首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Gwo JC  Chiu JY  Chou CC  Cheng HY 《Cryobiology》2005,50(3):338-343
The cryopreservation of algae could prevent genetic drift and minimize labor costs compared to the current method of maintenance and subculturing. Clear, simple protocols for cryopreservation of marine microalga, Nannochloropsis oculata were developed and cryoprotectant choice and concentration optimized. The viability of the microalga was assessed directly after thawing, and algal concentration was measured after 2-30 days of growth. Five cryoprotectants (dimethyl sulphoxide, Me2SO; ethylene glycol, EG; glycerol, Gly; methanol, MeOH; and propylene glycol, PG) at five concentrations (10, 20, 30, 40, and 50%; v/v) were evaluated to determine the toxicity of various cryoprotectants to N. oculata. The toxicity of cryoprotectant (Me2SO, EG, MeOH, and PG) was observed only at higher concentrations of CPAs: > 20% for EG, > 30% for Me2SO and methanol, and > 40% for PG. Direct freezing of algae in liquid nitrogen resulted in a severe loss of viability and a modified cryopreservation protocol proved to be more appropriate for the preservation of N. oculata. Cryopreservation protocols developed and tested in the present study might be applied to cryopreserving other strains, or species, in this genus.  相似文献   

2.
Cryopreservation of seabream (Sparus aurata) spermatozoa   总被引:3,自引:0,他引:3  
The aim of this research was to optimize protocols for freezing spermatozoa of seabream (Sparus aurata). All the phases of the cryopreservation procedure (sampling, choosing the cryoprotective extender, cooling, freezing, and thawing) were studied in relation to the species of spermatozoa under examination, so as to be able to restore on thawing the morphological and physiological characteristics of fresh semen. Seabream spermatozoa were collected by stripping and transported to the laboratory chilled (0-2 degrees C). Five cryoprotectants, dimethyl sulfoxide (Me(2)SO), ethylene glycol (EG), 1,2-propylene glycol (PG), glycerol, and methanol, were tested at concentrations between 5 and 15% by volume to evaluate their effect on the motility of semen exposed for up to 30 min at 26 degrees C. The less toxic cryoprotectants, 10% EG, 10% PG, and 5% Me(2)SO, respectively, were added to 1% NaCl to formulate the extenders for freezing. The semen was diluted 1:6 with the extender, inserted into 0.25-ml plastic straws by Pasteur pipette, and frozen using a cooling rate of either 10 or 15 degrees C/min to -150 degrees C followed by transfer and storage in liquid nitrogen (-196 degrees C). The straws were thawed at 15 degrees C/s. On thawing, the best motility was obtained with 5% Me(2)SO, although both 10% PG and EG showed good results; no differences were found between the two freezing gradients, although semen frozen with the 10 degrees C/min gradient showed a slightly higher and more prolonged motility.  相似文献   

3.
Ding FH  Xiao ZZ  Li J 《Theriogenology》2007,68(5):702-708
The objective was to identify an appropriate cryoprotectant and protocol for vitrification of red sea bream (Pagrus major) embryos. The toxicity of five single-agent cryoprotectants, dimethyl sulfoxide (DMSO), propylene glycol (PG), ethylene glycol (EG), glycerol (GLY), and methyl alcohol (MeOH), as well as nine cryoprotectant mixtures, were investigated by comparing post-thaw hatching rates. Two vitrifying protocols, a straw method and a solid surface vitrification method (copper floating over liquid nitrogen), were evaluated on the basis of post-thaw embryo morphology. Exposure to single-agent cryoprotectants (10% concentration for 15 min) was not toxic to embryos, whereas for higher concentrations (20 and 30%) and a longer duration of exposure (30 min), DMSO and PG were better tolerated than the other cryoprotectants. Among nine cryoprotectant mixtures, the combination of 20% DMSO+10% PG+10% MeOH had the lowest toxicity after exposure for 10 min or 15 min. High percentages of morphologically intact embryos, 50.6+/-16.7% (mean+/-S.D.) and 77.8+/-15.5%, were achieved by the straw vitrifying method (20.5% DMSO+15.5% acetamide+10% PG, thawing at 43 degrees C and washing in 0.5M sucrose solution for 5 min) and by the solid surface vitrification method (40% GLY, thawing at 22 degrees C and washing in 0.5M sucrose solution for 5 min). After thawing, morphological changes in the degenerated embryos included shrunken yolks and ruptured chorions. Furthermore, thawed embryos that were morphologically intact did not consistently survive incubation.  相似文献   

