首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A lysosomal cysteine protease cathepsin L (3.4.22.15) purified from goat brain has been immobilized in calcium alginate beads in the presence of BSA through entrapment. Most favorable conditions for the entrapment were standardized as 3.0%(w/v) alginate and 1.5%(w/v) calcium chloride. Comparing the properties of free and immobilized enzyme using Z-Phe-Arg-4mβNA as chromogenic substrate, it was found that the immobilized enzyme could retain~70% of the original activity after five successive batch reactions. Vis-à-vis the free enzyme, immobilization conferred high stability to the enzyme both in the acidic and alkaline range, the enzyme lost no activity up to 60°C (Temperature stability for free enzyme is only up to 50°C). The pH optima for the enzyme shifted from 6.2 to 6.6 on entrapment. The increase in activity and stability of the enzyme in immobilized form even in the presence of high concentration of DMSO and ethanol is surprising and may make it useful for catalyzing organic reactions like trans-esterification and trans-amidation.  相似文献   

2.
Alginate was evaluated as an immobilization matrix for enzyme-catalyzed reactions in organic solvents. In contrast to most hydrogels, calcium alginate was found to be stable in a range of organic solvents and to retain the enzyme inside the gel matrix. In hydrophobic solvents, the alginate gel (greater than 95% water) thus provided a stable, two-phase liquid system. The lipase from Candida cylindracea, after immobilization in alginate beads, catalysed esterification and transesterification in n-hexane under both batch and continuous-flow conditions. The operational stability of the lipase was markedly enhanced by alginate entrapment. In the esterification of butanoic acid with n-butanol, better results were obtained in the typical hydrophilic calcium alginate beads than in less hydrophilic matrices. The effects of substrate concentration, matrix area, and polarity of the substrate alcohols and of the organic solvent on the esterification activity were examined. The transesterification of octyl 2-bromopropanoate with ethanol was less efficient than that of ethyl 2-bromopropanoate with octanol. By using the hydrophilic alginate gel as an immobilization matrix in combination with a mobile hydrophobic phase, a two-phase liquid system was achieved with definite advantages for a continuous, enzyme-catalysed process.  相似文献   

3.
Trigonopsis variabilis D ‐amino acid oxidase (TvDAAO) is an enzyme used in the industrial bioconversion of cephalosporin C (CPC) into 7‐aminocephalosporanic acid, a crucial biosynthetic nucleus for a wide spectrum of semi‐synthetic cephem antibiotics. Using homology modeling and site‐directed mutagenesis, we have previously shown that the TvDAAO variant F54Y possesses improved catalytic activity and thermostability. To further explore its industrial application, the conditions for immobilization of the enzyme were examined in the present investigation. The results showed that entrapment in a calcium alginate (Ca‐alginate) matrix using 2% alginate, 500 mM CaCl2, and 15 min stabilization appeared to be optimal for the immobilization of F54Y. The entrapped enzyme allowed complete CPC conversion. The entrapped enzyme also showed good operational stability and retained at least 90% of its original activity after 20 reaction cycles. To conclude, the entrapment of F54Y in Ca‐alginate appeared to be a simple and efficient biocatalysis system with potential application in the antibiotics industry.  相似文献   

4.
In this study, Bacillus licheniformis cells were immobilized by entrapment in calcium alginate beads and were used for production of alkaline protease by repeated batch process. In order to increase the stability of the beads, the immobilization procedure was optimized by statistical full factorial method, by which three factors including alginate type, calcium chloride concentration, and agitation speed were studied. Optimization of the enzyme production medium, by the Taguchi method, was also studied. The obtained results showed that optimization of the cell immobilization procedure and medium constituents significantly enhanced the production of alkaline protease. In comparison with the free-cell culture in pre-optimized medium, about 7.3-fold higher productivity was resulted after optimization of the overall procedure. Repeated batch mode of operation, using optimized conditions, resulted in continuous production of the alkaline protease for 13 batches in 19 days.  相似文献   

5.
曹文娟  袁海生 《菌物学报》2016,35(3):343-354
采用壳聚糖交联法和海藻酸钠-壳聚糖包埋交联法固定化桦褶孔菌产生的漆酶,探讨最佳固定化条件,固定化漆酶的温度,pH稳定性及操作稳定性,并以两种固定化酶分别对4种染料进行了降解.结果表明:(1)壳聚糖交联法固定化漆酶的最佳条件为:壳聚糖2.5%,戊二醛7%,交联时间2h,固定化时间5h,给酶量1g壳聚糖小球:1mL酶液(1U/mL),固定化效率56%;(2)海藻酸钠-壳聚糖包埋交联法固定化漆酶的最佳条件为:海藻酸钠浓度4%,壳聚糖浓度0.7%,氯化钙浓度5%,戊二醛浓度0.6%,给酶量4mL 4%海藻酸钠:1mL酶液(1U/mL),固定化效率高达86%;(3)固定化的漆酶相比游离漆酶有更好的温度和pH稳定性;(4)比较两种固定化漆酶,海藻酸钠-壳聚糖包埋交联法固定化酶的温度及酸度稳定性要优于壳聚糖固定化酶,但可重复操作性要弱于后者,两者重复使用8次后的剩余酶活比率分别为71%及64%;(5)两种固定化酶对所选的4种不同结构的合成染料均有较好的降解效果,其中壳聚糖固定化酶对茜素红的降解效果及重复使用性极佳,重复降解40mg/L的茜素红10次,降解率仍保持在100%.  相似文献   

