首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The bidirectional hydrogenase from Clostridium pasteurianum W5 is an iron-sulfur protein containing approximately 12 Fe atoms and 12 labile sulfides. We have studied oxidized samples of the enzyme with M?ssbauer and electron nuclear double resonance (ENDOR) spectroscopy to elucidate the nature of the center that gives rise to the EPR signal with principal g-values at 2.10, 2.04, and 2.01. The g = 2.10 center exhibits two well-resolved 57Fe ENDOR resonances. One is isotropic with A1 = 9.5 MHz; the other is nearly isotropic with A2 = 17 MHz. These magnetic hyperfine coupling constants are substantially (approximately 50%) smaller than those observed for [2Fe-2S], [3Fe-4S], and [4Fe-4S] clusters. The M?ssbauer and ENDOR data, taken together, suggest that the g = 2.10 center contains at least two but not more than four iron atoms. Comparison of our data with recent results reported for Escherichia coli sulfite reductase and the ferricyanide-treated [4Fe-4S] cluster from Azotobacter vinelandii ferredoxin I suggests that the g = 2.10 center may possibly be formed, by oxidation, from a structure with a [4Fe-4S] core. The M?ssbauer spectra give evidence that at least 8 of the 12 Fe atoms of oxidized hydrogenase are organized in two ferredoxin-type [4Fe-4S] clusters, supporting conclusions derived previously from EPR studies of the reduced enzyme.  相似文献   

2.
We have studied the Fe protein (Av2) of the Azotobacter vinelandii nitrogenase system with M?ssbauer and EPR spectroscopies and magnetic susceptometry. In the oxidized state the protein exhibits M?ssbauer spectra typical of diamagnetic [4Fe-4S]2+ clusters. Addition of Mg.ATP or Mg.ADP causes a pronounced decline in the quadrupole splitting of the M?ssbauer spectra of the oxidized protein. Our studies show that reduced Av2 in the native state is heterogeneous. Approximately half of the molecules contain a [4Fe-4S]1+ cluster with electronic spin S = 1/2 and half contain a [4Fe-4S]1+ cluster with spin S = 3/2. The former yields the characteristic g = 1.94 EPR signal whereas the latter exhibits signals around g = 5. The magnetization of reduced Av2 is dominated by the spin S = 3/2 form of its [4Fe-4S]1+ clusters. These results explain a long standing puzzle, namely why the integrated spin intensity of the g = 1.94 EPR signal is substantially less than 1 spin/4 Fe atoms. In 50% ethylene glycol, 90% of the clusters are in the spin S = 1/2 form whereas, in 0.4 M urea, 85% are in the S = 3/2 form. In 0.4 M urea, the EPR spectrum of reduced Av2 exhibits well defined resonances at g = 5.8 and 5.15, which we assign to the S = 3/2 system. The EPR and M?ssbauer studies yield a zero-field splitting of 2D approximately equal to -5 cm-1 for this S = 3/2 state.  相似文献   

3.
M?ssbauer studies of the hemoprotein subunit (SiR) of E. coli sulfite reductase have shown that the siroheme and the [4Fe-4S] cluster are exchange-coupled. Here we report M?ssbauer studies of SiR complexed with either CO or CN- and of SiR in the presence of the chaotropic agent dimethyl sulfoxide (Me2SO). The spectra of one-electron-reduced SiR X CN show that all five iron atoms reside in a diamagnetic environment; the ferroheme X CN complex is low spin and the [4Fe-4S] cluster is in the 2+ oxidation state. Titration with ferricyanide affords a CN- complex of oxidized SiR in which the siroheme iron is low spin ferric, with the cluster remaining in the 2+ state. At low temperatures, paramagnetic hyperfine interactions are observed for the iron sites of the cluster, suggesting that it is exchange-coupled to the heme iron. Reduction of one-electron-reduced SiR X CN and SiR X CO yields complexes with "g = 1.94"-type EPR signals showing that the second electron is accommodated by the iron-sulfur cluster. The fully reduced complexes yield well resolved M?ssbauer spectra which were analyzed in the spin Hamiltonian formalism. The analysis shows that the cluster subsites are equivalent in pairs, one pair having properties reminiscent of ferric sites whereas the other pair has features more typical of ferrous sites. The M?ssbauer spectra of oxidized SiR kept in 60% (v/v) Me2SO are virtually identical with those observed for SiR in standard buffer, implying that the coupling is maintained in the presence of the chaotrope. Fully reduced SiR displays an EPR signal with g values of g = 2.53, 2.29, and 2.07. In 60% Me2SO, this signal vanishes and a g = 1.94 signal develops; this transition is accompanied by a change in the spin state of the heme iron from S = 1 (or 2) to S = O.  相似文献   

