首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
The secretable form of trimeric TRAIL, a potent inducer of apoptosis   总被引:2,自引:0,他引:2  
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a type II transmembrane cytokine molecule of the TNF family. Soluble recombinant TRAIL has been shown to induce apoptosis in a wide variety of cancer cells in vitro and to specifically limit tumor growth without damaging normal cells and tissues in vivo. These results suggest a strong potential of TRAIL as an anticancer therapy. Here we report an artificial TRAIL gene that expresses and secretes trimeric TRAIL into the culture supernatant. This novel TRAIL gene is composed of three functional elements, including a secretion signal, a trimerization domain, and an apoptosis-inducing moiety of TRAIL gene sequence. The expression vectors delivering this TRAIL gene produced secretable forms of trimeric TRAIL proteins. These TRAIL proteins showed greater apoptotic activity than the known TRAIL protein that does not contain an additional trimerization domain. Our data suggest that the gene therapy using our artificial TRAIL gene may be used as an anticancer therapy.  相似文献   

5.
Ceramide-induced cell death is thought to be mediated by change in mitochondrial function, although the precise mechanism is unclear. Proposed models suggest that ceramide induces cell death through interaction with latent binding sites on the outer or inner mitochondrial membranes, followed by an increase in membrane permeability, as an intermediate step in ceramide signal propagation. To investigate these models, we developed a new generation of positively charged ceramides that readily accumulate in isolated and in situ mitochondria. Accumulated, positively charged ceramides increased inner membrane permeability and triggered release of mitochondrial cytochrome c. Furthermore, the positively charged ceramide-induced permeability increase was suppressed by cyclosporin A (60%) and 1,3-dicyclohexylcarbodiimide (90%). These observations suggest that the inner membrane permeability increase is due to activation of specific ion transporters, not the generalized loss of lipid bilayer barrier functions. The difference in sensitivity of ceramide-induced ion fluxes to inhibitors of mitochondrial transporters suggests activation of at least two transport systems: the permeability transition pore and the electrogenic H(+) channel. Our results indicate the presence of specific ceramide targets in the mitochondrial matrix, the occupation of which triggers permeability alterations of the inner and outer mitochondrial membranes. These findings also suggest a novel therapeutic role for positively charged ceramides.  相似文献   

6.
Multiple endocrine neoplasia type I (MEN1) is a hereditary tumor syndrome characterized by multiple endocrine and occasionally non-endocrine tumors. The tumor suppressor gene Men1, which is frequently mutated in MEN1 patients, encodes the nuclear protein menin. Although many tumor suppressor genes are involved in the regulation of apoptosis, it is unclear whether menin facilitates apoptosis. Here we show that ectopic overexpression of menin via adenoviruses induces apoptosis in murine embryonic fibroblasts. The induction of apoptosis depends on Bax and Bak, two proapoptotic proteins. Moreover, loss of menin expression compromises apoptosis induced by UV irradiation and tumor necrosis factor-alpha (TNF-alpha), whereas complementation of menin-null cells with menin restores sensitivity to UV- and TNF-alpha-induced apoptosis. Interestingly, loss of menin reduces the expression of procaspase 8, a critical protease that is essential for apoptosis induced by death-related receptors, whereas complementation of the menin-null cells up-regulates the expression of procaspase 8. Furthermore, complementation of menin-null cells with menin increases the activation of caspase 8 in response to TNF-alpha treatment. These results suggest a proapoptotic function for menin that may be important in suppressing the development of MEN1.  相似文献   

7.
Platinum compounds are the first-line therapy for many types of cancer. However, drug resistance has frequently been reported for and is a major limitation of platinum-based chemotherapy in the clinic. In the current study, we examined the anti-tumor activity of phomoxanthone A (PXA), a tetrahydroxanthone dimer isolated from the endophytic fungus Phomopsis longicolla, in several solid cancer cell lines and their cisplatin-resistant sub-cell lines. PXA showed strong cytotoxic effects with IC50 values in the high nanomolar or low micromolar range in MTT assays. IC50 values of PXA were lower than those of cisplatin. Remarkably, equipotent anti-cancer activity was found in cisplatin-sensitive and respective cisplatin-resistant cells. Anticancer effects of PXA were studied in further detail in ovarian cancer (A2780) and bladder cancer (J82) cell pairs. PXA led to rapid depolarization of the mitochondrial membrane potential and strong activation of caspase 3 and 7, eventually resulting in strong induction of apoptosis. These effects occurred again both in sensitive and resistant cell lines. IC50 values of PXA from MTT and mitochondrial membrane depolarization assays were in good agreement. Configurational free energy computations indicate that both the neutral and singly negatively charged PXA show membrane partitioning and can penetrate the inner mitochondrial membrane. PXA treatment did not damage the plasma membranes of cancer cells, thus excluding unspecific membrane effects. Further, PXA had neither an effect on intracellular ROS nor on reduction of ROS after hydrogen peroxide treatment. In conclusion, our studies present PXA as a natural compound with strong apoptotic anticancer effects against platinum-resistant solid cancers. This may open new treatment options in clinically resistant malignancies.  相似文献   