6.
Aminopeptidase B, an arginyl aminopeptidase, was purified from goat brain with a purification factor of ~280 and a yield of 2.7%. It was entrapped in calcium alginate together with bovine serum albumin. The optimal conditions for immobilization for maximum activity yield were 1% CaCl2 and 2.5% alginate. The immobilized enzyme retained ~62% of its initial activity and could be used for five successive batch reactions with retention of 30% of the initial activity. The pH and temperature optima of the free and immobilized enzyme were pH 7.4, 45°C and pH 7.8, 50°C respectively, while the pH and thermal stability as well as the stability of the enzyme in organic solvents were improved significantly after entrapment. The Km value for the immobilized enzyme was about twofold higher than that of the soluble enzyme. Because of this increased stability, the immobilized enzyme may be useful in the meat processing industry.  相似文献   

7.
Streptomyces griseoloalbus was immobilized in calcium alginate gel and the optimal immobilization parameters (concentrations of sodium alginate and calcium chloride, initial biomass and curing time) for the enhanced production of alpha-galactosidase were determined. The immobilization was most effective with 3% sodium alginate and 0.1M calcium chloride. The optimal initial biomass for immobilization was approximately 2.2g (wet wt.). The alginate-entrapped cells were advantageous because there was a twofold increase in the enzyme yield (55 U/ml) compared to the highest yield obtained with free cells (23.6 U/ml). Moreover, with immobilized cells the maximum yield was reached after 72 h of incubation in batch fermentation under optimal conditions, whereas in the case of free cells the maximum enzyme yield was obtained only after 96 h of incubation. The alginate beads had good stability and also retained 75% ability of enzyme production even after eight cycles of repeated batch fermentation. It is significant that this is the first report on whole-cell immobilization for alpha-galactosidase production.  相似文献   

8.
A method of immobilization of whole cells ofStreptomyces kanamyceticus containing glucose isomerase was devised, based on techniques of heat fixation in the presence of minerals and, entrapment in calcium alginate gels. The optimum activity of the enzyme was obtained when the cells were heat-fixed at 60°C for 10 min in the presence of 50 mmol/L MgSO4·7H2O and 5 mmol/L CoCl2·6H2O and then cast into calcium alginate beads using 2% sodium alginate.  相似文献   

9.
A method for the immobilization of lipoxygenase (LOX) in an alginate-silicate gel matrix was developed. In this method, a mixture of calcium alginate beads and LOX in borate buffer are dispersed into a hexane solution of tetramethoxy-ortho-silicate (TMOS). Hydrolysis of the TMOS gives products that permeate and co-polymerize with the alginate gel to form a colloid within the beads that entraps the LOX. Optimum reaction conditions for sol-gel entrapment of LOX are at pH 9.0 in 0.2M borate buffer. The composite gel, after isolation and vacuum drying, had excellent protein retention that has good enzyme activity and stability at room temperature. The activity of the entrapped LOX was less than the activity of the free enzyme. However, the activity of the immobilized LOX can be restored by the addition of borate buffer and glycerol, or borate buffer saturated with an organic solvent. In contrast to the free enzyme in solution, which loses its activity in less than one day, sol-gel entrapped LOX retains its activity at ambient temperature for at least 25 days and can be recycled. This report demonstrates that the sol-gel entrapment method for immobilizing LOX can be useful in developing a process for the oxidation of polyunsaturated fatty acids.  相似文献   

10.
Rabbit liver microsomal cytochrome P-450 was immobilized by entrapment in calcium alginate gel. Aminopyrine demethylation experiments showed that the immobilized enzyme system is highly active and exhibits an unimpaired functional stability as compared with crude microsomes. The alginate entrapped microsomes were employed in a fixed bed recirculation reactor, where aminopyrine was continuously demethylated. Such model enzyme reactor can be a useful tool for studying extracorporeal drug detoxification or preparative substrate conversion with microsomal enzyme systems.  相似文献   