4.
Hydrogenase II contains two iron-sulfur clusters, one of the [4Fe-4S] type and one of unknown structure with unusual spectral properties (H-cluster). Using M?ssbauer spectroscopy we have studied the H-cluster under a variety of conditions. In the reduced state the cluster exhibits, in zero magnetic field, spectra with the typical 2:1 quadrupole pattern of reduced [3Fe-4S] clusters. However, whereas the latter are paramagnetic (S = 2) the H-cluster is diamagnetic (S = 0). Upon oxidation and exposure to CO the H-cluster exhibits an S = 1/2 EPR spectrum with g values at 2.03, 2.02, and 2.00. In this state, the M?ssbauer spectra reveal two cluster subsites with magnetic hyperfine coupling constants AI = +26.5 MHz and AII = -30 MHz. ENDOR data obtained by Hoffman and co-workers (Telser, J., Benecky, M. J., Adams, M. W. W., Mortenson, L. E., and Hoffman, B. M. (1986) J. Biol. Chem. 261, 13536-13541) show a 57Fe resonance at AIII approximately equal to 9.5 MHz. Analysis of the M?ssbauer spectra shows that this resonance represents one iron site. Our studies of the reduced and CO-bound oxidized states of hydrogenase II suggest that the H-cluster contains three iron atoms. The data obtained for the oxidized H-cluster suggest a novel type of 3-Fe cluster and bear little resemblance to those reported for oxidized [3Fe-4S] clusters with g = 2.01 EPR signals. In the reduced sample the [4Fe-4S]1+ cluster appears to occur in a mixture of two distinct electronic states.  相似文献   

5.
Rogers PA  Eide L  Klungland A  Ding H 《DNA Repair》2003,2(7):809-817
Endonuclease III, a highly conserved enzyme initiating the base excision repair of oxidized DNA bases, hosts a [4Fe-4S] cluster. Unlike many other iron-sulfur clusters, the [4Fe-4S] cluster of endonuclease III is stable and resistant to both oxidation and reduction. Here we show that the [4Fe-4S] cluster of the E. coli endonuclease III can be readily modified by nitric oxide forming the protein-bound dinitrosyl iron complex in vitro and in vivo. Modification of the [4Fe-4S] cluster completely inhibits the DNA glycosylase activity of the endonuclease III. Remarkably, the enzymatic activity is restored when the [4Fe-4S] cluster is re-assembled in the endonuclease III dinitrosyl iron complex with L-cysteine, cysteine desulfurase (IscS) and ferrous iron in vitro. Furthermore, the nitric oxide-modified [4Fe-4S] cluster in endonuclease III is efficiently repaired in aerobically growing E. coli cells, and this repair does not require new protein synthesis. These results suggest that the E. coli endonuclease III can be reversibly inactivated by nitric oxide via modification of its [4Fe-4S] cluster.  相似文献   

