共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
TGF-beta signalling through the Smad pathway 总被引:2,自引:0,他引:2
3.
TGF-beta and cancer 总被引:2,自引:0,他引:2
Reiss M 《Microbes and infection / Institut Pasteur》1999,1(15):1327-1347
The relationships between transforming growth factor-beta (TGF-beta) and cancer are varied and complex. The paradigm that is emerging from the experimental evidence accumulated over the past decade or so is that TGF-beta can play two different and opposite roles with respect to the process of malignant progression. During early stages of carcinogenesis, TGF-beta acts predominantly as a potent tumor suppressor and may mediate the actions of chemopreventive agents such as retinoids and nonsteroidal anti-estrogens. However, at some point during the development and progression of malignant neoplasms, bioactive TGF-betas make their appearance in the tumor microenvironment and the tumor cells escape from TGF-beta-dependent growth arrest. In many cases, this resistance to TGF-beta is the consequence of loss or mutational inactivation of the genes that encode signaling intermediates. These include the types I and II TGF-beta receptors, as well as receptor-associated and common-mediator Smads. The stage of tumor development or progression at which TGF-beta-resistant clones come to dominate the tumor cell population in different types of neoplasm remains to be defined. The phenotypic switch from TGF-beta-sensitivity to TGF-beta-resistance that occurs during carcinogenesis has several important implications for cancer prevention and treatment. 相似文献
4.
TGF-beta and cancer 总被引:3,自引:0,他引:3
TGF-beta signaling regulates tumorigenesis and in human cancer its signaling pathways are often modified during tumor progression. Prior to initiation and early during progression TGF-beta acts upon the epithelium as a tumor suppressor, however at later stages it is often a tumor promoter. Over the years, many studies have focused on the epithelial cell autonomous role for TGF-beta, however, TGF-beta is not strictly limited to this compartment in vivo. Recent studies addressing TGF-beta mediated stromal-epithelial interactions have significantly improved our understanding related to the regulation of cancer. In addition, stromal fibroblast cell autonomous effects have been observed in response to TGF-beta stimulation. According to the current literature and experimental evidence, TGF-beta is a potent ligand that regulates carcinoma initiation, progression and metastasis through a broad and complex spectrum of interdependent interactions. 相似文献
5.
Alterations in components of the TGF-beta superfamily signaling pathways in human cancer 总被引:7,自引:0,他引:7
Signaling by transforming growth factor-beta (TGF-beta) superfamily ligands to the nucleus is mediated by type I and type II receptors and the intracellular signal transducers, the Smads. Alteration of some of the components of these pathways has been observed in human tumors. These alterations can be deletions or mutations, or downregulation of components that act positively in the pathway, or alternatively, amplification or overexpression of inhibitors of the pathways. The selection of these alterations during tumor progression and their correlation with clinical outcomes, such as survival, risk of recurrence after tumor resection or tendency for metastatic spread, suggest that many are involved in tumor progression. Here, we review the genetic alterations and epigenetic modifications that occur in different components of the TGF-beta superfamily signaling pathways in human tumors and we discuss their correlation with clinical outcome. The evidence suggests that not all alterations of the TGF-beta superfamily signaling pathway components in human cancer have an equivalent effect on tumor progression and we discuss what implications this has for our understanding of the role of TGF-beta signaling in human cancer. 相似文献
6.
TGF-beta and the Smad signal transduction pathway. 总被引:31,自引:0,他引:31
7.
K M Mulder L E Humphrey H G Choi K E Childress-Fields M G Brattain 《Journal of cellular physiology》1990,145(3):501-507
Previously, we described a model culture system for comparing responsiveness of poorly differentiated and well-differentiated human colon carcinoma cells to exogenous growth factors. While polypeptide growth stimulators elicited an up-regulation of c-myc, as well as a mitogenic response in the well-differentiated cells, the poorly differentiated cells were insensitive to exogenous growth stimulators. We now show, by thymidine incorporation experiments and autoradiographic analysis, that transforming growth factor beta 1 (TGF-beta) abrogated the mitogenic responses to the growth factors epidermal growth factor + insulin + transferrin (IC50 = 0.8 ng/ml), as well as to nutrients (basal medium; IC50 = 0.2 ng/ml) in the well-differentiated cells. The poorly differentiated cells did not respond to TGF-beta. Moreover, TGF-beta (10 ng/ml) completely abrogated the growth factor-stimulated up-regulation of c-myc in the TGF-beta responsive, well-differentiated colon carcinoma cells. Addition of TGF-beta to the TGF-beta-responsive, well-differentiated cells, at a time after c-myc had been transiently up-regulated in response to growth stimulatory factors, resulted in a loss of responsiveness to TGF-beta. Addition of TGF-beta to these cells at increasing time periods after EIT stimulation also resulted in a loss of the TGF-beta-induced repression of c-myc. The results suggest an important role for c-myc in the mechanism of action of TGF-beta in well-differentiated human colon carcinoma cells. 相似文献
8.