4.
Xiao ZZ  Zhang LL  Xu XZ  Liu QH  Li J  Ma DY  Xu SH  Xue YP  Xue QZ 《Theriogenology》2008,70(7):1086-1092
The objectives were to investigate the effect of cryoprotectants on the hatching rate of red seabream embryos. Heart-beat embryos were immersed in: five permeable cryoprotectants, dimethyl sulfoxide (DMSO), glycerol (Gly), methanol (MeOH), 1,2-propylene glycol (PG), and ethylene glycol (EG), in concentrations of 5-30% for 10, 30, or 60min; and two non-permeable cryoprotectants: polyvinylpyrrolidone (PVP), and sucrose (in concentrations of 5-20% for 10 or 30min). The embryos were then washed and incubated in filtered seawater until hatching occurred. The hatching rate of the embryos treated with permeable cryoprotectants decreased (P<0.05) with increased concentration and duration of exposure. In addition, PG was the least toxic permeable cryoprotectant, followed by DMSO and EG, whereas Gly and MeOH were the most toxic. At a concentration of 15% and 30min exposure, the hatching rate of the embryos immersed in PG was 93.3+/-7.0% (mean+/-S.D.), however, in DMSO, EG, Gly, and MeOH, it was 82.7+/-10.4, 22.0+/-5.7, 0.0+/-0.0, and 0.0+/-0.0%, respectively. Hatching rate of embryos treated with PVP decreased (P<0.05) with the increase of concentration and exposure time, whereas for embryos treated with sucrose, there was no significant decrease in comparison with the control at the concentrations used.  相似文献   

5.
The purpose of this study was to examine the suitability of cryoprotectant agent (CPA) impregnation protocols for the embryos of Japanese whiting (Sillago japonica), a small-sized, easy-to-rear, and prolific marine fish which may constitute a suitable experimental material for the development of cryopreservation methods for fish embryos. Our immediate goals were to assess the toxicity and permeability of various CPAs to whiting embryos of different developmental stages. Exposure of gastrula, somites, tail elongation, and pre-hatching embryos to 10%, 15%, and 20% solutions of propylene glycol (PG), methanol (MeOH), dimethyl sulfoxide (Me2SO), dimethylformamide (DFA), ethylene glycol (EG), and glycerol (Gly) in artificial sea water (ASW; 33 psu) for 20 min revealed that CPA toxicity for whiting embryos increased in the order of PG相似文献   

6.
A successful cryopreservation procedure for sperm must guarantee recovery of the morphological and functional characteristics of the cells following thawing so that preserved semen can to be used comparably with non-preserved semen. The aim of this work was to identify a species-specific freezing protocol for sea bass (Dicentrarchus labrax) spermatozoa by optimising all the stages in the cryopreservation procedure. In the first stage of the experiments, the cryoprotectants and the relative concentrations that had the least toxic effect on motility at room temperature were selected. The capacity of the selected cryoprotectant substances was then assessed in freezing tests as follows: dimethyl sulfoxide (Me(2)SO) 5% and 7%, ethylene glycol (EG) 7% and 10%, propylene glycol (PG) 7% and 10%. The cryoprotectant that gave the best results in this second stage of the experiments was EG 10%, and this was then used for the optimisation of the different stages in the freezing procedure: two different times of adaptation to the cryoprotectant were tested (15min and 6h), as well as the effects of adding an energy substrate (1.25mM sodium pyruvate) to assess its possible use as an energy source. Lastly, using the extender (diluent+Na-pyruvate+EG10%) and the adaptation procedure (6h at 0-2 degrees C) that had given the best results in the preceding stages of the experiments, four cooling rates were tested: 10, 12, 15, 24 degrees C/min. It was shown that the semen that was diluted immediately after collection in extender that contained the cryoprotectant (EG 10%), was equilibrated for 6h at 0-2 degrees C and then cooled at a rate of 15 degrees C/min, showed motility on thawing comparable to that of fresh semen (P=0.045).  相似文献   

