首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Pollen calli and plantlets of Hordeum vulgare cv. Sabarlis were obtained through direct pollen culture without pretreatment of spikes or preculture of anthers. Isolated immature pollen grains were cultured first in a 0.3 M mannitol solution or a C1 basal medium (Chen et al. 1979) supplemented with 0.3 M mannitol but without sucrose for 5–7 days, then transferred into a C1 medium containing 6% sucrose, 3 mM glutamine and 5 mM m-inositol. After a 3 week culture period small pollen calli derived from the pollen grains were transferred into a growth medium comprising C1 basal medium supplemented with 250 mg/1 lactalbumin hydrolysate and 0.5 mg/1 kinetin. For shoot regeneration, vigorously growing calli were transferred onto agarsolidified MS medium (Murashige and Skoog 1962) containing 3% sucrose, 2 mg/1 benzyladenine and 0.5 mg/1 indole-3-acetic acid. The ratio of green plants to albino was approximately 12.2.  相似文献   

2.
The obtaining of calluses and plantlets from cultured wheat anthersat the stages from pollen mother cell to trinucleate microspore has been reported previously. Haploids as well as diploids existed among the regenerated plantlets derivedfrom anthers at these stages. Present paper reports the study on androgenesis patter-ns of cultured anthers at meiosis, tetrad, early mid- and late uninucleate and trinucleate stage. Cytological evidence of pollen-origin of calluses produced by anthers atthese stages was given. Observation showed that meiosis of wheat anthers was able tocomplete under culture conditions, resulting in releasing microspores, from which multinucleate and multicellular pollen grains formed. In meiosis anthers, abnormal cells,including syncytium and two kinds of binueleate calls were sometimes observed. Theymight be products of abnormal meiosis and abnormal development of tapetum cells. Itwas noted that failure and/or uncomplction of forming callus wall and/or pollen wallin in vitro anthers at meiosis, tetrad and early uninucleate stage occured often. Itmight lead to the low frequency of callus induction. Mature wheat anthers (trinucleate stage) contained both normal and abnormal pollen grains (pollen dimorphism); onlythe abnormal pollen grains developed into embryoids while all the normai trinucleatepollen grains degenerated rapidly. However, the date of the frequency of equal divisionof microspores suggested that abnormal pollen (N pollen, small pollen) could not be theonly source of androgenic pollens in cultured anthers at late uninucleate and other earlier stages.  相似文献   

3.
The dedifferentiation of pollen grains of Hyoscyamus niger (henbane) into embryoids and calluses was examined by culturing identical segments of the same anther in a mineral salt-sucrose basal medium and in the basal medium supplemented with 2.0 mg/l 2,4-dichlorophenoxyacetic acid, respectively. Addition of auxin enhanced anther efficiency but did not affect the number of embryogenic pollen grains of an anther segment transformed into calluses. In anther segments cultured in the basal medium, the organogenetic part of the pollen embryoid was formed by the division of the generative cell alone, or by the division of both generative and vegetative cells. More or less similar pathways were followed by pollen grains of anther segments cultured in a medium containing auxin to form calluses. Culture of anther segments in a medium containing a high concentration of auxin (50.0 mg/l) led to a significant reduction in the yield of calluses which were formed almost entirely by the division of both generative and vegetative cells. The bearing of these observations on the role of auxin in determining the pathway of differentiation of embryogenic pollen grains in cultured anther segments is considered. The appearance of embryogenic pollen grains in close proximity to the tapetum as seen in longitudinal sections of cultured anther segments has suggested a role for a gradient of tapetal factors in embryogenic induction.  相似文献   

4.
Leaf, root, stem, petiole, hypocotyl, and zygotic embryo explants, as well as pollen embryoids, and redifferentiated tissues from pollen embryoid-derived plantlets of Hyoscyamus niger L. (black henbane) were inoculated with Agrobacterium tumefaciens, harboring binary vectors (pGS Gluc1) and then cultured on media containing kanamycin. Transient -glucuronidase activity and kanamycin resistant callus formation were influenced by explant origin. Transgenic calluses were obtained at a frequency of up to 30% from all the explants tested. However, transgenic shoots were obtained only from the hypocotyl of plantlets derived from pollen embryoids. Transformation was confirmed by the ability of leaf segments to produce kanamycin resistant calluses, -glucuronidase histochemical and flurometric assays, polymerase chain reaction and Southern blot analysis. The results show that pollen embryoid-derived explants may be an alternative source for both efficient transformation and regeneration of transgenic plants in recalcitrant species.  相似文献   