Transforming growth factor-beta (TGF-beta) is a secreted polypeptide that signals via receptor serine/threonine kinases and intracellular Smad effectors. TGF-beta inhibits proliferation and induces apoptosis in various cell types, and accumulation of loss-of-function mutations in the TGF-beta receptor or Smad genes classify the pathway as a tumor suppressor in humans. In addition, various oncogenic pathways directly inactivate the TGF-beta receptor-Smad pathway, thus favoring tumor growth. On the other hand, all human tumors overproduce TGF-beta whose autocrine and paracrine actions promote tumor cell invasiveness and metastasis. Accordingly, TGF-beta induces epithelial-mesenchymal transition, a differentiation switch that is required for transitory invasiveness of carcinoma cells. Tumor-derived TGF-beta acting on stromal fibroblasts remodels the tumor matrix and induces expression of mitogenic signals towards the carcinoma cells, and upon acting on endothelial cells and pericytes, TGF-beta regulates angiogenesis. Finally, TGF-beta suppresses proliferation and differentiation of lymphocytes including cytolytic T cells, natural killer cells and macrophages, thus preventing immune surveillance of the developing tumor. Current clinical approaches aim at establishing novel cancer drugs whose mechanisms target the TGF-beta pathway. In conclusion, TGF-beta signaling is intimately implicated in tumor development and contributes to all cardinal features of tumor cell biology. 相似文献
9.
10.
Nguyen N Bonzo JA Chen S Chouinard S Kelner MJ Hardiman G Bélanger A Tukey RH 《The Journal of biological chemistry》2008,283(12):7901-7911
The 9 UDP-glucuronosyltranferases (UGTs) encoded by the UGT1 locus in humans are key enzymes in the metabolism of most drugs as well as endogenous substances such as bile acids, fatty acids, steroids, hormones, neurotransmitters, and bilirubin. Severe unconjugated hyperbilirubinemia in humans that suffer from Crigler-Najjar type I disease results from lesions in the UGT1A1 gene and is often fatal. To examine the physiological importance of the Ugt1 locus in mice, this locus was rendered non-functional by interrupting exon 4 to create Ugt1(-/-) mice. Because UGT1A1 in humans is responsible for 100% of the conjugated bilirubin, it followed that newborn Ugt1(-/-) mice developed serum levels of unconjugated bilirubin that were 40-60 times higher than Ugt1(+/-) or wild-type mice. The result of extreme unconjugated bilirubin in Ugt1(-/-) mice, comparable to the induced levels noted in patients with Crigler-Najjar type 1 disease, is fatal in neonatal Ugt1(-/-) mice within 2 weeks following birth. The extreme jaundice is present as a phenotype in skin color after 8 h. Neonatal Ugt1(-/-) mice exhibit no detectable UGT1A-specific RNA, which corresponds to a complete absence of UGT1A proteins in liver microsomes. Conserved glucuronidation activity attributed to the Ugt1 locus can be defined in Ugt1(-/-) mice, because UGT2-dependent glucuronidation activity is unaffected. Remarkably, the loss of UGT1A functionality in liver results in significant alterations in cellular metabolism as investigated through changes in gene expression. Thus, the loss of UGT1A function in Ugt1(-/-) mice leads to a metabolic syndrome that can serve as a model to further investigate the toxicities associated with unconjugated bilirubin and the impact of this disease in humans. 相似文献
11.