6.
Duan X  Yang J  Ren B  Tan G  Ding H 《The Biochemical journal》2009,417(3):783-789
Although the NO (nitric oxide)-mediated modification of iron-sulfur proteins has been well-documented in bacteria and mammalian cells, specific reactivity of NO with iron-sulfur proteins still remains elusive. In the present study, we report the first kinetic characterization of the reaction between NO and iron-sulfur clusters in protein using the Escherichia coli IlvD (dihydroxyacid dehydratase) [4Fe-4S] cluster as an example. Combining a sensitive NO electrode with EPR (electron paramagnetic resonance) spectroscopy and an enzyme activity assay, we demonstrate that NO is rapidly consumed by the IlvD [4Fe-4S] cluster with the concomitant formation of the IlvD-bound DNIC (dinitrosyl-iron complex) and inactivation of the enzyme activity under anaerobic conditions. The rate constant for the initial reaction between NO and the IlvD [4Fe-4S] cluster is estimated to be (7.0+/-2.0)x10(6) M(-2) x s(-1) at 25 degrees C, which is approx. 2-3 times faster than that of the NO autoxidation by O2 in aqueous solution. Addition of GSH failed to prevent the NO-mediated modification of the IlvD [4Fe-4S] cluster regardless of the presence of O2 in the medium, further suggesting that NO is more reactive with the IlvD [4Fe-4S] cluster than with GSH or O2. Purified aconitase B [4Fe-4S] cluster from E. coli has an almost identical NO reactivity as the IlvD [4Fe-4S] cluster. However, the reaction between NO and the endonuclease III [4Fe-4S] cluster is relatively slow, apparently because the [4Fe-4S] cluster in endonuclease III is less accessible to solvent than those in IlvD and aconitase B. When E. coli cells containing recombinant IlvD, aconitase B or endonuclease III are exposed to NO using the Silastic tubing NO delivery system under aerobic and anaerobic conditions, the [4Fe-4S] clusters in IlvD and aconitase B, but not in endonuclease III, are efficiently modified forming the protein-bound DNICs, confirming that NO has a higher reactivity with the [4Fe-4S] clusters in IlvD and aconitase B than with O2 or GSH. The results suggest that the iron-sulfur clusters in proteins such as IlvD and aconitase B may constitute the primary targets of the NO cytotoxicity under both aerobic and anaerobic conditions.  相似文献   

7.
We have studied a low-molecular-weight (Mr = 27,200) sulfite reductase from Desulfovibrio vulgaris (Hildenborough, NCIB 8303) with M?ssbauer, EPR, and chemical techniques. This sulfite reductase was found to contain one siroheme and one [4Fe-4S] cluster. As purified, the siroheme is low-spin ferric (S = 1/2) which exhibits characteristic EPR resonances at g = 2.44, 2.36, and 1.77. At 150 K, the observed M?ssbauer parameters, delta EQ = 2.49 +/- 0.02 mm/s and delta = 0.31 +/- 0.02 mm/s, for the siroheme are typical for low-spin ferric complexes. The [4Fe-4S] cluster is in the 2+ state. The M?ssbauer parameters, delta EQ = 0.95 +/- 0.02 mm/s and delta = 0.38 +/- 0.02 mm/s, for the cluster are almost identical to those observed for the [4Fe-4S]2+ cluster in the hemoprotein subunit of the sulfite reductase from Escherichia coli. Similar to the hemoprotein subunit of E. coli sulfite reductase, low-temperature M?ssbauer spectra of D. vulgaris sulfite reductase recorded with weak and strong applied fields also show evidence for an exchange-coupled siroheme-[4Fe-4S] unit.  相似文献   

8.
The anaerobic ribonucleotide reductase (ARR) from E. coli is the prototype for enzymes that use the combination of S-adenosylmethionine (AdoMet) and an iron-sulfur center for generating catalytically essential free radicals. ARR is a homodimeric alpha2 protein which acquires a glycyl radical during anaerobic incubation with a [4Fe-4S]-containing activating enzyme (beta) and AdoMet under reducing conditions. Here we show that the EPR-active S = 1/2 reduced [4Fe-4S]+ cluster is competent for AdoMet reductive cleavage, yielding 1 equiv of methionine and almost 1 equiv of glycyl radical. These data support the proposal that the glycyl radical results from a one-electron oxidation of the reduced cluster by AdoMet. Reduced protein beta alone is also able to reduce AdoMet but only in the presence of DTT. However, in that case, 2 equiv of methionine per reduced cluster was formed. This unusual stoichiometry and combined EPR and M?ssbauer spectroscopic analysis are used to tentatively propose that AdoMet reductive cleavage proceeds by an alternative mechanism involving catalytically active [3Fe-4S] intermediate clusters.  相似文献   