5.
An aluminum borate whiskers-mediated transformation system for calluses of tobacco (Nicotiana tabacum, cv. SR-1) has been developed. A total of 50 small pieces of calluses were vigorously agitated in a liquid medium containing aluminum borate whiskers, pBI221 plasmid carrying the -glucuronidase (GUS) gene, and pBI222 plasmid carrying the hygromycin phosphotransferase (HPT) gene. After treatment, calluses were cultured to select for hygromycin resistance, and three resistant calluses were obtained. Adventitious shoots were produced from each hygromycin-resistant callus and were transferred to rooting medium. A total of three plantlets obtained from each hygromycin-resistant callus were acclimatized and established in soil. Polymerase chain reaction analysis revealed that all the plantlets were cotransformed with both the GUS and HPT genes. Detached leaves of transgenic individuals showed clear hygromycin resistance when cultured in liquid medium. Histochemical assay for GUS revealed that one of these transgenic plants expressed the GUS gene, indicating coexpression of foreign genes.  相似文献   

6.
Summary Pollen shed between 4–8 d from anthers of Triticum aestivum cultured in liquid medium gave rise to calluses. Tillers were harvested at the mid-to late-unicellular pollen stages and chilled for 8 d at 4–5 °C before the anthers were dissected out. Pollen cultures gave about 6 times as many calluses on a per anther basis as anthers cultured on solid medium. With the most productive of 5 cultivars tested, pollen culture results in roughly one callus for each anther used, though the calluses formed by pollen culture were less productive for the regeneration of shoots than calluses derived from anthers cultured on solid medium. The ratio of green to albino shoots is roughly 1 1 for anther cultures but considerably less for pollen cultures.  相似文献   

7.
Immature zygotic embryos of rose (Rosa hybrida L.; cv. Sumpath) did not form somatic embryos or embryogenic calluses when cultured on half-strength Murashige and Skoog's medium supplemented with various con-centrations of 2,4-dichlorophenoxyacetic acid (2,4-D) as the sole growth regulator. However, the zygotic embryos produced somatic embryos without an intervening callus phase at a frequency of 27.3% on medium with 4.44 M 6-benzyladenine (BA) alone. Immature zygotic embryos formed embryogenic calluses at a frequency of 25% on medium with a combination of 1.36 M 2,4-D and 4.44 M BA. Upon transfer to medium without growth regulators, embryogenic calluses produced numerous somatic embryos that subsequently developed into plantlets. Somatic embryos were induced directly from immature zygotic embryos, or indirectly via an intervening callus phase, by manipulating the exogenous growth regulators. Plantlets were successfully transplanted to potting soil and grown to maturity in a greenhouse.  相似文献   

8.
It has been reported that "gameto-somatic hybridization" was induced by fusion of microspore tetrad protoplasts with somatic protoplasts in Nicotiana and Petunia. However, since the success of isolation of pollen protoplasts in recent years, the use of protoplasts at pollen stage as one of the fusion partners in such hybridization is a novel experimentation. Young pollen protoplasts were isolated from the pollen grains of Brassica chinensis at mid-late unicellular to early bicellular stage the pollens for 1.5--2.5 h at 25℃ in a CPW solution containing 0.8 % of eellulase, 0.5 % pectinase, 0.1% pectolyase, 1 3 % mannitol, 1 0 % glucose, 0. 3% potassium dextran sulphate and 3 mmol/L MES. The purified pollen protoplasts were then fused with the hypocotyl protoplasts of B. napus by PEG method. Heterokaryons were identified by means of visualization of the fluorescence from FITC-prela-beled pollen protoplasts. In order to increase heterokaryons and reduce hypocotyls homokaryons, the denstity of hypocotyl protoplasts were lowered and the ratio of the number of hypocotyl vs. pollen protoplasts were adjusted from 1 : 3 to 1 : 6. The fusion products were cultured in a liquid KM8p medium supplemented with 0.4 mol/L glucose, 0.8 mg/L 2, 4-D, 0.25 mg/L NAA. 0. 5 mg/L BA, 500 mg/L glutamine and 3 mmol/L MES where cell division and callus formation took place. The calli, after being transferred to a MS medium supplemented with 2.0 mg/L BA, 3 % sucrose and 0.4 % agarose, differentiated into a few shoots. The shoots were transferred onto a half-strength MS medium supplemented with 2% sucrose, 0.1--0. 2 mg/L NAA, 0.5 mg/L IBA and 20% potato juice for root formation. Finally, three plantlets were regenerated. Chromosome counts by roottip squash method revealed that one plantlet was 2n= 48, corresponding to an allotriploid resulted from a fusion between one pollen protoplast of B. chinensis (2n = 20) and one hypocotyl protoplast of B. napus (2n = 38), and the other two plantlets were 2n = 58, which might be an allotetraploid originated from a fusion between two pollen protoplasts and one hypocotyl protoplast. The isozyme patterns of leaf esterases showed that all the three plantlets had bands characteristic of both parents. This is the first case of success in "gameto-somatic hybridization" by using pollen protoplasts rather than tetrad protoplasts as the haploid partner.  相似文献   

