that both Ig light chains accelerate the in vitro tPA-dependent conversion of plasminogen in plasmin by increasing the affinity of tPA for plasminogen by 32- and 38-fold (Km decrease from 456 nM to 12-14 nM). Shark Ig light chains also stimulated the degradation of fibrin by the tPA/plasminogen system in an in vitro assay. A direct interaction between Ig light chains and plasminogen (KA=4.0-5.5 x 10(7) M(-1); KD=18-25 nM) and with tPA (KA=2.8 x 10(7) M(-1); KD=36 nM) was demonstrated using real time binding measured by surface plasmon resonance. Ig light chain is the first molecule associated with the antiangiogenic activity of Neovastat to be purified and identified.  相似文献   

16.
17.
The mechanism of the activation of plasminogen by single-chain urokinase-type plasminogen activator (single-chain u-PA, scu-PA) was studied using rscu-PA-Glu158, a recombinant plasmin-resistant mutant of human scu-PA obtained by site-specific mutagenesis of Lys158 to Glu, and rPlg-Ala740, a recombinant human plasminogen in which the catalytic site is destroyed by mutagenesis of the active-site Ser740 to Ala. Conversion of 125I-labeled single-chain plasminogen to two-chain plasmin was quantitated on reduced sodium dodecyl sulfate-gel electrophoresis combined with autoradiography and radioisotope counting of gels bands. The efficiencies of both rscu-PA-Glu158 and rscu-PA for the activation of rPlg-Ala740 and of natural plasminogen were comparable and were 250-500-fold lower than that of recombinant two-chain u-PA (rtcu-PA) for rscu-PA-Glu158 and 100-200-fold lower for rscu-PA. Pretreatment of rscu-PA-Glu158 or rscu-PA with excess alpha 2-antiplasmin, which efficiently neutralizes all contaminating rtcu-PA, did not significantly reduce the catalytic efficiency of these single-chain moieties, indicating that they have a low but significant intrinsic plasminogen activating potential. The low intrinsic catalytic efficiency of rscu-PA for the conversion of plasminogen to plasmin may be sufficient to generate trace amounts of plasmin, which may regulate plasminogen activation by converting poorly active rscu-PA to very active rtcu-PA.  相似文献   

18.
Single-chain urokinase-type plasminogen activator (scu-PA) is converted to urokinase by hydrolysis of the Lys158-Ile159 peptide bond. Site-directed mutagenesis of Lys158 to Gly or Glu yields plasmin-resistant mutants with a 10-20-fold reduced catalytic efficiency for the activation of plasminogen [Nelles et al. (1987) J. Biol. Chem. 262, 5682-5689]. In the present study, we have further evaluated the enzymatic properties of derivatives of recombinant scu-PA (rscu-PA), produced by site-directed mutagenesis of Lys158, Ile159 or Ile160, in order to obtain additional information on the structure/function relations underlying the enzymatic properties of the single- and two-chain u-PA moieties. [Arg158]rscu-PA (rscu-PA with Lys158 substituted with Arg) appeared to be indistinguishable from wild-type rscu-PA with respect to plasminogen-activating potential (catalytic efficiency k2/Km = 0.21 mM-1 s-1 versus 0.64 mM-1 s-1), conversion to active two-chain urokinase by plasmin (k2/Km = 0.13 microM-1 s-1 versus 0.28 microM-1 s-1), as well as its specific activity (48,000 IU/mg as compared to 60,000 IU/mg) and its fibrinolytic potential in a plasma medium (50% lysis in 2 h with 2.8 micrograms/ml versus 2.1 micrograms/ml). [Pro159]rscu-PA (Ile159 substituted with Pro) and [Gly159]rscu-PA (Ile159 converted to Gly) are virtually inactive towards plasminogen (k2/Km less than 0.004 mM-1 s-1). They are however converted to inactive two-chain derivatives by plasmin following cleavage of the Arg156-Phe157 peptide bond in [Pro159]rscu-PA and of the Lys158-Gly159 peptide bond in [Gly159]rscu-PA. [Gly158,Lys160]rscu-PA (with Lys158 converted to Gly and Ile160 to Lys) has a low catalytic efficiency towards plasminogen both as a single-chain form (k2/Km = 0.012 mM-1 s-1) and as the two-chain derivative (k2/Km = 0.13 mM-1 s-1) generated by cleavage of both the Arg156-Phe157 and/or the Lys160-Gly161 peptide bonds by plasmin. These findings suggest that the enzymatic properties of rscu-PA are critically dependent on the amino acids in position 158 (requirement for Arg or Lys) and position 159 (requirement for Ile). Conversion of the basic amino acid in position 158 results in a 10-20-fold reduction of the catalytic efficiency of the single-chain molecule but yields a fully active two-chain derivative. The presence of Ile in position 159 is not only a primary determinant for the activity of the two-chain derivative, but also of the single-chain precursor. Cleavage of the Arg156-Phe157 or the Lys160-Gly161 peptide bonds by plasmin yields inactive two-chain derivatives.  相似文献   