7.
The aim of this research was to optimise protocols for freezing spermatozoa of the Pacific oyster. All the phases of the cryopreservation procedure (choice of cryoprotectant, cooling, freezing, and thawing) were studied in relation to the species of spermatozoa to restore on thawing the morphological and physiological characteristics of fresh semen. The choice of type and concentration of cryoprotectant in which semen is incubated before freezing is fundamental for a successful cryopreservation: the cryoprotectants (dimethylsulfoxide--Me(2)SO, ethylene glycol--EG, propylene glycol-PG, and glycerol in concentrations between 5 and 15%) were tested for their toxicity on the semen exposed up to 30 min at +26 degrees C (room temperature) by evaluating its ability to fertilise and the embryo development to the regular D larval stage. The best cryoprotectants, Me(2)SO, EG, and PG 5, 10, and 15% respectively, were used for the pre-cooling (adaptation/cooling) tests. Two different adaptation/cooling procedures were tested: (A) from +26 degrees C to 0-2 degrees C (2.6 degrees C/min) and (B) at +26 degrees C for 15 min. Lastly, using the cryoprotectants and the adaptation procedure (B) that had given the best results in the preceding stages of the experiment, four cooling rates were tested: 6, 11, 16, and 21 degrees C/min. It was seen that the semen that was incubated with EG 10%, adapted at +26 degrees C for 15 min, and then cooled at a rate of 6 degrees C/min showed a percentage of regular D larvae on thawing comparable to that of fresh semen (p > 0.05).  相似文献   

8.
Chen SL  Tian YS 《Theriogenology》2005,63(4):1207-1219
Conventional cryopreservation of complex teleost embryos has been unsuccessful, possibly because their large size (1-7 mm diameter), multi-compartmental structure and low water permeability lead to intracellular ice formation and chilling injury. To overcome these obstacles, we have developed a vitrification procedure for cryopreservation of flounder (Paralichthys olivaceus) embryos. In initial toxicity tests, propylene glycol (PG) and methanol (MeOH) were less toxic to embryos than dimethylformamide (DMF) or dimethyl sulfoxide (Me2SO), whereas ethylene glycol (EG) and glycerol (Gly) were toxic to all tested embryos. Embryos between four-somite and tail bud stages were more tolerant to vitrifying solutions than embryos in other developmental stages. Four vitrifying solutions (FVS1-FVS4) were prepared by combining a basic saline solution (BS2) and cryoprotectants PG and MeOH in different proportions (FVS1: 67, 20 and 13%; FVS2: 60, 24 and 16%; FVS3: 55, 27 and 18%; FVS4: 50, 30 and 20% of BS2, PG and MeOH, respectively). Their impact on flounder embryos was then compared. FVS1 produced the highest survival rate; whereas deformation rate was highest for FVS4. Five-step equilibration of embryos in FVS2 resulted in higher survival rates than equilibration in 4, 3, 2 or 1 steps. Flounder embryos varying from the 14-somite to the pre-hatching stage were cryopreserved in the four vitrifying solutions in liquid nitrogen for 1-7 h. From eight experiments, 20 viable thawed embryos were recovered from 292 cryopreserved embryos. Fourteen larvae with normal morphology hatched successfully from the 20 surviving frozen-thawed embryos from five experiments. Embryos at the tail bud stage exhibited greater tolerance to vitrification than embryos at other stages. These results establish that cryopreservation of flounder embryos by vitrification is possible. The technology has many potential applications in teleost germplasm resource conservation.  相似文献   