Disruption of microtubules induces an endogenous suicide pathway in human leukaemia HL-60 cells 总被引:1,自引:0,他引:1
Terminally differentiated HL-60 cells undergoing programmed cell death (apoptosis) in culture were found to have a disrupted microtubular network. Treatment of undifferentiated HL-60 cells with microtubule-disrupting agents alone was found to induce apoptosis en masse in these cells. In contrast, disruption of microfilaments did not induce apoptosis; instead these cells underwent necrosis, the pathological mode of cell death. Apoptosis in response to microtubule disruption in HL-60 cells was characterized by cell shape changes, nuclear condensation followed by fragmentation and the separation of the cell into numerous intact fragments, termed apoptotic bodies. Apoptosis of these cells was further confirmed by DNA analysis, which demonstrated the activation of an endogenous endonuclease which cleaved the DNA of these cells into oligonucleosomal fragments. Microtubule disrupting agents were found to exert these effects over a wide range of doses. Apoptosis was also inducible in HL-60 cells, in a dose-dependent manner, by the calcium ionophore A23187. Since microtubules are known to be highly sensitive to intracellular calcium fluctuations, this suggests that calcium influx could act at the microtubule level in effecting apoptosis. 相似文献
12.
Abstract. Terminally differentiated HL-60 cells undergoing programmed cell death (apoptosis) in culture were found to have a disrupted microtubular network. Treatment of undifferentiated HL-60 cells with microtubule-disrupting agents alone was found to induce apoptosis en masse in these cells. In contrast, disruption of microfilaments did not induce apoptosis; instead these cells underwent necrosis, the pathological mode of cell death. Apoptosis in response to microtubule disruption in HL-60 cells was characterized by cell shape changes, nuclear condensation followed by fragmentation and the separation of the cell into numerous intact fragments, termed apoptotic bodies. Apoptosis of these cells was further confirmed by DNA analysis, which demonstrated the activation of an endogenous endonuclease which cleaved the DNA of these cells into oligonucleosomal fragments. Microtubule disrupting agents were found to exert these effects over a wide range of doses. Apoptosis was also inducible in HL-60 cells, in a dose-dependant manner, by the calcium ionophore A23187. Since microtubules are known to be highly sensitive to intracellular calcium fluctuations, this suggests that calcium influx could act at the microtubule level in efTftctino annntnsis 相似文献
13.
Hypoxia is a common environmental stress factor and is also associated with various physiological and pathological conditions such as fibrogenesis. The activation of hepatic stellate cells (HSCs) is the key event in the liver fibrogenesis. In this study, the behavior of human HSCs LX-2 in low oxygen tension (1% O2) was analyzed. Upon hypoxia, the expression of HIF-1alpha and VEGF gene was induced. The result of Western blotting showed that the expression of alpha-SMA was increased by hypoxic stimulation. Furthermore, the expression of MMP-2 and TIMP-1 genes was increased. Hypoxia also elevated the protein expression of the collagen type I in LX-2 cells. The analysis of TGF-beta/Smad signaling pathway showed that hypoxia potentiated the expression of TGF-beta1 and the phosphorylation status of Smad2. Gene expression profiles of LX-2 cells induced by hypoxia were obtained by using cDNA microarray technique. 相似文献
14.
Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors 总被引:22,自引:0,他引:22
Taniguchi T Tischkowitz M Ameziane N Hodgson SV Mathew CG Joenje H Mok SC D'Andrea AD 《Nature medicine》2003,9(5):568-574
Ovarian tumor cells are often genomically unstable and hypersensitive to cisplatin. To understand the molecular basis for this phenotype, we examined the integrity of the Fanconi anemia-BRCA (FANC-BRCA) pathway in those cells. This pathway regulates cisplatin sensitivity and is governed by the coordinate activity of six genes associated with Fanconi anemia (FANCA, FANCC, FANCD2, FANCE, FANCF and FANCG) as well as BRCA1 and BRCA2 (FANCD1). Here we show that the FANC-BRCA pathway is disrupted in a subset of ovarian tumor lines. Mono-ubiquitination of FANCD2, a measure of the function of this pathway, and cisplatin resistance were restored by functional complementation with FANCF, a gene that is upstream in this pathway. FANCF inactivation in ovarian tumors resulted from methylation of its CpG island, and acquired cisplatin resistance correlated with demethylation of FANCF. We propose a model for ovarian tumor progression in which the initial methylation of FANCF is followed by FANCF demethylation and ultimately results in cisplatin resistance. 相似文献
15.
TGF-beta receptors and DNA repair genes, coupled targets in a pathway of human colon carcinogenesis 总被引:5,自引:0,他引:5
Markowitz S 《Biochimica et biophysica acta》2000,1470(1):M13-M20
16.