9.
Plantlets were regenerated from cultured seed explants of the forage grass Caucasian bluestem [Bothriochloa caucasica (Trin.) C.E. Hubbard] via somatic embryogenesis. Embryogenic callus was produced in four weeks when surface sterilized seeds were cultured on a medium containing MS-salts, B-5 vitamins, 12 mM L-proline, 2% sucrose, 0.8% agar and 5M 2,4-D. Plantlets were regenerated in 6–8 weeks after culture initiation. Healthy root and shoot systems were produced within three weeks after the plantlets were transferred to a medium lacking 2,4-D. Approximately 95% of the plantlets survived greenhouse acclimation and produced healthy plants and viable seeds. Caucasian bluestem callus cultures exhibit natural resistance to kanamycin. High levels of kanamycin (up to 800 mg/l) did not completely inhibit callus growth. However, the regeneration of healthy-plantlets was completely inhibited by kanamycin even at low levels (50 mg/l).  相似文献   

10.

Sorghum bicolor is a recalcitrant species for tissue culture regeneration and genetic transformation. Browning of explants is one of the factors limiting organ and tissue cultures. To overcome this, callus tissue was initiated from the shoot tips of in vitro germinating seeds (S. bicolor cv. Róna 1), and then cultured on modified MS media (Murashige and Skoog in Physiol Plant 15:473–497, 1962). In the first experiment, we tested callus induction on several media supplemented with casein hydrolysate, polyvinylpyrrolidone, honey, and sucrose. The best callus induction was recorded for the medium with honey and sucrose (80.0%) and for control medium (79.8%). Shoot regeneration was tested on the MS medium with 6-benzylaminopurine (BAP) supplemented with honey and sucrose at a 1:1 ratio (by weight) or with sucrose only. The highest percentage of calluses regenerating shoots was noted for those induced on the medium with sucrose and honey—approx. four times higher when compared to the control. Rooted plantlets were acclimatized with a 92% survival rate. In the second experiment, we analyzed culture responses to various ways of honey application to the induction media: honey (autoclaved or filtered) in presence or absence of sucrose. Supplementation of the medium with fructose, glucose, and maltose at a proportion typical for honey was also investigated. The explant and callus survival rates were similar to those of the honey–sucrose combination in the first experiment. Only presence of both sucrose and honey in the induction medium improved the total regeneration rate to 37.9% over the control (18.8%). Sucrose and honey appear to act synergistically for shoot regeneration in callus cultures of sorghum.

  相似文献   

11.
This experiment assessed the effect of partial physical desiccation on plant regeneration efficiency in scutellum-derived embryogenic calluses of rice (Oryza sativa L.) variety Super basmati. A number of callusing cultures were developed, and efficient callus induction was observed on MS (Murashige and Skoog) basal medium supplemented with 2.0 mg/L 2,4-dichlorophenoxy acetic acid. The calluses were proliferated on the same medium for 3 weeks and then shifted to dehydration desiccation treatment for 72 h. The desiccated calluses were cultured on different media for somatic embryogenesis and plant regeneration. A medium with 2.0 mg/L α-napthaleneacetic acid, 10.0 mg/L abscisic acid , 2.0 mg/L kinetin was best for somatic embryogenesis only, but not for further plant development. After 10 d, differentiated calluses were sub-cultured on medium with various concentrations and types of carbohydrates (carbon source) in 1MS2j medium. A large number of plantlets (14.51±2.81 and 8.56±2.90 plants/callus) were regenerated via chemical desiccation, on MS with 3% maltose+3% sorbitol and 6% sucrose, respectively. Under dehydration on only simple MS (3% sucrose), 11.23±3.22 plants/callus were developed. Under conditions of dehydration and chemical desiccation, plant regeneration rates were higher than the calluses cultured on simple MS medium in the presence of plant growth regulator. After somatic embryogenesis, >25% plants were sterile. The protocol used here may allow maximum regeneration of normal and fertile plantlets of super basmati rice within 3 months.  相似文献   

