首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HP1 is an essential heterochromatin-associated protein in Drosophila. HP1 has dosage-dependent effects on the silencing of euchromatic genes that are mislocalized to heterochromatin and is required for the normal expression of at least two heterochromatic genes. HP1 is multiply phosphorylated in vivo, and HP1 hyperphosphorylation is correlated with heterochromatin assembly during development. The purpose of this study was to test whether HP1 phosphorylation modifies biological activity and biochemical properties of HP1. To determine sites of HP1 phosphorylation in vivo and whether phosphorylation affects any biochemical properties of HP1, we expressed Drosophila HP1 in lepidopteran cultured cells using a recombinant baculovirus vector. Phosphopeptides were identified by matrix-assisted laser desorption ionization/time of flight mass spectroscopy; these peptides contain target sites for casein kinase II, protein tyrosine kinase, and PIM-1 kinase. Purified HP1 from bacterial (unphosphorylated) and lepidopteran (phosphorylated) cells has similar secondary structure. Phosphorylation has no effect on HP1 self-association but alters the DNA binding properties of HP1, suggesting that phosphorylation could differentially regulate HP1-dependent interactions. Serine-to-alanine and serine-to-glutamate substitutions at consensus protein kinase motifs resulted in reduction or loss of silencing activity of mutant HP1 in transgenic flies. These results suggest that dynamic phosphorylation/dephosphorylation regulates HP1 activity in heterochromatic silencing.  相似文献   

2.
3.
4.
The p53 tumour suppressor protein is phosphorylated by several protein kinases, including casein kinase II. In order to understand the functional significance of phosphorylation by casein kinase II, we have introduced mutations at serine 386 in mouse p53, the residue phosphorylated by this kinase, and investigated their effects on the ability of p53 to arrest cell growth. Replacement of serine 386 by alanine led to loss of growth suppressor activity, while aspartic acid at this position partially retained suppressor function. These data suggest that the anti-proliferative activity of p53 is activated by phosphorylation at serine 386, and establish a direct link between the covalent modification of a growth suppressor protein and regulation of its activity in mammalian cells.  相似文献   

5.
6.
7.
The Drosophila homolog of cAMP-response element-binding protein (CREB), dCREB2, exists with serine 231, equivalent to mammalian serine 133, in a predominantly phosphorylated state. Thus, unlike the mammalian protein, the primary regulation of dCREB2 may occur at a different step from serine 231 phosphorylation. Although bacterially expressed dCREB2 bound cAMP-response element sites, protein from Drosophila extracts was unable to do so unless treated with phosphatase. Phosphorylation of recombinant protein by casein kinase (CK) I or II, but not calcium-calmodulin kinase II or protein kinase A, inhibited DNA binding. Up to four conserved CK sites likely to be phosphorylated in vivo were responsible for this effect, and these sites were phosphorylated by a kinase present in Drosophila cell extracts that biochemically resembles CKII. We propose that the relative importance of different signaling pathways in regulating CREB activity may differ between Drosophila and mammals. In Drosophila, the dephosphorylation of CK sites appears to be the major regulatory step, while phosphorylation of serine 231 is necessary but secondary.  相似文献   

8.
C Grose  W Jackson    J A Traugh 《Journal of virology》1989,63(9):3912-3918
Varicella-zoster virus (VZV) glycoprotein gpI is the predominant viral glycoprotein within the plasma membranes of infected cells. This viral glycoprotein is phosphorylated on its polypeptide backbone during biosynthesis. In this report, we investigated the protein kinases which participate in the phosphorylation events. Under in vivo conditions, VZV gpI was phosphorylated on its serine and threonine residues by protein kinases present within lysates of either VZV-infected or uninfected cells. Because this activity was diminished by heparin, a known inhibitor of casein kinase II, isolated gpI was incubated with purified casein kinase II and shown to be phosphorylated in an in vitro assay containing [gamma-32P]ATP. The same glycoprotein was phosphorylated when [32P]GTP was substituted for [32P]ATP in the protein kinase assay. We also tested whether VZV gpI was phosphorylated by two other ubiquitous mammalian protein kinases--casein kinase I and cyclic AMP-dependent kinase--and found that only casein kinase I modified gpI. When the predicted 623-amino-acid sequence of gpI was examined, two phosphorylation sites known to be optimal for casein kinase II were observed. Immediately upstream from each of the casein kinase II sites was a potential casein kinase I phosphorylation site. In summary, this study showed that VZV gpI was phosphorylated by each of two mammalian protein kinases (casein kinase I and casein kinase II) and that potential serine-threonine phosphorylation sites for each of these two kinases were present in the viral glycoprotein.  相似文献   

