首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The highly radiosensitive immature oocytes of mice were irradiated in vivo with graded doses of 252Cf fission radiation, 0.43- or 15-MeV neutrons, or 60Co gamma rays. Comparisons of oocyte survival for neutrons and for gamma rays demonstrate that neutron RBEs for the killing of these important cells do not reach the high values (30-50 or more) at low doses observed for several other biological end points. Rather, neutrons differ little in effectiveness from gamma rays in killing these extremely sensitive murine oocytes. For 0.43-MeV neutrons, RBEs obtained from fitted survival curves reach only 1.7 at 0.1 rad. For 15-MeV neutrons, they are not significantly different from 1 at any dose tested (lowest, 4.5 rad). For 252Cf fission neutrons (E = 2.15 MeV), RBEs are intermediate between those for 0.43- and 15-MeV neutrons. For all neutron energies tested, the RBEs are particularly low in the juvenile period, a time when murine immature oocytes are especially radiosensitive. With exposure just prior to birth, however, when these cells are much less easily killed, higher, more usual RBEs are found. The minimum size of the lethality target in mouse immature oocytes, estimated from the inactivation constant for 0.43-MeV neutrons and microdosimetric values, is larger than the nucleus but not larger than the cell. This and related analytical considerations suggest that the hypersensitive target in these particular oocytes is the plasma membrane, a finding which is in excellent accord with results from other experiments using different, contrasting radiations and dose deliveries (accelerated Si14+ ions, gamma rays, and beta rays from 3HOH compared with those from [3H]thymidine).  相似文献   

2.
In vitro dose--response curves of unstable chromosome aberrations in human lymphocytes have been obtained for neutron spectra of mean energies 0-7, 0-9, 7-6 and 14-7 MeV. The aberration yields have been fitted to the quadratic function Y = alphaD + betaD2, which is consistent with the single-track and two-track model of aberration formation. However with high-LET radiation, the linear component of yield, corresponding to damage caused by single tracks, predominants, and this term becomes more dominant with increasing LET, so that for fission spectrum neutrons the relationship is linear, Y = alphaD. At low doses, such as those recieved by radiation workers, limiting r.b.e. values between 13 and 47 are obtained relative to 60Co gamma-radiation. At higher doses, as used in radiotherapy, the values are much lower; ranging from 2-7 to 8 at 200 rad of equivalent gamma-radiation. Both sets of r.b.e. values correlate well with track-averaged LET but not with dose-averaged LET. When the numbers of cells without aberrations are plotted against radiation dose, curves are obtained which are similar in shape to those for conventional cell-survival experiments with comparable neutron spectra. The Do values obtained in the present study are close to those from other cell system.  相似文献   

3.
Sperm shape abnormalities in mice exposed to californium-252 radiation   总被引:1,自引:0,他引:1  
Male mice of the B6C3F1 hybrid strain were whole-body irradiated with different doses of 252Cf/60Co. They were killed 35 days later and spermatozoa from cauda epididymides were stained with eosin-Y. The air-dried smears were examined under light microscope for sperm shape abnormalities. There was an increase in the frequency of abnormal sperm in all the treated groups compared to controls. The RBE for the mixed neutron and gamma radiation of 252Cf was 2.6. The RBE for the neutron component was 3.4. The increased frequency of abnormal sperm was associated with a concomitant decrease in testis weight in the irradiated animals.  相似文献   

4.
Relative biological effectiveness (RBE) of 252Cf, with respect to 192Ir, has been determined at the low dose rates commonly used in interstitial and intracavitary therapy. The biological criterion was growth reduction in Vicia faba bean roots. Two varieties of Vicia faba were used. For Vicia faba Sutton's seeds, an RBE of 5.7 to 6.6 was obtained for 252Cf Dn + gamma doses of 0.5 to 0.2 Gy respectively and at a Dn + gamma dose rate of 0.11 Gy-1. The gamma contribution D gamma/Dn + gamma at the level of the root tipes was 0.35 and the derived RBE of the neutron emission of 252Cf was then 8.2 to 9.7. For Vicia faba Be1B and in the same irradiation conditions, an RBE of 5.1 to 6.2 was obtained for the total (n + gamma) 252Cf emission and for Dn + gamma doses of 0.4 to 0.2 Gy respectively. These values lead to an RBE of 7.4 to 9.0 for the neutron emission of 252Cf. For Vicia faba BelB, but for another source arrangement (Dn + gamma dose rate of 0.13 Gy . h-1 for 252Cf), an RBE of 5.6 to 7.5 was obtained for the total (n + gamma) emission of 252Cf and for Dn + gamma doses of 0.4 to 0.1 Gy respectively. The gamma contribution (D gamma/Dn + gamma) at the level of the root tips was 0.42, and the derived RBE of the neutron emission of 252Cf was then 8.9-12.3.  相似文献   