9.
Research on different cryoprotectants and their associations is important for successful vitrification, since greater cryoprotectant concentration of vitrification solution may be toxic to oocytes. The aim of the present research was to compare the efficiency of immature bovine oocyte vitrification in different associations of ethylene glycol (EG), glycerol and dimethylsulfoxide (Me(2)SO). In the first experiment, oocytes were exposed to the cryoprotectant for either 30 or 60s in final solutions of EG+DMSO1 (20% EG+20% Me(2)SO) or EG+DMSO2 (25% EG+25% Me(2)SO) or EG+GLY (25% EG+25% glycerol). In the second experiment, the oocytes were vitrified in open pulled straws (OPS) using 30s exposure of final solutions of EG+DMSO1 or EG+DMSO2 or EG+GLY. Maturation rates of 30s exposure groups were not different from the control, but 60s cryoprotectant exposure was toxic, decreasing maturation rates. The vitrification with EG+DMSO2 resulted in enhanced maturation rate (29.2%) as compared with EG+DMSO1 (11.7%) and EG+GLY (4.3%) treatments. These data demonstrate that concentration and type of cryoprotectant have important effects on the developmental competence of vitrified oocytes.  相似文献   

10.
Vitrification could provide a promising tool for the cryopreservation of fish embryos. However, in order to achieve a vitrifiable medium, a high concentration of permeable cryoprotectants must be employed, and the incorporation of high molecular weight compounds should also be considered. The toxicity of these permeable and non-permeable agents has to be assessed, particularly when high concentrations are required. In the present study, permeable and non-permeable cryoprotectant toxicity was determined in turbot embryos at two development stages (F stage-tail bud and G stage-tail bud free). Embryos treated with pronase (2mg/ml, 10 min at 22 degrees C) were incubated in dimethyl sulfoxide (Me2SO), methanol (Meth.) or ethylene glycol (EG) in concentrations ranging from 0.5 to 6M for periods of 10 or 30 min, and in 5, 10, and 15% polyvinylpyrrolidone (PVP), 10, 15, and 20% sucrose or 0.1, 1, and 2% X-1000 for 2 min. The embryos were then washed well and incubated in seawater until hatching. The toxicity of permeable cryoprotectants increased with concentration and exposure time. There were no significant differences between permeable cryoprotectants. However, embryos tolerated higher concentrations of Me2SO than other cryoprotectants. Exposure to permeable cryoprotectants did not affect the hatching rate except at G stage with X-1000 treatment and 20% sucrose. Taking into account the cryoprotectant toxicity and the vitrification ability of cryoprotectant mixtures, three vitrification solutions (V1, V2, and V3), and one protocol for stepwise incorporation were designed. The tested solutions contained 5M Me2SO+2M Meth+1M EG plus 5% PVP, 10% sucrose or 2% X-1000. The hatching rate of embryos that had been exposed to the the vitrification solutions was analyzed and no significant differences were noticed compared with the controls. Our results demonstrate that turbot embryos can be subject to this cryoprotectant protocol without deleterious effect on the hatching rate.  相似文献   

11.
Drug metabolism and viability studies in cryopreserved rat hepatocytes   总被引:1,自引:0,他引:1  
Rat hepatocytes were cryopreserved optimally by freezing them at 1 degrees C/min to -80 degrees C in cryoprotectant medium containing either 20% (v/v) dimethylsulfoxide (Me2SO) and 25% (v/v) fetal calf serum in Leibowitz L15 medium (Me2SO cryoprotectant) or 25% (v/v) vitrification solution (containing Me2SO, acetamide, propylene glycol and polyethylene glycol) in Leibowitz L15 medium (VS25). The VS25 solution was superior for maintaining viability during short-term storage (24-48 hr) but was slightly toxic during longer storage periods (7 days). Although thawed cells were 40-50% viable on ice after cryopreservation, their viability fell rapidly during incubation in suspension at 37 degrees C. This decline in viability occurred more rapidly after freezing in Me2SO cryoprotectant than in VS25 and was associated with extensive intracellular damage and cell swelling. The loss in viability at 37 degrees C does not appear to be due to ice-crystal damage as it occurred in cells stored at -10 degrees C (above the freezing point of the cryoprotectants) and it may be due to temperature/osmotic shock. Both cryoprotectant media were equally efficient at preserving enzyme activities in the hepatocytes over 7 days at -80 degrees C. Cytochrome P450 and reduced glutathione content and the activities of the microsomal enzymes responsible for aminopyrine N-demethylation and epoxide hydrolysis were well maintained over 7 days storage. In contrast, the cytosolic enzymes glutathione-S-transferase and glutathione reductase were markedly labile during cryopreservation. Cytosolic enzymes may be more susceptible to ice-crystal damage, whereas the microsomal membrane may protect the enzymes which are embedded in it.  相似文献   