12.
Papaya (Carica papaya L.) anther containing microspores in tetrad to early-binucleate stages were successfully cultured on 1/2 strength MS salts and vitamins with full strength Na-Fe-EDTA supplemented with 2 mg/l NAA, 1 mg/l BA and 6% sucrose for callus initiation and formation. Highest frequencies of callus induction were obtained when anthers at the uninucleate stage were cultured in the dark. Haploid plantlets and pollen-derived embryoids were obtained from anthers cultured at the uninucleate stage on solidified MS medium containing 3% sucrose without any growth regulators under a low light intensity (1,500 lux). Large quantities of embryoids were obtained when the original embryoids were transferred to MS medium with 3% sucrose and no growth regulators. Cytology of root tips of embryoid-derived plants confirmed the haploid chromosome number of 9 indicating that the embryoids originated from pollen.Abbreviations MS Murashige and Skoog (1962) - MAA naphthaleneacetic acid - BA 6-benzyladenine - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

13.
Shoots were regenerated from Oahe intermediate wheatgrass anthers cultured on Tsay's, N6, Yu-pei and 85D12 basal media supplemented with kinetin and 2,4-D or NAA. Androgenesis mainly started with symmetrical divisions of pollen nuclei immediately followed by cytokinesis. Formation of tetranucleate pollen grains resulting from asymmetrical divisions of the pollen nuclei was also noted. Tsay's medium was more effective for callus induction, while N6, Tsay's and Yu-pei differentiation media were equally effective for shoot regeneration in the calluses. All regenerants were albino.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - NAA naphthaleneacetic acid  相似文献   

14.
通过不同种类和水平植物生长调节剂对南方红豆杉(Taxus chinensisvar.mairei)愈伤组织诱导、生长和紫杉醇合成能力影响的研究发现:诱导培养初期,以无植物生长调节剂的MS为基本培养基,在附加不同植物生长调节剂组合作用下愈伤组织产生的时间和生长、在相同植物生长调节剂组合作用下不同外植体愈伤组织的产生时间和生长均表现出较显著差异,2,4-D/NAA高于0.4时,不利于南方红豆杉愈伤组织的诱导。转换到附加不同植物生长调节剂组合的B5培养基上后,随培养继代次数的增加,生长差异逐渐缩小,直至不显著,表明参考不同文献报道最优配方所设计的各植物生长调节剂组合对南方红豆杉愈伤组织的生长均较适宜,有利南方红豆杉愈伤组织生长的植物生长调节剂优化组合没有唯一性。但不同调节剂组合作用下的同源愈伤组织中、相同调节剂作用下不同源愈伤组织中紫杉醇含量均存在着极显著差异,适当水平(2 mg/L)的2,4-D单用,或与适当水平的KT、6-BA、KT GA配合使用,对南方红豆杉愈伤组织紫杉醇的合成较有利,NAA则不太有利,幼茎和叶愈伤组织产紫杉醇的水平较其它愈伤组织为高。  相似文献   

15.
小麦成熟胚愈伤组织诱导及分化研究   总被引:3,自引:0,他引:3  
以2个小麦品种成熟胚为外植体进行离体培养,研究了不同预处理、不同2,4-D浓度及与KT组合、不同蔗糖浓度等因素对愈伤组织诱导及分化的影响。结果表明:4℃低温预处理可提高愈伤组织的出愈率及再生苗率,2个材料的出愈率及再生苗率均达到90%和30%以上;在不同预处理条件下,2,4-D浓度对出愈率及再生苗率的影响与基因型有关,2,4-D浓度为1~2 mg/L更有利于愈伤组织诱导及分化;附加KT能缓解高浓度2,4-D对再生苗率的抑制作用,而对于在1、2 mg/L 2,4-D的培养基中附加KT则不表现这种作用;蔗糖浓度则在30 g/L条件下更有利于愈伤组织诱导。因此通过4℃低温预处理,在MS基本培养基中附加1~2mg/L 2,4-D及30 g/L蔗糖亦可促进小麦成熟胚愈伤组织的诱导和分化。  相似文献   

16.
Somatic embryogenesis was achieved from mid-rib and internodal calluses of Mussaenda erythrophylla L. cvs. Queen Sirikit and Rosea cultured on Murashige and Skoog basal medium containing 8.9 M BA+0.57 M IAA+10 mg l-1 ascorbic acid. Clumps of somatic embryos were separated and grown into complete plantlets when transferred to 1/2 MS medium+37 M adenine sulphate with 2% (w/v) sucrose.  相似文献   