9.
10.
11.
StarD10 is a dual specificity lipid transfer protein capable of shuttling phosphatidylcholine and phosphatidylethanolamine between membranes in vitro. We now provide evidence that, in vivo, StarD10 is phosphorylated on serine 284. This novel phosphorylation site was identified by tandem mass spectrometry of immunoaffinity-purified StarD10 from lysates of HEK293T cells transiently expressing the protein. In vitro kinase assays revealed that casein kinase II was capable of phosphorylating wild-type StarD10 but not a S284A mutant protein. Interestingly, hypotonic extracts prepared from HEK293T cells expressing the serine to alanine mutant exhibited increased lipid transfer activity compared with those from wild-type StarD10-expressing cells, suggesting that, in a cellular context, phosphorylation on serine 284 negatively regulates StarD10 activity. Because casein kinase II phosphorylation also inhibited lipid transfer activity of the purified recombinant StarD10 protein, inhibition is not dependent on any cellular cofactors. Instead, our data show that C-terminal StarD10 phosphorylation on serine 284 regulates its association with cellular membranes.  相似文献   

12.
E Durban  M Goodenough  J Mills    H Busch 《The EMBO journal》1985,4(11):2921-2926
Changes in phosphorylation modulate the activity of topoisomerase I in vitro. Specifically, enzymatic activity is stimulated by phosphorylation with a purified protein kinase (casein kinase type II). The purpose of this study was to compare the sites that are phosphorylated in vitro by casein kinase type II with the site(s) phosphorylated in vivo in rapidly growing Novikoff hepatoma cells. Topoisomerase I labeled in vitro was characterized by three major tryptic phosphopeptides (I-III). Separation of these peptides by a C18-reverse phase h.p.l.c. column resulted in their elution at fractions 18 (I), 27 (II) and 44 (III) with 17%, 22.5% and 33% acetonitrile, respectively. In contrast, only one major phosphopeptide was identified by h.p.l.c. in topoisomerase I labeled in vivo. This phosphopeptide eluted at fraction 18 corresponding to the elution properties of phosphopeptide I labeled in vitro. It also co-migrated with tryptic phosphopeptide I when subjected to high-voltage electrophoresis on thin-layer cellulose plates. Preliminary experiments suggest that phosphorylation occurs at a serine residue six amino acids from the N-terminus of the peptide. These data indicate that topoisomerase I is phosphorylated in vivo and in vitro within the same tryptic peptide and suggest that topoisomerase I is phosphorylated in vivo by casein kinase II.  相似文献   

13.
14.
Nuclear envelope-peripheral heterochromatin fractions contain multiple histone kinase activities. In vitro assays and amino-terminal sequencing show that one of these activities co-isolates with heterochromatin protein 1 (HP1) and phosphorylates histone H3 at threonine 3. Antibodies recognizing this post-translational modification reveal that in vivo phosphorylation at threonine 3 commences at early prophase in the vicinity of the nuclear envelope, spreads to pericentromeric chromatin during prometaphase and is fully reversed by late anaphase. This spatio-temporal pattern is distinct from H3 phosphorylation at serine 10, which also occurs during cell division, suggesting segregation of differentially phosphorylated chromatin to different regions of mitotic chromosomes.  相似文献   

15.
The phosphorylation of heterochromatin protein 1 (HP1) has been previously described in studies of mammals, but the biological implications of this modification remain largely elusive. Here, we show that the N-terminal phosphorylation of HP1α plays a central role in its targeting to chromatin. Recombinant HP1α prepared from mammalian cultured cells exhibited a stronger binding affinity for K9-methylated histone H3 (H3K9me) than that produced in Escherichia coli. Biochemical analyses revealed that HP1α was multiply phosphorylated at N-terminal serine residues (S11-14) in human and mouse cells and that this phosphorylation enhanced HP1α's affinity for H3K9me. Importantly, the N-terminal phosphorylation appeared to facilitate the initial binding of HP1α to H3K9me by mediating the interaction between HP1α and a part of the H3 tail that was distinct from the methylated K9. Unphosphorylatable mutant HP1α exhibited severe heterochromatin localization defects in vivo, and its prolonged expression led to increased chromosomal instability. Our results suggest that HP1α's N-terminal phosphorylation is essential for its proper targeting to heterochromatin and that its binding to the methylated histone tail is achieved by the cooperative action of the chromodomain and neighboring posttranslational modifications.  相似文献   