12.
The cryoprotectants dimethyl sulfoxide (Me2SO) and glycerol have been used for the cryopreservation of fetal rat pancreases but only Me2SO has been reported for the cryopreservation of adult rat islets. Since glycerol may be preferred to Me2SO for clinical use, this study was undertaken to compare the effectiveness of these cryoprotectants during the slow cooling of isolated adult rat islets. Islets of Langerhans prepared from the pancreases of WAG rats by collagenase digestion were stored at -196 degrees C after slow cooling (0.3 degrees C/min) to -70 degrees C in the presence of multimolar concentrations of either Me2SO or glycerol. Samples were rewarmed slowly (approximately 10 degrees C/min) and dilution of the cryoprotectant was achieved using medium containing sucrose. Function was assessed by determination of the time course of the glucose-induced insulin release during in vitro perifusion at 37 degrees C and also by isograft transplantation. Transplants were carried out by intraportal injection of a minimum of 1700 frozen and thawed islets into streptozotocin-induced diabetic recipients and tissue function was assessed by monitoring blood glucose levels and body weight changes. Without exception the islets frozen and thawed in the presence of glycerol failed to reduce high serum glucose levels of recipient rats and in vitro dynamic release curves showed to demonstrate a glucose-sensitive insulin release pattern. Reversal of the diabetic conditions was achieved in two of five animals receiving islets which had been frozen and thawed with 2 M Me2SO; and in one of three animals receiving islets cryopreserved with 3 M Me2SO. Nevertheless, perifusion studies showed that the pattern of insulin secretion from groups of cryopreserved islets which did show an ability to secrete insulin was atypical compared with that of untreated controls, suggesting that the tissue was altered or damaged in some way.  相似文献   

13.
Bovine oocytes surrounded with compact cumulus cells were cultured for 20 to 22 hours (38.5 degrees C, 5% CO(2)) in modified TCM-199 medium supplemented with 5% superovulated cow serum (SCS) and inseminated by in vitro capacitated spermatozoa. Day 7 to 8 embryos were equilibrated for 10 minutes in 1.3 M methyl cellosolve (MC), 1.1 M diethylene glycol (DEG), 1.8 M ethylene glycol (EG), 1.6 M propylene glycol (PG) and 1.1 M 1, 3-butylene glycol (BG) solutions. They were then loaded into 0.25-ml straws, placed into an alcohol bath freezer at 0 degrees C, cooled from 0 degrees C to -6 degrees C at -1 degrees C/minute, seeded, held for 10 minutes, and cooled again at -0.3 degrees C or -0.5 degrees C/minute to -30 degrees C. Straws were then plunged and stored in liquid nitrogen. After thawing in 30 degrees C water, the embryos were rehydrated in TCM-199 medium and then cultured for 48 hours in TCM-199 plus 5% SCS. Embryos were considered viable if they progressed to later developmental stages with good morphology. Some of the embryos frozen in each cryoprotectant were thawed and transferred nonsurgically without removing the cryoprotectant. Hatched embryos survived freezing and one-step dilution as follows: EG (50.0%), MC (53.6%), DEG (56.9%), PG (58.0%) and BG (11.5%). The survival rate of embryos cooled at -0.3 degrees C vs -0.5 degrees C/minute was not significantly different (P>0.05), however, blastocysts hatched most often (P<0.01) in vitro when cooled at a rate of -0.3 degrees C/minute (64.6%, 31 48 ) than at -0.5 degrees C/minute (22.6%, 12 53 ). Pregnancy rates resulting from embryos frozen in the different cryoprotectants were as follows: MC (48%, 10 21 ); DEG (30%, 3 10 ); EG (74%, 20 27 ); and PG (40%, 4 10 ). These results indicate that MC, DEG, EG and PG have utility as cryoprotectants for the freezing and thawing of IVF bovine embryos.  相似文献   