8.
The direct chemoselective differential functionalization of the ring-C hydroxyl groups present in the Amaryllidaceae alkaloid lycorine is described allowing for selective manipulation of the 1,2-hydroxyl groups. A mini-library comprised of synthetic and natural lycorane alkaloids was prepared and their apoptosis-inducing activity investigated in human leukemia (Jurkat) cells. Further insights into the nature of this interesting apoptosis-inducing pharmacophore are described, including the requirement of both free hydroxyl groups in ring-C.  相似文献   

9.
Several reports support the concept that bile acids may be cytotoxic during cholestatic disease process by causing mitochondrial dysfunction. Here we report additional data and findings aimed at a better understanding of the involvement of the permeability transition pore (PTP) opening in bile acids toxicity. The mitochondrial PTP is implicated as a mediator of cell injury and death in many situations. In the presence of calcium and phosphate, chenodeoxycholic acid (CDCA) induced a permeability transition in freshly isolated rat liver mitochondria, characterized by membrane depolarization, release of matrix calcium, and osmotic swelling. All these events were blocked by cyclosporine A (CyA) and the calcium uniporter inhibitor ruthenium red (RR). The results suggest that CDCA increases the sensitivity of isolated mitochondria in vitro to the calcium-dependent induction of the PTP.  相似文献   

10.
Cell interactions with the extracellular matrix (ECM) can regulate multiple cellular activities and the matrix itself in dynamic, bidirectional processes. One such process is local proteolytic modification of the ECM. Invadopodia of tumor cells are actin-rich proteolytic protrusions that locally degrade matrix molecules and mediate invasion. We report that a novel high-density fibrillar collagen (HDFC) matrix is a potent inducer of invadopodia, both in carcinoma cell lines and in primary human fibroblasts. In carcinoma cells, HDFC matrix induced formation of invadopodia via a specific integrin signaling pathway that did not require growth factors or even altered gene and protein expression. In contrast, phosphoproteomics identified major changes in a complex phosphosignaling network with kindlin2 serine phosphorylation as a key regulatory element. This kindlin2-dependent signal transduction network was required for efficient induction of invadopodia on dense fibrillar collagen and for local degradation of collagen. This novel phosphosignaling mechanism regulates cell surface invadopodia via kindlin2 for local proteolytic remodeling of the ECM.  相似文献   

11.
12.
13.
Lasonolide A (LSA) is a natural product with high and selective cytotoxicity against mesenchymal cancer cells, including leukemia, melanomas and glioblastomas. Here, we reveal that LSA induces rapid and reversible premature chromosome condensation (PCC) associated with cell detachment, plasma membrane smoothening and actin reorganization. PCC is induced at all phases of the cell cycle in proliferative cells as well as in circulating human lymphocytes in G0. It is independent of Cdk1 signaling, associated with cyclin B downregulation and induced in cells at LSA concentrations that are three orders of magnitude lower than those required to block phosphatases 1 and 2A in vitro. At the epigenetic level, LSA-induced PCC is coupled with histone H3 and H1 hyperphosphorylation and deacetylation. Treatment with SAHA reduced LSA-induced PCC, implicating histone deacetylation as one of the PCC effector mechanisms. In addition, PCC is coupled with topoisomerase II (Top2) and Aurora A hyperphosphorylation and activation. Inhibition of Top2 or Aurora A partially blocked LSA-induced PCC. Our findings demonstrate the profound epigenetic alterations induced by LSA and the potential of LSA as a new cytogenetic tool. Based on the unique cellular effects of LSA, further studies are warranted to uncover the cellular target of lasonolide A (“TOL”).  相似文献   