11.
The aim of this study was to formulate silica and alginate hydrogels for immobilization of β‐glucosidase. For this purpose, enzyme kinetics in hydrogels were determined, activity of immobilized enzymes was compared with that of free enzyme, and structures of silica and alginate hydrogels were characterized in terms of surface area and pore size. The addition of polyethylene oxide improved the mechanical strength of the silica gels and 68% of the initial activity of the enzyme was preserved after immobilizing into tetraethyl orthosilicate–polyethylene oxide matrix where the relative activity in alginate beads was 87%. The immobilized β‐glucosidase was loaded into glass–silicon–glass microreactors and catalysis of 4‐nitrophenyl β‐d ‐glucopyranoside was carried out at various retention times (5, 10, and 15 min) to compare the performance of silica and alginate hydrogels as immobilization matrices. The results indicated that alginate hydrogels exhibited slightly better properties than silica, which can be utilized for biocatalysis in microfluidic platforms.  相似文献   

12.
Thermoalkalophilic esterase enzyme from Bal?ova (Agamemnon) geothermal site were aimed to be immobilized effectively via a simple and cost-effective protocol in silicate coated Calcium alginate (Ca-alginate) beads by entrapment. The optimal immobilization conditions of enzyme in Ca-alginate beads were investigated and obtained with 2% alginate using 0.5mg/ml enzyme and 0.7 M CaCl(2) solution. In order to prevent enzyme from leaking out of the gel beads, Ca-alginate beads were then coated with silicate. Enzyme loading efficiency and immobilization yield for silicate coated beads was determined as 98.1% and 71.27%, respectively and compared with non-coated ones which were 68.5% and 45.80%, respectively. Surface morphologies, structure and elemental analysis of both silicate coated and non-coated alginate beads were also compared using Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscope (SEM) equipped with Energy-dispersive X-ray spectroscopy (EDX). Moreover, silicate coated alginate beads enhanced reusability of esterase in continuous processes compared to non-coated beads. The hydrolytic properties of free and immobilized enzyme in terms of storage and thermal stability as well as the effects of the temperature and pH were determined. It was observed that operational, thermal and storage stabilities of the esterase were increased with immobilization.  相似文献   

13.
Bacillus subtilis TD6 was isolated from Takifugu rubripes, also known as puffer fish. Cellulase from this strain was partially purified by ammonium sulphate precipitation up to 80% saturation, entrapped in calcium alginate beads, and finally characterized using CMC as the substrate. For optimization, various parameters were observed, including pH maximum, temperature maximum, sodium alginate, and calcium chloride concentration. pH maximum of the enzyme showed no changes before and after immobilization and remained stable at 6.0. The temperature maximum showed a slight increase to 60 °C. Two percent sodium alginate and a 0.15 M calcium chloride solution were the optimum conditions for acquisition of enzyme with greater stability. K (m) and V (max) values for the immobilized enzyme were slightly increased, compared with those of free enzyme, 2.9 mg/ml and 32.1 μmol/min/mL, respectively. As the purpose of immobilization, reusability and storage stability of the enzyme were also observed. Immobilized enzyme retained its activity for a longer period of time and can be reused up to four times. The storage stability of entrapped cellulase at 4 °C was found to be up to 12 days, while at 30 °C, the enzyme lost its activity within 3 days.  相似文献   

14.
The direct immobilization of soluble peroxidase isolated and partially purified from shoots of rice seedlings in calcium alginate beads and in calcium agarose gel was carried out. Peroxidase was assayed for guaiacol oxidation products in presence of hydrogen peroxide. The maximum specific activity and immobilization yield of the calcium agarose immobilized peroxidase reached 2,200 U mg−1 protein (540 mU cm−3 gel) and 82%, respectively. In calcium alginate the maximum activity of peroxidase upon immobilization was 210 mU g−1 bead with 46% yield. The optimal pH for agarose immobilized peroxidase was 7.0 which differed from the pH 6.0 for soluble peroxidase. The optimum temperature for the agarose immobilized peroxidase however was 30°C, which was similar to that of soluble peroxidase. The thermal stability of calcium agarose immobilized peroxidase significantly enhanced over a temperature range of 30∼60°C upon immobilization. The operational stability of peroxidase was examined with repeated hydrogen peroxide oxidation at varying time intervals. Based on 50% conversion of hydrogen peroxide and four times reuse of immobilized gel, the specific degradation of guaiacol for the agarose immobilized peroxidase increased three folds compared to that of soluble peroxidase. Nearly 165% increase in the enzyme protein binding to agarose in presence of calcium was noted. The results suggest that the presence of calcium, ions help in the immobilization process of peroxidase from rice shoots and mediates the direct binding of the enzyme to the agarose gel and that agarose seems to be a better immobilization matrix for peroxidase compared to sodium alginate.  相似文献   