14.
An integrated bovine embryo transfer program was conducted in collaboration with 11 Japanese prefectural livestock experiment stations. The program was conducted to evaluate the practicability of the direct transfer method for bovine embryos frozen-thawed in the presence of propylene glycol (PG) or ethylene glycol (EG) under on-farm conditions. Embryos at the compacted morula to expanded blastocyst stages were collected from superovulated donors on Day 7 or 8 after estrus and equilibrated in 1.6 M PG or 1.8 M EG in Dulbecco's phosphate-buffered saline (DPBS) supplemented with 20% heat-inactivated calf serum. Embryos were then loaded individually into a 0.25-ml straw and placed directly into a cooling chamber of a programmable freezer precooled to -7 degrees C. After 2 min, the straw was seeded, maintained at -7 degrees C for 8 min more, and then cooled to -30 degrees C either at 0.3 degree C/min or 0.5 degree C/min before being plunged into liquid nitrogen. Embryos at the same stages were also frozen in the presence of 1.4 M glycerol (GLY) by a conventional method, which served as a control. The frozen embryos were thawed by allowing the straws to stand in air for 5 to 10 sec and then immersing them in a 30 degrees C water bath. Embryos frozen-thawed in the presence of PG or EG were nonsurgically transferred into the uterine horn without diluting the cryoprotectant. Embryos frozen-thawed in the presence of GLY were nonsurgically transferred after removing GLY either by the stepwise method (GLY-I) or by in situ dilution with 0.3 M sucrose solution (GLY-II). A total of 1,273 (PG: 400, EG: 418, GLY-I: 177, GLY-II; 278) frozen-thawed embryos was transferred into recipients, yielding 545 pregnancies (overall: 42.8%, PG: 36.0%, EG; 44.7%, GLY-I; 48.6%, GLY-II; 46.0%). The pregnancy rate with PG was significantly lower than that with EG or GLY-II (P < 0.05). The pregnancy rate was affected by the type of cryoprotectant, the region where the embryo transfer program was carried out, the developmental stage of the embryos, the parity of the recipients, and corpus luteum (CL) quality of the recipients. There were no differences in rates of abortion and stillbirth among the 3 cryoprotectants. The present study demonstrates that EG can be effectively used as a cryoprotectant for freezing and direct transfer of bovine embryos, and that the direct transfer method is applicable under on-farm conditions.  相似文献   

15.
Loss of biodiversity among amphibians is a current concern. Our hypothesis is that the embryos of amphibian species at risk of extinction could be cryopreserved by vitrification, using methods which have proved successful with fish oocyte. To test this hypothesis, samples of four cryoprotectants - methanol (MeOH), dimethyl sulphoxide (Me2SO), propylene glycol (PG) and polyethylene glycol (PEG), some singly, some in combination, were plunged in liquid nitrogen for 5 min to find the best solution for vitrification. To find the least toxic of these solutions, blastulae and stage G17 embryos of Bufotes Viridis, a typical amphibian, were exposed to solutions at different concentrations (0.5–10 M) for different lengths of time (15–30 min), with and without their normal protective jelly coats. In each case the number of survivors, which reached stage G25 was counted. Finally a series of embryos was vitrified in liquid nitrogen using the most efficient and least toxic cryoprotectants.Propylene glycol had the best vitrification characteristics, but MeOH vitrified at higher concentrations. The optimum regime, with the least toxic ctyoprotectants, consisted of 1M Me2SO for 15 min and a combination of 15% PEG(w/v) + 3M PG + 2M Me2SO for 3 min, with the jelly coat intact, followed by vitrification. This gave a survival percentage of 87.6% immediately after vitrification. Methods designed for cryopreservation of fish embryos make a good starting point for cryopreservation of the embryos of amphibian.  相似文献   