5.
A dose-effect relationship has been established for high-energy neutrons (maximum energy 600 MeV) within a dose range of 0.2 to 80 cGy and for low-energy neutrons produced by a 252Cf source (mean energy 2.35 MeV) for doses between 0.2 and 5 cGy. The frequency of micronuclei was found to increase linearly with dose. The relative biological effectiveness (r.b.e) values calculated using 60Co radiation as a reference were, in the high-dose region, 4.7 +/- 0.4 and 11.8 +/- 1.3 for the high- and low-energy neutrons, respectively. At doses below 1 cGy constant values of 25.4 +/- 4.4 and 63.7 +/- 12 were reached for the respective neutron energies.  相似文献   

6.
Clonogenic cells forming colonies in agar cultures in diffusion chambers and those isolated from subcutaneously transplanted Lewis lung carcinoma do not differ in their sensitivity to 60Co gamma-rays with respect to tumor growth stages. The dose-survival curves for all studied cells are S-shaped with a small shoulder. A cumulative dose-survival curve for malignant clonogenic cells is characterized by the average value of mean lethal dose D0 = 2.24 Gy and extrapolation number n = 2.0. When exposed to gamma-neutron-radiation (252Cf) malignant clonogenic cells exhibit a nearly exponential dose-survival curve with D0 = 0.56 Gy (with respect to a neutron component). The RBE of gamma-neutron radiation (252Cf) is 2.5.  相似文献   

7.
本文首次报道用~(6O)Coγ线照射一种革螨——上海真厉螨引起的染色体畸变的研究。用~(6O)Coγ线(剂量1—50Krad)照射雌性革螨,引起的染色体畸变类型有:染色体裂隙、断片、微小体、环形染色体、粉碎化和多倍体,染色体断片是最常见的畸变类型,并观察到微核的形成。染色体畸变率随照射剂量增加而增高,辐射剂量与畸变率之间存在密切相关(相关系数为0.85,P<0.025),配得曲线回归方程为Y=3.27+14.49lg(X+1)。  相似文献   

8.
The spleen-colony technique has been used for determining the relative biological effectiveness (r.b.e.) for several energies of neutron radiation. Donor mice were exposed for fission and accelerator-generated neutrons at a variety of doses and energies. Immediately after exposure, donor bone-marrow was removed from the hind legs, and standard amounts were injected intravenously into lethally X-irradiated recipients. After 7 days the recipients spleens were evaluated for surface colonies. Dose-response curves were obtained for each type of radiation and the Do was determined. The neutron r.b.e. values from the Do compared with 250kVp X-rays were: reactor 1.58, 252Cf 1:59, and accelerator varied from 2.85 at 1.0 Mev to 0.85 at 13.4 MeV.  相似文献   

9.
The effectiveness of neutrons from a Californium-252 source in the induction of various abnormalities in the Tradescantia clone 4430 stamen hair cells (Trad-SH assay) were studied. A special attention was paid to check whether any enhancement in effects is visible in the cells enriched with boron ions. Inflorescences, normal or pretreated with chemicals containing boron, were irradiated in the air with neutrons from a 252Cf source at KAERI, Taejon, Korea. To estimate the relative biological effectiveness (RBE) of the beam under the study, numbers of Tradescantia inflorescence without chemical pretreatment were irradiated with various doses of X-rays. The ranges of radiation doses used for neutrons were 0-1.0Gy and for X-rays 0-0.5Gy. Following the culturing according to standard procedures screening of gene and lethal mutations in somatic cells of stamen hairs was done in the extended period, between days 7 and 19 after exposures. Maximal RBE values for the induction of pink, colorless and lethal mutations were evaluated from comparison of the slopes in linear parts of the dose response curves obtained after irradiation with X-rays and californium source. The RBE(max) value or the induction of gene mutation was estimated as 7.2 comparing the value 5.6 in the studies reported earlier. The comparison of dose-response curves and its alteration, due to changes in the cells and plants environment during and after irradiation, explains the observed differences. Inflorescence pretreated with borax responded to neutrons differently depending on the biological end points. Although, for the induction of pink mutations no significant difference was observed, though, in the case of cell lethality, pretreated with boron ion plants have shoved a statistically significant increase of the RBE value from 5.5 to 34.7, and in the case of colorless mutations from 1.6 to 5.6.  相似文献   