15.
Thermostable β‐galactosidase from Bacillus coagulans RCS3 was purified by successive column chromatography using DEAE‐cellulose and Sephadex G‐50. Immobilization of the purified enzyme was studied with DEAE‐cellulose and calcium alginate. The efficiency of β‐galactosidase retention was 87 % with DEAE‐cellulose (17 mg protein/mL of matrix) and 80 % with calcium alginate (2.2 mg protein/g bead). Comparative studies of immobilization displayed a shift in the optimum temperature from 65 °C to 70 °C provoked by DEAE‐cellulose, although no effect was observed with calcium alginate. The heat inactivation curve revealed an improvement in the stability (t1/2 of 14.5 h for the immobilized enzyme as compared to 2 h for the free enzyme at 65 °C) in a calcium alginate system. This immobilized enzyme has a wide pH stability range (6.5–11). β‐Galactosidase immobilized by DEAE‐cellulose and calcium alginate allowed a 57 and 70 % lactose hydrolysis, respectively, to be achieved within 48 h after repeated use for twenty times.  相似文献   

16.
《Phytochemistry》1987,26(5):1431-1434
Suspension-cultured cells of Coffea arabica have been immobilized by entrapment in calcium alginate gels to mimic natural aggregation. The production of methylxanthine alkaloid was increased up to 13-fold by the immobilization. This increased production has been ascribed to organization of the entrapped cells through physicochemical interactions between the polymer (alginate) and the plant cell wall. It has been shown that the metabolic changes induced by the immobilization are reversible.  相似文献   

17.
Abstract

Extracellular lipase from an indigenous Bacillus aryabhattai SE3-PB was immobilized in alginate beads by entrapment method. After optimization of immobilization conditions, maximum immobilization efficiencies of 77%?±?1.53% and 75.99%?±?3.49% were recorded at optimum concentrations of 2% (w/v) sodium alginate and 0.2?M calcium chloride, respectively, for the entrapped enzyme. Biochemical properties of both free and immobilized lipase revealed no change in the optimum temperature and pH of both enzyme preparations, with maximum activity attained at 60?°C and 9.5, respectively. In comparison to free lipase, the immobilized enzyme exhibited improved stability over the studied pH range (8.5–9.5) and temperature (55–65?°C) when incubated for 3?h. Furthermore, the immobilized lipase showed enhanced enzyme-substrate affinity and higher catalytic efficiency when compared to soluble enzyme. The entrapped enzyme was also found to be more stable, retaining 61.51% and 49.44% of its original activity after being stored for 30 days at 4?°C and 25?°C, respectively. In addition, the insolubilized enzyme exhibited good reusability with 18.46% relative activity after being repeatedly used for six times. These findings suggest the efficient and sustainable use of the developed immobilized lipase for various biotechnological applications.  相似文献   

18.
Cytosine deaminase (CD) from Aspergillus parasiticus, which has half-life of 1.10?h at 37°C, was stabilized by immobilization on calcium alginate beads. The immobilized CD had pH and temperature optimum of 5 and 50°C respectively. The immobilized enzyme also stoichiometrically deaminated Cytosine and 5-fluorocytosine (5-FC) with the apparent KM values of 0.60?mM and 0.65?mM respectively, displaying activation energy of 10.72 KJ/mol. The immobilization of native CD on calcium alginate beads gave the highest yield of apparent enzymatic activity of 51.60% of the original activity and the enzymatic activity was lost exponentially at 37°C over 12?h with a half-life of 5.80?h. Hence, the operational stability of native CD can be improved by immobilization on calcium alginate beads.  相似文献   

19.
20.
This work examines the influence of various process parameters (like sodium alginate concentration, calcium chloride concentration, and hardening time) on papain entrapped in ionotropically cross-linked alginate beads for stability improvement and site-specific delivery to the small intestine using neural network modeling. A 33 full-factorial design and feed-forward neural network with multilayer perceptron was used to investigate the effect of process variables on percentage of entrapment, time required for 50% and 90% of the enzyme release, particle size, and angle of repose. Topographical characterization was conducted by scanning electron microscopy, and entrapment was confirmed by Fourier transform infrared spectroscopy and differential scanning calorimetry. Times required for 50% (T50) and 90% (T90) of enzyme release were increased in all 3 of the process variables. Percentage entrapment and particle size were found to be directly proportional to sodium alginate concentration and inversely proportional to calcium chloride concentration and hardening time, whereas angle of repose and degree of cross-linking showed exactly opposite proportionality. Beads with >90% entrapment and T50 of <10 minutes could be obtained at the low levels of all 3 of the process variables. The inability of beads to dissolve in acidic environment, with complete dissolution in buffer of pH≥6.8, showed the suitability of beads to release papain into the small intestine. The shelf-life of the capsules prepared using the papain-loaded alginate beads was found to be 3.60 years compared with 1.01 years of the marketed formulation. It can be inferred from the above results that the proposed methodology can be used to prepare papain-loaded alginate beads for stability improvement and site-specific delivery. Published: September 30, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号