16.
Bovine IVF embryos developed on Days 7, 8 and 9 were equilibrated with 1.6 M propylene glycol (PG), 1.8 M ethylene glycol (EG), 1.1 M diethylene glycol (DEG) or 1.3 M ethylene glycol monomethyl ether (EME) for 10 to 20 min in modified phosphate buffered saline. (mPBS) supplemented with 10% superovulated cow serum. The embryos were loaded into 0.25-ml plastic straws and were placed directly into a 0 degrees C alcohol bath chamber and held for 2 min. They were cooled from 0 degrees C to -5.5 degrees C at 1 degrees C/min and then seeded, followed by a 10-min holding period at -5.5 degrees C. The straws were then cooled to -30 degrees C at 0.3 degrees C/min before plunging into liquid nitrogen. Embryos were thawed and placed directly into the culture medium and washed 3 times. The survival rates of the Day-9 embryos based on reappearance of blastocoele, expansion, and hatching after 48 h of post-thaw culture were significantly lower (P<0.01) than those of the Day-7 and 8 embryos, in all of the cryoprotectants tested. On the other hand, while the reappearance of blastocoele and expansion of blastocysts after 48 h of post-thaw culture were not significantly different among each cryoprotectant, the percentage of hatching blastocysts were significantly different between DEG and EME (P<0.05), between DEG and EG (P<0.01) and between PG and EG (P<0.05). These findings demonstrate that the age of the embryo (Day 7 and 8) is very important for the successful freezing of IVF bovine embryos. Also, as to the hatching rates, EME and EG are superior as cryoprotectants than the other 2 cryoprotectants tested.  相似文献   

17.
In order to preserve genetic resources of chum salmon, Oncorhynchus keta, optimum conditions for cryopreservation of isolated blastomeres were investigated. Survival rates under various conditions were compared: the nature and the concentration of cryoprotectants before and after freezing, the seeding temperature, and the developmental stages of donor embryos. Isolated blastomeres immersed for 30 min in Eagle's MEM containing both a cryoprotectant and 10% fetal bovine serum (FBS) at 10 degrees C were transferred into a straw and frozen at 1 degrees C/min to -30 degrees C by a programmable freezer before being plunged into liquid nitrogen. Ice seeding was carried out at -5 to -15 degrees C. Frozen blastomeres were thawed in water at 15 degrees C. Blastomeres cryopreserved with MEM containing 10% dimethyl sulfoxide (Me(2)SO) and 10% FBS (10% Me(2)SO/MEM10) showed higher survival rates than those cryopreserved with MEM containing 10% FBS and 10% glycerol, ethyleneglycol, 1, 2-propanediol, or sucrose. Blastomeres treated with 10% Me(2)SO/MEM10 showed higher survival rates than those treated with MEM containing only 10% Me(2)SO. Blastomeres seeded above -10 degrees C showed higher survival rates than non-seeded ones. Frozen blastomeres at advanced stages demonstrated high survival rates. Blastomeres cryopreserved under optimum conditions showed survival rates of 59.3+/-2.8%. These results indicate that 10% Me(2)SO/MEM10 is a suitable cryoprotectant medium to cryopreserve chum salmon blastomeres, that seeding should be carried out above -10 degrees C on pre-freezing, and that blastomeres at the blastula stage should be used as material.  相似文献   

18.
Larvae of the sea urchin, Evechinus chloroticus, at varying stages of development, were assessed for their potential to survive cryopreservation. Ethylene glycol (EG) and dimethyl sulphoxide (Me2SO), at concentrations of 1-2 M, were evaluated as cryoprotectants (CPAs) in freezing regimes initially based on methods established for freezing larvae of other sea urchin species. Subsequent work varied cooling rate, holding temperature, holding time, and plunge temperature. Ethylene glycol was less toxic to larvae than Me2SO. However, no larvae survived freezing and thawing in EG. Larvae frozen in Me2SO at the gastrula stage and 4-armed pluteus stage regained motility post-thawing. The most successful freezing regime cooled straws containing larvae in 1.5 M Me2SO from 0 to -35 degrees C at 2.5 degrees C min(-1), held at -35 degrees C for 5 min, then plunged straws into liquid nitrogen. Motility was high 2-4 h post-thawing using this regime but decreased markedly within 24 h. Some 4-armed pluteus larvae that survived beyond this time developed through to metamorphosis and settled. Different Me2SO concentrations and supplementary trehalose did not improve long-term survival. Large variation in post-thaw survival was observed among batches of larvae produced from different females.  相似文献   