10.
HeLa MR cells were exposed to radiation emitted from a man-made spontaneously fissioning isotope, californium-252. The neutron to gamma-ray ratio in the radiation dose was measured to be 2.0. The extrapolation number of the dose-survival curve was 1.3 and the Do was 200 cGy. A dose-dependent increase in mutation to 6-TGr (6-thioguanine resistant) was observed. The relative biological effectiveness (r.b.e.) for cell killing of the neutrons from 252Cf, calculated relative to high-dose-rate X-rays, was 2.6 at 50 per cent survival. The r.b.e. for mutation induction was 2.7 at a mutation frequency of 5 X 10(-5) per surviving cell.  相似文献   

11.
A study was made of the dose dependence of the chromosome aberration frequency in human lymphocytes exposed to 60Co-gamma radiation and neutrons (mean energy of 0.85 MeV) at the G0 stage and in different periods of the G1 and G1/S stages of the cycle. With gamma irradiation the dose dependence for cells at the G1 and G1/S stages was at a higher level than that for cells at the G0 stage, whereas the opposite picture was observed for cells exposed to neutron radiation. The difference was also noted in the time-response curves where gamma radiation increased and neutrons, on the contrary, decreased the aberration yield in the cells that passed from G0 to G1 stage. The experimental data obtained are attributed to activation of repair system at the G1 stage which is mainly conditioned by chromatin decondensation; the activating, that is, the functional factor influences the aberration induction with gamma irradiation, while the decondensation, that is, the structural factor, with neutron irradiation.  相似文献   

12.
The effects of acute, protracted, or fractionated exposures to fission neutrons on survival times of female BALB/c mice were examined and compared. Mice were given single, brief exposures or exposures given in equal fractions at either 1- or 30-day intervals to doses of 0, 2.5, 5, 10, 20, 50, and 200 rad at the Health Physics Research Reactor (HPRR) or protracted exposures at rates ranging from 0.1 to 10 rad/day using a moderated 252Cf source to doses of 0, 2.5, 5, 10, 20, and 40 rad. The 252Cf source was moderated to have a similar spectron to that of the HPRR facility. After single or fractionated exposures the extent of life shortening increased rapidly over the 0-50 rad range and then began the plateau. No simple model adequately described the dose response over this entire dose range. Over the 0-50 rad dose range for exposures at the HPRR and over the 0-40 rad dose range for protracted exposures the dose response could be adequately described by either a linear model or a square root of the dose regression model except when the dose was fractionated using a 30-day interval. In this instance a linear model provided an adequate fit while a square root of the dose model could be rejected. No increase in effectiveness after fractionation or protraction was observed for neutron-induced life shortening at doses below 50 rad, while at 50 and 200 rad an increase in effectiveness was observed in this and in previous studies. These data were interpreted to suggest that in the dose range below 20-40 rad the dose-effect curve for life shortening may be linear and begins to flatten at higher doses rather than continuously bending at low doses.  相似文献   

13.
Induction of DNA double-strand breaks in diploid wild-type yeast cells, and inactivation of diploid mutant cells (rad54-3) unable to repair DNA double-strand breaks, were studied with aluminium K (1.5 keV) and carbon K (0.278 keV) characteristic X-rays. The induction of DNA double-strand breaks was found to increase linearly with absorbed dose for both characteristic X-rays. Carbon K X-rays were more effective than aluminium K X-rays. Relative to 60Co gamma-rays the r.b.e.-values for the induction of DNA double-strand breaks were found to be 3.8 and 2.2 for carbon K and aluminium K X-rays respectively. The survival curves of the rad54-3 mutant cells were exponential for both ultrasoft X-rays. For inactivation of rad54-3 mutant cells, the r.b.e.-values relative to 60Co gamma-rays were 2.6 and 2.4 for carbon K and aluminium K X-rays, respectively. The DNA double-strand break data obtained with aluminium K and carbon K X-rays are in agreement with the data obtained for gene mutation, chromosome aberrations and inactivation of mammalian cells, suggesting that DNA double-strand breaks are the possible molecular lesions leading to these effects.  相似文献   