14.
Lasonolide A (LSA) is a natural product with high and selective cytotoxicity against mesenchymal cancer cells, including leukemia, melanomas and glioblastomas. Here, we reveal that LSA induces rapid and reversible premature chromosome condensation (PCC) associated with cell detachment, plasma membrane smoothening and actin reorganization. PCC is induced at all phases of the cell cycle in proliferative cells as well as in circulating human lymphocytes in G0. It is independent of Cdk1 signaling, associated with cyclin B downregulation and induced in cells at LSA concentrations that are three orders of magnitude lower than those required to block phosphatases 1 and 2A in vitro. At the epigenetic level, LSA-induced PCC is coupled with histone H3 and H1 hyperphosphorylation and deacetylation. Treatment with SAHA reduced LSA-induced PCC, implicating histone deacetylation as one of the PCC effector mechanisms. In addition, PCC is coupled with topoisomerase II (Top2) and Aurora A hyperphosphorylation and activation. Inhibition of Top2 or Aurora A partially blocked LSA-induced PCC. Our findings demonstrate the profound epigenetic alterations induced by LSA and the potential of LSA as a new cytogenetic tool. Based on the unique cellular effects of LSA, further studies are warranted to uncover the cellular target of lasonolide A (“TOL”).  相似文献   

15.
Drimal J  Patoprsty V  Kovacik V 《Life sciences》1999,65(18-19):1939-1941
Binding of endothelin (ET) peptides to their respective receptors with resulting proliferation of vascular smooth muscle has been implicated in the pathogenesis of arterial hypertension and atherosclerosis. Recently it was hypothesized that endothelin- (ET-1) bound to its two membrane receptors (ET(A) and ET(B)) continues to activate signal transducing proteins in cells. It was also shown that pyridoindole stobadine stabilized lysosomal membranes in myocardium in early ischemia. Therefore we decided to study the effects of stobadine on specific, subtype-selective binding and subsequent degradation of human, synthetic [125I]-ET-1 in human fibroblasts (HF). Our results indicate that stobadine significantly potentiated ET-1 binding by reductive ET(B) selective degradation of ET-1 in HF. Hence, it is very plausible that stobadine may modulate endogenous endothelin and its intracellular mitogenic and chemotactic factors, principally by affecting two presumably related processes, participating in the proliferative and mitogenic response, (1) potentiation of signal trasduction from ET(A) receptors, and (2) subtype-ET(B) selective intracellular processing.  相似文献   

16.
Gambogic acid (2), a natural product isolated from the resin of Garcinia hurburyi tree, was discovered to be a potent apoptosis inducer using our cell- and caspase-based high-throughput screening assays. Gambogic acid was found to have an EC(50) of 0.78 microM in the caspase activation assay in T47D breast cancer cells. The apoptosis-inducing activity of gambogic acid was further characterized by a nuclear fragmentation assay and flow cytometry analysis in human breast tumor cells T47D. Gambogic acid was found to induce apoptosis independent of cell cycle, which is different from paclitaxel that arrests cells in the G2/M phase. To understand the structure-activity relationship (SAR) of gambogic acid, derivatives of 2 with modifications to different function groups were prepared. SAR studies of gambogic acid, as measured by the caspase activation assay, showed that the 9,10 carbon-carbon double bond of the alpha,beta-unsaturated ketone is important for biological activity, while the 6-hydroxy and 30-carboxy group can tolerate a variety of modifications. The importance of the 9,10 carbon-carbon double bond was confirmed by the traditional growth inhibition assay. The high potency of 2 as an inducer of apoptosis, its novel mechanism of action, easy isolation and abundant supply, as well as the fact that it is amenable to chemical modification, makes gambogic acid an attractive molecule for the development of anticancer agents.  相似文献   

17.
A novel and critical function of ethylene, a potent plant hormone, has been well documented in Dictyostelium, because it leads cells to the sexual development (macrocyst formation) by inducing zygote formation. Zygote formation (sexual cell fusion) and the subsequent nuclear fusion are the characteristic events occurring during macrocyst formation. A novel gene, zyg1 was found to be predominantly expressed during the sexual development, and its enforced expression actually induces zygote formation. As expected, the zygote inducer, ethylene enhances the expression of zyg1. Thus the function of ethylene has been verified at all of individual (macrocyst formation), cellular (zygote formation), and molecular levels (zyg1 expression). Based on our recent studies concerning the behavior and function of the zyg1 product (ZYG1 protein), the signal transduction pathways involved in zygote formation are proposed in this review.  相似文献   

18.
19.
20.
TRAIL,a mighty apoptosis inducer   总被引:25,自引:0,他引:25  
Kim Y  Seol DW 《Molecules and cells》2003,15(3):283-293
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a membrane-bound cytokine molecule that belongs to the family of tumor necrosis factor (TNF). TRAIL has been shown to be a potent apoptosis inducer in a wide variety of cancer cells in vitro and to limit tumor growth efficiently in vivo without damaging normal tissues. These features have focused considerable attention on TRAIL as a potential therapeutic agent to treat human cancers. Recent data also suggest the implication of TRAIL in a natural defense mechanism since its abrogation results in certain autoimmune disorders. This review will summarize recent progress in TRAIL research, including understanding of apoptotic signaling, regulation of TRAIL action, and possible therapeutic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号