19.
An elastase-dependent pathway of plasminogen activation   总被引:1,自引:0,他引:1  
R Machovich  W G Owen 《Biochemistry》1989,28(10):4517-4522
In reaction mixtures containing Glu-plasminogen, alpha 2-antiplasmin, and tissue plasminogen activator or urokinase, either pancreatic or leukocyte elastase enhances the rate of plasminogen activation by 2 or more orders of magnitude. This effect is the consequence of several reactions. (a) In concentrations on the order of 100 nM, elastase degrades plasminogen within 10 min to yield des-kringle1-4-plasminogen (mini-plasminogen), which is 10-fold more efficient than Glu-plasminogen as a substrate for plasminogen activators. Des-kringle1-4-plasminogen is insensitive to cofactor activities of fibrin(ogen) fragments or an endothelial cell cofactor. (b) Des-kringle1-4-plasmin is one-tenth as sensitive as plasmin to inhibition by alpha 2-antiplasmin: k" = 10(6) M-1 s-1 versus 10(7) M-1 s-1. (c) alpha 2-Antiplasmin is disabled efficiently by elastase, with a k" of 20,000 M-1 s-1. The elastase-dependent reactions are not influenced by 6-aminohexanoate. In diluted (10-fold) blood plasma, the capacity of endogenous inhibitors to block plasmin expression is suppressed by 30 microM elastase. It is proposed that elastases provide an alternative pathway for Glu-plasminogen activation and a mechanism for controlling initiation of fibrinolysis by urokinase-type plasminogen activators.  相似文献   

20.
A chimeric plasminogen activator (t-PA/scu-PA-s), consisting of amino acids 1-263 of tissue-type plasminogen activator (t-PA) and 144-411 of single-chain urokinase-type plasminogen activator (scu-PA), was previously shown to maintain the enzymatic properties of scu-PA but to have only partially acquired the fibrin affinity of t-PA, possibly as a result of steric interaction between the functional domains of t-PA and scu-PA (Nelles, L., Lijnen, H. R., Collen, D., and Holmes, W.E. (1987) J. Biol. Chem. 262, 10855-10862). Therefore, we now have constructed an extended chimeric t-PA/scu-PA protein, consisting of amino acids 1-274 of t-PA and 138-411 of scu-PA, which thus has an additional sequence of 17 residues in the region joining the two proteins. The highly purified extended chimeric protein (t-PA/scu-PA-e) was found to have similar specific activity on fibrin film (65,000 IU/mg), kinetic constants for the activation of plasminogen (Km = 1 microM, k2 = 0.0026 s-1), fibrin affinity (50% binding at a fibrin concentration of 3.3 g/liter), and fibrin specificity of clot lysis in a plasma environment (50% lysis in 2 h with 8 nM of the chimer) as the previously characterized chimeric protein (t-PA/scu-PA-s). Thus, unexpectedly, the fibrin affinity of t-PA is also only partially expressed in this extended chimeric protein. Therefore, the NH2-terminal chains (A-chains) of the plasmin-generated two-chain derivatives t-PA/tcu-PA-e, t-PA/tcu-PA-s, and of t-PA were isolated. These A-chain structures of the chimers were found to have lost most of their fibrin affinity, whereas the fibrin affinity of the A-chain of native t-PA was maintained. Differential reactivity of the A-chain structures of both chimeric molecules with monoclonal antibodies directed against the A-chain of t-PA suggested that they were conformationally altered. Sequential fibrin binding experiments with t-PA/scu-PA-e and t-PA/scu-PA-s yielded 45 +/- 8 (n = 11) and 43 +/- 5% (n = 8), respectively, binding in the first cycle and 44 +/- 7 (n = 11) and 27 +/- 10% (n = 8), respectively, binding in the second cycle. This suggests that the low affinity of the chimeric molecules for fibrin is not due to the occurrence of subpopulations of molecules with different fibrin affinity but, instead, to a uniformly decreased fibrin affinity in all molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号