14.
At the Hamburg-Eppendorf Hospital neutron facilities the relative biological effectiveness (r.b.e.) of d,T-neutrons was determined with respect to survival of mouse intestinal crypts. (CBA/Rij x C57BL/Rij)F1 mice were irradiated to the whole body at different depths inside a tissue-equivalent phantom. Irradiations were carried out with a collimated neutron beam at about 6 rad/min given in single doses ranging from 450 to 1000 rad. For reference, gamma-rays from a 60Co therapy unit were used. The number of surviving intestinal crypts per circumference of the jejunum was determined 3 1/2 days after irradiation according to the method of Withers and Elkind. The number of surviving stem cells was calculated on the basis of Poisson statistics. The doses necessary to reduce survival to ten crypt stem cells per circumference amounted to 689 +/- 19 rad for neutrons and 1449 +/- 29 rad for 60Co gamma-rays. From these figures an r.b.e. of 2 . 1 +/- 0 . 1 is obtained. Measurements at different depths in the phantom did not show any variation of r.b.e. with depth along the axis of the neutron beam.  相似文献   

15.
The relative biological effectiveness (RBE) of 239Pu alpha particles, fission neutrons (0.85 MeV), and 60Co gamma rays has been evaluated for the induction of reciprocal chromosome translocations in spermatogonia and of chromosome/chromatid fragments and chromatid rearrangements in the primary spermatocyte of adult male B6CF1 mice. Age concurrency was maintained for both internal and external radiations which were delivered at about 1 rad/week for 239Pu (single intravenous dose of 10 microCi/kg), 0.67, 1.67, and 2.67 rad/week for neutrons, and 6.95, 17.4, and 32 rad/week for gamma rays for at least 60 weeks. In terms of frequency of translocations, the response to the alpha emitter was nonlinear (concave downward) with little dose-response predictability; to cumulative neutron exposures the response was linear, without evidence of a dose-rate effect; and to gamma radiation the responses were linear, and a significant dose-rate effect was seen. RBE estimates are variable. For translocations, the n/gamma ratio is between 10 and 24, depending upon weekly dose level, and the ratio is 1 or less for the alpha particle relative to the neutron. For fragments, the n/gamma ratio is 18 to 22, depending upon age factors, and alpha/n is 1.5. For chromatid rearrangements, n/gamma is 7 and alpha/n is essentially indeterminate, but much below one. The overall response to the alpha emitter is interpreted to be a complex function of (a) microdosimetric heterogeneity, (b) a nearly invariant deposition pattern in the gonad, (c) the high sensitivity of differentiating spermatogonia to cell killing, and (d) the capacity of stem cells in relatively radiation-free areas to progressively assume the major spermatogenic role.  相似文献   

16.
While there is significant clinical experience using both low- and high-dose-rate 252Cf brachytherapy, there are minimal data regarding values for the neutron relative biological effectiveness (RBE) with both modalities. The aim of this research was to derive a radiobiological model for 252Cf neutron RBE and to compare these results with neutron RBE values used clinically in Russia. The linear-quadratic (LQ) model was used as the basis to characterize cell survival after irradiation, with identical cell killing rates (S(N) = S(gamma)) between 252Cf neutrons and photons used for derivation of RBE. Using this equality, a relationship among neutron dose and LQ radiobiological parameter (i.e., alpha(N), beta(N), alpha(gamma), beta(gamma)) was obtained without the need to specify the photon dose. These results were used to derive the 252Cf neutron RBE, which was then compared with Russian neutron RBE values. The 252Cf neutron RBE was determined after incorporating the LQ radiobiological parameters obtained from cell survival studies with fast neutrons and teletherapy photons. For single-fraction high-dose-rate neutron doses of 0.5, 1.0, 1.5 and 2.0 Gy, the total biologically equivalent doses were 1.8, 3.4, 4.7 and 6.0 RBE Gy with 252Cf neutron RBE values of 3.2, 2.9, 2.7 and 2.5, respectively. Using clinical data for late-responding reactions from 252Cf, Russian investigators created an empirical model that predicted high-dose-rate 252Cf neutron RBE values ranging from 3.6 to 2.9 for similar doses and fractionation schemes and observed that 252Cf neutron RBE increases with the number of treatment fractions. Using these relationships, our results were in general concordance with high-dose-rate 252Cf RBE values obtained from Russian clinical experience.  相似文献   