17.
In vitro organogenesis was achieved from calluses derived from cotyledon and hypocotyl explants of Vigna radiata on MS medium. Organogenic calluses were induced from both cotyledon and hypocotyl explants excised from 3-day-old seedlings on MS medium containing NAA (1.07 m and BA (2.22 m) and 2,4-D (0.90 m) and BA (2.22 m) combinations respectively. Regeneration of adventitious shoots from cotyledon derived callus was achieved when they were cultured on MS medium supplemented with NAA (1.07 m), BA (8.88 m) and 10% coconut water. Hypocotyl derived calluses produced adventitious shoots when cultured on MS medium fortified with BA (6.66 m), TDZ (2.5 m) and 10% coconut water. Addition of GA at 1.73 m favored maximum 3 elongation of shoots. Regenerated shoots produced prominent roots when transferred to half strength MS medium supplemented with 4.90 m IBA. Rooted plantlets, thus developed were hardened and successfully established in field. Among the different carbohydrates and media tested, 87.64 m sucrose and MS+B5 medium proved best for maximum production of shoots. This protocol produced an average of seven plants per hypocotyl derived callus and 15 plants per cotyledon derived callus over a period of 3 months.  相似文献   

18.
Temperature-stress Pretreatment in Barley Anther Culture   总被引:7,自引:0,他引:7  
Methods of pretreating anthers at different temperatures priorto culture have been tested, with respect to pollen-callus productionand plant regeneration, in Hordeum vulgare cv. Sabarlis. For callus production, pretreatment of excised spikes (in sealedPetri dishes) was more effective than pretreatment of excisedtillers (in water or in polythene) at both 4 and 25 °C.Pretreatment of individual anthers at these temperatures wasdeleterious. Greater callus yields resulted from pretreatmentat 4 than at 25 °C, both for spikes and tillers, 3–5weeks being required for maximal yields at 4 °C and 3–5days at 25 °C. At 4 °C, a shorter pretreatment was requiredfor spikes than for tillers. Pretreatment of spikes was alsomore effective at 4 than at 7, 14 or 20 °C. Pretreatmentof individual spikelets at 4 °C was as effective as thatof whole spikes. For plant regeneration, calluses derived from pretreatment ofspikes were more effective than those derived from pretreatmentof tillers. More plants resulted from pretreatment at 4 thanat 25 °C, both for spikes and tillers. Maximal pretreatmenttimes for plant regeneration generally exceeded those for callusproduction. Following spike pretreatment at 4 °C the maximumfor plant regeneration exceeded that for callus production byabout 2 weeks. With this optimal pretreatment approximately60 per cent of the calluses gave rise to plantlets. Among this60 per cent, for every three calluses giving albinos, two gavegreen plantlets, equivalent to five green plantlets on averagefor every 100 anthers (= two spikes) cultured. The ratio ofgreen to albino plantlets was lower for all other pretreatments. Hordeum vulgare L., barley, anther culture, pollen callus, pollen plant-production, temperature stress  相似文献   

19.
Summary Anther-derived rice (Oryza sativa L. ssp. japonica variety Yerua P.A.) plants were obtained after cryopreservation by an encapsulation/dehydration technique. Immature anthers, excised from spikelets pretreated at 8°C for 8d, were encapsulated in calcium alginate beads. The beads were cultured on N6 medium with 11.5 μM naphthalenaecetic acid (NAA) and 2.3 μM 6-furfurylaminopurine (KIN). Fifteen percent of the encapsulated anthers formed calluses when pretreated with sucrose for 3 d in liquid medium, desiccated on silica gel, slowly cooled to −30°C, immersed in liquid nitrogen (LN), thawed, and recultured. The cryopreserved encapsulated anthers produced 1.67 shoots/callus, in contrast to the control (non-cooled encapsulated anthers), which produced 6 shoots/callus. Eighty percent of the plantlets developed into normal plants after being transferred to greenhouse conditions. Histological observations showed that the origin of the plants was not modified by the cryopreservation process.  相似文献   

20.
Culture conditions for high frequency plant regeneration via somatic embryogenesis in cell suspension cultures of Chelidonium majus var. asiaticum are described. Immature ovules formed embryogenic calluses at a frequency of 40% when cultured on Murashige and Skoog (MS) medium supplemented with 4.52 μM 2,4-dichlorophenoxyacetic acid (2,4-D). The optimum ovule size for embryogenic callus formation ranged from 1 to 1.5 mm in length. Cell suspension cultures were established from embryogenic calluses using MS liquid medium containing 4.52 μM 2,4-D. Upon plating onto MS basal medium, cell aggregates from cell suspension cultures produced somatic embryos which then developed into plantlets. Regenerated plantlets were transplanted to potting soil and grown to maturity in a growth chamber. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号