16.
In HeLa cells metabolically labeled in vivo with [32P] orthophosphate in the presence of okadaic acid the concentration of phosphorylated A1 protein was increased significantly as compared to controls. Purified recombinant hnRNP protein A1 served as an excellent substrate in vitro for the catalytic subunit of cAMP-dependent protein kinase (PKA) and for casein kinase II (CKII). Thin layer electrophoresis of A1 acid hydrolysates showed the protein to be phosphorylated exclusively on serine residue by both kinases. V8 phosphopeptide maps revealed that the target site(s) of in vitro phosphorylation are located in the C-terminal region of A1. Phosphoamino acid sequence analysis and site directed mutagenesis identified Ser 199 as the sole phosphoamino acid in the protein phosphorylated by PKA. Phosphorylation introduced by PKA resulted in the suppression of the ability of protein A1 to promote strand annealing in vitro, without any detectable effect on its nucleic acid binding capacity. This finding indicates that phosphorylation of a single serine residue in the C-terminal domain may significantly alter the properties of protein A1.  相似文献   

17.
Z Yao  W Jackson    C Grose 《Journal of virology》1993,67(8):4464-4473
Varicella-zoster virus (VZV) glycoprotein gpI, the homolog of herpes simplex virus gE, functions as a receptor for the Fc portion of immunoglobulin G. Like other cell surface receptors, this viral receptor is highly phosphorylated in cell culture. To identify the precise location of the cellular kinase-mediated phosphorylation, we generated a tailless deletion mutant and several point mutants which had altered serine and threonine residues within the cytoplasmic domain of gpI. The mutated and wild-type genes of gpI were transfected and expressed within a vaccinia virus-T7 polymerase transfection system in order to determine what effect these mutations had on the phosphorylation state of the protein in vivo and in vitro. Truncation of the cytoplasmic domain of gpI diminished the phosphorylation of gpI in vivo. Examination of the point mutants established that the major phosphorylation sequence of gpI was located between amino acids 593 and 598, a site which included four phosphorylatable serine and threonine residues. Phosphorylation analyses of the mutant and wild-type glycoproteins confirmed that gpI was a substrate for casein kinase II, with threonines 596 and 598 being critical residues. Although the mutant glycoproteins were phosphorylated by casein kinase I, protease V8 partial digestion profiles suggested that casein kinase II exerted the major effect. Thus, these mutagenesis studies demonstrated that the gpI cytoplasmic sequence Ser-Glu-Ser-Thr-Asp-Thr was phosphorylated in mammalian cells in the absence of any other herpesvirus products. Since the region defined by transfection was consistent with results obtained with in vitro phosphorylation by casein kinase II, we propose that VZV gpI is a physiologic substrate for casein kinase II. Immunofluorescence and pulse-chase experiments demonstrated that the mutant glycoproteins were processed and transported to the outer cell membrane.  相似文献   

18.
Neuromodulin (P-57, GAP-43, B-50, F-1) is a neurospecific calmodulin-binding protein believed to play a role in regulation of neurite outgrowth and neuroplasticity. Neuromodulin is phosphorylated by protein kinase C, and this phosphorylation prevents calmodulin from binding to neuromodulin (Alexander, K. A., Cimler, B. M., Meier, K. E. & Storm, D. R. (1987) J. Biol. Chem. 262, 6108-6113). The only other protein kinase known to phosphorylate neuromodulin is casein kinase II (Pisano, M. R., Hegazy, M. G., Reimann, E. M. & Dokas, L. A. (1988) Biochem. Biophys. Res. Commun. 155, 1207-1212). Phosphoamino acid analyses revealed that casein kinase II modified serine and threonine residues in both native bovine and recombinant mouse neuromodulin. Two serines located in the C-terminal end of neuromodulin, Ser-192 and Ser-193, were identified as the major casein kinase II phosphorylation sites. Thr-88, Thr-89, or Thr-95 were identified as minor casein kinase II phosphorylation sites. Phosphorylation by casein kinase II did not affect the ability of neuromodulin to bind to calmodulin-Sepharose. However, calmodulin did inhibit the phosphorylation of neuromodulin by casein kinase II with a Ki of 1-2 microM. Calmodulin inhibition of casein kinase II phosphorylation was due to calmodulin binding to neuromodulin rather than to the protein kinase. These data suggest that the minimal secondary and tertiary structure exhibited by neuromodulin may be sufficient to juxtapose its calmodulin-binding domain, located at the N-terminal end, with the neuromodulin casein kinase II phosphorylation sites at the C-terminal end of the protein. We propose that calmodulin regulates casein kinase II phosphorylation of neuromodulin by binding to neuromodulin and sterically hindering the interaction of casein kinase II with its phosphorylation sites on neuromodulin.  相似文献   