17.
The neoplastic transformation of C3H mouse 10T1/2 cells was measured induced by fission-spectrum neutrons delivered at a high dose rate in five fractions over 4 days. The transformation frequency was significantly enhanced over that due to single equivalent total doses. These new data, in the low dose region, demonstrate an increased transformation frequency by fractionated versus single exposures of high-dose-rate fission-spectrum neutrons; an increase equal to that observed with low-dose-rate fission-spectrum neutrons (i.e., 0.086 rad/min). Estimates of the dose modifying factor (DMF), based upon the ratio of the initial linear portions of the induction curves for high and for low dose rates, suggest the same DMF (approximately 7.8) for both five daily fractions of high-dose-rate neutrons and for low-dose-rate neutrons. However, when these results are compared to those following high-dose-rate 60Co gamma rays (100 rad/min), the relative biological effectiveness (RBE) for low-dose-rate fission-spectrum neutrons based upon slope ratios is 19.6; similarly, the RBE relative to five daily fractions of 60Co gamma rays is 78.8.  相似文献   

18.
Thirty beagles and 277 mice were injected with 249Cf, and 30 beagles and 274 mice were injected with 252Cf. The skeletal dose (in Gy) from 252Cf was about half from fission fragments and half from alpha particles, whereas 249Cf emits alpha particles in 100% of its transformations. Bone sarcomas (mostly osteosarcomas) were the main radiation-induced cancer. The relative biological effectiveness (RBE) of fission fragment dose relative to alpha-particle dose for bone sarcoma induction was calculated from the ratio of 249Cf/252Cf doses at equal times to bone sarcoma in (a) beagles and (b) mice, and (c) from the ratio 252Cf/249Cf risk coefficients in mice. The average RBE +/- standard deviation of the three evaluations was 0.1 +/- 0.1. The very low RBE for bone sarcomas is supported by the data of A. L. Batchelor, T. J. Jenner, and L. M. Cobb [Phys. Med. Biol. 28, 475-483 (1983)] for lung cancer induction in rats and by that of A. L. Brooks, J. A. Mewhinney, and R. O. McClellan [Health Phys. 22, 701-706 (1972)] for producing chromosome aberrations in the liver cells of Chinese hamsters. The low effectiveness of fission fragments relative to alpha particles, per gray of absorbed dose, is ascribed primarily to the much larger number of cells traversed by the alpha particles. Consideration might be given to decreasing the quality factor of fission fragments by an order of magnitude below that for alpha particles.  相似文献   

19.
AimThe purpose of this study is to analyse how small variations in the elemental composition of soft tissue lead to differences in dose distributions from a 252Cf brachytherapy source and to determine the error percentage in using water as a tissue-equivalent material.BackgroundWater is normally used as a tissue-equivalent phantom material in radiotherapy dosimetry.Materials and methodsNeutron energy spectra, neutron and gamma-ray dose rate distributions were calculated for a 252Cf AT source located at the center of a spherical phantom filled with various types of tissue compositions: adipose, brain, muscle, International Commission on Radiation Units and Measurements (ICRU) report No. 44 9-component soft tissue and water, using Monte Carlo simulation.ResultsThe obtained results showed differences between total dose rates in various tissues relative to water varying between zero and 4.94%. The contributions of neutron and total gamma ray doses to these differences are, on average, 81% and 19%, respectively. It was found that the dose differences between various soft tissues and water depend not only on the soft tissue composition, but also on the beam type emitted from the 252Cf source and the distance from the source.ConclusionAssuming water as a tissue-equivalent material, although leads to overestimation of dose rate (except in the case of adipose tissue), is acceptable and suitable for use in 252Cf brachytherapy treatment planning systems based on the recommendation by the ICRU that the uncertainties in dose delivery in radiotherapy should be lower than 5%.  相似文献   

20.
The effectiveness of a 70-MeV proton beam in the induction of chromosome aberrations was studied. We employed peripheral lymphocytes and analyzed the frequencies of dicentrics and rings after irradiation at doses ranging from 0.1 to 8.0 Gy at various depths within a Lucite phantom. The frequency of chromosome aberrations after irradiation with an unmodulated proton beam at 5 mm showed a dose-response relationship similar to that of 60Co gamma rays. However, irradiation at greater depths with the spread-out Bragg peak induced higher aberration frequencies at doses lower than those with gamma rays. Furthermore, the distribution curve of chromosome aberration frequencies as a function of depth was found to be slightly different from the physically measured depth-dose curve. With the spread-out Bragg peak the biological effects were more marked at greater depths, resulting in a distribution of relative biological effectiveness values. The results obtained from chromosome aberration analysis may not be related directly to those for the relationship between dose and cell killing. Slight differences in values for relative biological effectiveness due to the change of dose and site of proton beam irradiation may not be important for practical proton beam therapy, but may be important in the prevention of late radiation injuries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号