19.
Using the current blood bank storage conditions at 22 degrees C, the viability and function of human platelets can be maintained for only 5 days. This does not allow for the necessary and extensive banking of platelets needed to treat patients afflicted with thrombocytopenia, a side effect of many invasive surgeries such as cardiopulmonary bypass or bone marrow transplantation. The development of optimal techniques for long-term cryopreservation and banking of human platelets would provide the ability to greatly extend the viable life of the platelet and would fulfill an increasing and urgent need in many clinical applications. To determine the optimal techniques for platelet preservation, the expression of an activation marker, phosphatidylserine, on the platelet membrane during storage at 22 and 8 degrees C as well as during the different freezing preservation processes was examined using flow cytometry and annexin V binding assay. Human platelets were identified by both CD41 and light scatter in flow cytometry. In cryopreservation experiments, effects of the following factors on platelet activation were evaluated: (a) cryoprotective agents (CPAs) type: dimethyl sulfoxide (Me2SO), ethylene glycol (EG), and propylene glycol (PG), (b) CPA concentration ranging from 0 to 3 M, and (c) ending temperatures of a slow cooling process at -1 degrees C/min. Our results demonstrated that (a) approximately 50% of platelets were activated on days 7 and 16 at 22 and 8 degrees C, respectively; (b) platelets were not significantly activated after 30-min exposure to 1 M Me2SO, EG, and PG at 22 degrees C, respectively, and (c) there was a significant difference in cryoprotective efficacy among these three CPAs in preventing platelets from cryoinjury. After being cooled to -10 degrees C, 74% of the cryopreserved platelets survived (nonactivated) in 1 M Me2SO solution, while in 1 M EG and 1 M PG solutions, 62 and 42% of the platelets survived, respectively. Using the information that Me2SO consistently yields higher percentages of nonactivated platelets and does not seem to be cytotoxic to platelets for 30-min exposure time, this was found to be the optimal cryoprotective agent for platelets. In addition, significant Me2SO toxicity to platelets was not noted until Me2SO concentrations exceeded 2 M. Finally, a concentration of 1 M Me2SO proved to be the most effective at all cryopreservation ending temperatures tested (-10, -30, -60, and -196 degrees C). In conclusion, under the present experimental conditions, a storage temperature of 8 degrees C appeared to be much better than 22 degrees C. Although the potential chemical toxicity of 1 M Me2SO, EG, or PG is negligible, 1 M Me2SO was found to be optimum for cryopreservation of human platelets. PG has the least cryoprotective function for low-temperature platelet survival.  相似文献   

20.
Semen cryopreservation of small abalone (Haliotis diversicolor supertexa)   总被引:7,自引:0,他引:7  
Gwo JC  Chen CW  Cheng HY 《Theriogenology》2002,58(8):1563-1578
Methods for cryopreserving spermatozoa and maximizing fertilization rate in Taiwan small abalone, Haliotis diversicolor supertexa, were developed. The gametes (spermatozoa and eggs) of small abalone were viable 3 h post-spawning, with fertilization, and development rate decreasing with time. A minimum of 10(2) cell/ml sperm concentration and a contact time of 2 min between gametes is recommended for artificial insemination of small abalone eggs. Eight cryoprotectants, dimethyl sulfoxide (DMSO), dimethyl acetamide (DMA), ethylene glycol (EG), propylene glycol (PG), butylene glycol (BG), polyethylene glycol, glycerol and methanol, were tested at concentrations between 5 and 25% to evaluate their effect on motility of spermatozoa exposed to cryoprotectant for up to 60 min at 25 degrees C before freezing. The least toxic cryoprotectant, 10% DMSO, was added to artificial seawater (ASW) to formulate the extender for freezing. Semen was diluted 1:1 with the extender, inserted into 1.5 ml microtubes and frozen using a cooling rate between -3.5 and -20 degrees C/min to various transition temperatures (0, -30, -60, -90 and -120 degrees C), followed by transfer and storage in liquid nitrogen (-196 degrees C). The microtubes were thawed from +45 to +145 degrees C/min. Spermatozoa, cooled to -90 degrees C at a cooling rate of -12 or -15 degrees C/min and then immersed in liquid nitrogen, had the best post-thaw motility. Post-thaw sperm motility was markedly reduced compared to fresh sperm. More frozen-thawed spermatozoa are required to achieve fertilization rates comparable to those achieved using fresh spermatozoa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号