19.
Badugu R  Yoo Y  Singh PB  Kellum R 《Chromosoma》2005,113(7):370-384
Heterochromatin Protein 1 (HP1) is a conserved component of the highly compact chromatin found at centromeres and telomeres. A conserved feature of the protein is multiple phosphorylation. Hyper-phosphorylation of HP1 accompanies the assembly of cytologically distinct heterochromatin during early embryogenesis. Hypo-phosphorylated HP1 is associated with the DNA-binding activities of the origin recognition complex (ORC) and an HMG-like HP1/ORC-Associated Protein (HOAP). Perturbations in HP1 localization in pericentric and telomeric heterochromatin in mutants for Drosophila ORC2 and HOAP, respectively, indicate roles for these HP1 phosphoisoforms in heterochromatin assembly also. To elucidate the roles of hypo- and hyper-phosphophorylated HP1 in heterochromatin assembly, we have mutated consensus Protein Kinase-A phosphorylation sites in the HP1 hinge domain and examined the mutant proteins for distinct in vitro and in vivo activities. Mutations designed to mimic hyper-phosphorylation render the protein incapable of binding HOAP and the DmORC1 subunit but confer enhanced homo-dimerization and lysine 9-methylated histone H3-binding to the protein. Mutations rendering the protein unphosphorylatable, by contrast, do not affect homo-dimerization or binding to lysine 9-di-methylated histone H3, HOAP, or DmORC1 but do confer novel DmORC2-binding activity to the protein. This mutant protein is ectopically localized throughout the chromosomes when overexpressed in vivo in the presence of a full dose of DmORC2. This ectopic targeting is accompanied by ectopic targeting of lysine 9 tri-methylated histone H3. The distinct activities of these mutant proteins could reflect distinct roles for HP1 phosphoisoforms in heterochromatin structure and function.  相似文献   

20.
A neuroblastoma protein related to the brain microtubule-associated protein, MAP-1B, as determined by immunoprecipitation and coassembly with brain microtubules, becomes phosphorylated when N2A mouse neuroblastoma cells are induced to generate microtubule-containing neurites. To characterize the protein kinases that may be involved in this in vivo phosphorylation of MAP-1B, we have studied its in vitro phosphorylation. In brain microtubule protein, MAP-1B appears to be phosphorylated in vitro by an endogenous casein kinase II-like activity which also phosphorylates the related protein MAP-1A but scarcely phosphorylates MAP-2. A similar kinase activity has been detected in cell-free extracts of differentiating N2A cells. Using brain MAP preparations devoid of endogenous kinase activities and different purified protein kinases, we have found that MAP-1B is barely phosphorylated by cAMP-dependent protein kinase, Ca/calmodulin-dependent protein kinase, or Ca/phospholipid-dependent protein kinase whereas MAP-1B is one of the preferred substrates, together with MAP-1A, for casein kinase II. Brain MAP-1B phosphorylated in vitro by casein kinase II efficiently coassembles with microtubule proteins in the same way as in vivo phosphorylated MAP-1B from neuroblastoma cells. Furthermore, the phosphopeptide patterns of brain MAP-1B phosphorylated in vitro by either purified casein kinase II or an extract obtained from differentiating neuroblastoma cells are identical to each other and similar to that of in vivo phosphorylated neuroblastoma MAP-1B. Thus, we suggest that the observed phosphorylation of a protein identified as MAP-1B during neurite outgrowth is mainly due to the activation of a casein kinase II-related activity in differentiating neuroblastoma cells. This kinase activity, previously implicated in beta-tubulin phosphorylation (Serrano, L., J. Díaz-Nido, F. Wandosell, and J. Avila, 1987. J. Cell Biol. 105: 1731-1739), may consequently have an important role in posttranslational modifications of microtubule proteins required for neuronal differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号