Iancu IV Botezatu A Goia-Ruşanu CD Stănescu A Huică I Nistor E Anton G Pleşa A 《Roumanian archives of microbiology and immunology》2010,69(3):113-118
Human papillomaviruses (HPV) are considered the etiological agents of cervical cancer, especially high-risk genotypes. TGF-beta (transforming growth factor-beta) is well known for its anti-proliferative effects but the neoplastic cells often lose their sensitivity to TGF-beta. A characteristic alteration associated with malignant progression is the loss of responsiveness to TGF-beta1-induced cell growth inhibition. The aim of the present study was to establish the possible role of some members of TGF-beta signalling pathway during cervical cancer development and the possible relationship with HPV infection. In order to establish TGF-beta gene expression levels in cervical oncogenesis, TGF-beta1, TGF-beta1 receptors and Smad2 were investigated in precancerous and cervical cancer samples (Quantitative Real-Time PCR). The study revealed that 84.5% of patients were positive for HPV DNA. The most prevalent HPV genotypes were high-risk HPV 16 and 18 in single or co-infections. Expression of TGF-beta1 decreased as tumor cells progressed from cervical intraepithelial neoplasia to cervical carcinoma. Furthermore, we observed that cervical lesions without HPV infection expressed significantly less TGF-beta1. TGF-betaRI and Smad2 gene expression levels were found to be decreased in SCC and AC samples in contrast with CIN1 and CIN2/3 samples. Our results showed that in human cervical cancer the disruption of TGF-beta/Smad signalling pathway might contribute to the malignant progression of cervical dysplasia. These data emphasize the importance of canonical TGF-beta pathway integrity in carcinogenesis. 相似文献
17.
Li-Hawkins J Lund EG Turley SD Russell DW 《The Journal of biological chemistry》2000,275(22):16536-16542
Mice without oxysterol 7alpha-hydroxylase, an enzyme of the alternate bile acid synthesis pathway with a sexually dimorphic expression pattern, were constructed by the introduction of a null mutation at the Cyp7b1 locus. Animals heterozygous (Cyp7b1(+/-)) and homozygous (Cyp7b1(-/-)) for this mutation were grossly indistinguishable from wild-type mice. Plasma and tissue levels of 25- and 27-hydroxycholesterol, two oxysterol substrates of this enzyme with potent regulatory actions in cultured cells, were markedly elevated in Cyp7b1(-/-) knockout animals. Parameters of bile acid metabolism as well as plasma cholesterol and triglyceride levels in male and female Cyp7b1(-/-) mice were normal. The cholesterol contents of major tissues were not altered. In vivo sterol biosynthetic rates were unaffected in multiple tissues with the exception of the male kidney, which showed a approximately 40% decrease in de novo synthesis versus controls. We conclude that the major physiological role of the CYP7B1 oxysterol 7alpha-hydroxylase is to metabolize 25- and 27-hydroxycholesterol and that loss of this enzyme in the liver is compensated for by increases in the synthesis of bile acids by other pathways. A failure to catabolize oxysterols in the male kidney may lead to a decrease in de novo sterol synthesis. 相似文献
18.
19.
20.
Dorde Komljenovic Roger Sandhoff Andre Teigler Hans Heid Wilhelm W. Just Karin Gorgas 《Cell and tissue research》2009,337(2):281-299
One of the major roles of Sertoli cells is to establish the blood-testis (Sertoli cell) barrier (BTB), which is permanently assembled and disassembled to accommodate the translocation of leptotene spermatocytes from the basal into the adluminal compartment of the seminiferous epithelium and to guarantee completion of meiosis and spermiogenesis. Recently, we have demonstrated spermatogenesis to be arrested before spermatid elongation in Gnpat-null mice with selective deficiency of ether lipids (ELs) whose functions are poorly understood. In this study, we have focused on the spatio-temporal expression of several BTB tight-junctional proteins in the first wave of spermatogenesis to obtain insights into the physiological role of ELs during BTB establishment and dynamics. Our data confirm the transient existence of Russell’s intermediate or translocation compartment delineated by two separate claudin-3-positive luminal and basal tight junctions and reveal that EL deficiency blocks BTB remodeling. This block is associated with (1) downregulation and mistargeting of claudin-3 and (2) impaired BTB disassembly resulting in deficient sealing of the intermediate compartment as shown by increased BTB permeability to biotin. These results suggest that ELs are essential for cyclic BTB dynamics ensuring the sluice mechanism for leptotene translocation into the adluminal compartment. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This work was supported by the German Research Foundation (grants Go 432/2-1, Ju 166/3-1, and Sa 172/1-1). 相似文献