9.
The photosynthetic reaction center from the green sulfur bacterium Chlorobium tepidum (CbRC) was solubilized from membranes using Triton X-100 and isolated by sucrose density ultra-centrifugation. The CbRC complexes were subsequently treated with 0.5 M NaCl and ultrafiltered over a 100 kDa cutoff membrane. The resulting CbRC cores did not exhibit the low-temperature EPR resonances from FA- and FB- and were unable to reduce NADP+. SDS-PAGE and mass spectrometric analysis showed that the PscB subunit, which harbors the FA and FB clusters, had become dissociated, and was now present in the filtrate. Attempts to rebind PscB onto CbRC cores were unsuccessful. M?ssbauer spectroscopy showed that recombinant PscB contains a heterogeneous mixture of [4Fe-4S]2+,1+ and other types of Fe/S clusters tentatively identified as [2Fe-2S]2+,1+ clusters and rubredoxin-like Fe3+,2+ centers, and that the [4Fe-4S]2+,1+ clusters which were present were degraded at high ionic strength. Quantitative analysis confirmed that the amount of iron and sulfide in the recombinant protein was sub-stoichiometric. A heme-staining assay indicated that cytochrome c551 remained firmly attached to the CbRC cores. Low-temperature EPR spectroscopy of photoaccumulated CbRC complexes and CbRC cores showed resonances between g=5.4 and 4.4 assigned to a S=3/2 ground spin state [4Fe-4S]1+ cluster and at g=1.77 assigned to a S=1/2 ground spin state [4Fe-4S]1+ cluster, both from FX-. These results unify the properties of the acceptor side of the Type I homodimeric reaction centers found in green sulfur bacteria and heliobacteria: in both, the FA and FB iron-sulfur clusters are present on a salt-dissociable subunit, and FX is present as an interpolypeptide [4Fe-4S]2+,1+ cluster with a significant population in a S=3/2 ground spin state.  相似文献   

10.
Azotobacter vinelandii (4Fe-4S)2 ferredoxin I (Fd I) is an electron transfer protein with Mr equals 14,500 and Eo equals -420 mv. It exhibits and EPR signal of g equals 2.01 in its isolated form. This resonance is almost identical with the signal that originates from a "super-oxidized" state of the 4Fe-4S cluster of potassium ferricyanide-treated Clostridium ferredoxin. A cluster that exhibits this EPR signal at g equals 2.01 is in the same formal oxidation state as the cluster in oxidized Chromatium High-Potential-Iron-Protein (HiPIP). On photoreduction of Fd I with spinach chloroplast fragments, the resonance at g equals 2.01 vanishes and no EPR signal is observed. This EPR behavior is analogous to that of reduced HiPIP, which also fails to exhibit an EPR spectrum. These characteristics suggest that a cluster in A. vinelandii Fd I functions between the same pair of states on reduction as does the cluster in HiPIP, but with a midpoint reduction potential of -420 mv in contrast to the value of +350 mv characteristic of HiPIP. Quantitative EPR and stoichoimetry studies showed that only one 4Fe-4S cluster in this (4Fe-4S)2 ferredoxin is reduced. Oxidation of Fd I with potassium ferricyanide results in the uptake of 1 electron/mol as determined by quantitative EPR spectroscopy. This indicates that a cluster in Fd I shows no electron paramagnetic resonance in the isolated form of the protein accepts an electron on oxidation, as indicated by the EPR spectrum, and becomes paramagnetic. The EPR behavior of this oxidizable cluster indicates that it also functions between the same pair of oxidation states as does the Fe-S cluster in HiPIP. The midpoint reduction potential of this cluster is approximately +340 mv. A. vinelandii Fd I is the first example of an iron-sulfur protein which contains both a high potential cluster (approximately +340 mv) and a low potential cluster (-420 mv). Both Fe-S clusters appear to function between the same pair of oxidation states as the single Fe-S cluster in Chromatium HiPIP, although the midpoint reduction potentials of the two clusters are approximately 760 mv different.  相似文献   

11.
EPR and M?ssbauer spectroscopies have been used to determine the type and properties of the iron-sulfur clusters present in homologously expressed recombinant Escherichia coli BioB in whole cells prior to purification. Difference EPR spectra of samples of whole cells from a strain over-expressing E. coli BioB and a strain containing the same plasmid but without the bioB insertion showed an axial S=1/2 resonance that was attributed to the [2Fe-2S](+) cluster of the E. coli iron-sulfur cluster assembly 2Fe ferredoxin, based on principal g-values, linewidths and relaxation behavior. Comparison of the M?ssbauer spectra of whole cells with and without the bioB insertion revealed that the E. coli cells with over-expressed BioB contain an additional species that exhibits a spectrum identical to that of the [2Fe-2S](2+) cluster in purified recombinant BioB. The concentration of this [2Fe-2S](2+) species in the whole cell sample was quantified using a M?ssbauer standard and found to be approximately 260 microM, which was comparable to the BioB protein concentration estimated for the cell paste. The results demonstrate that the [2Fe-2S](2+) cluster found in purified samples of recombinant BioB is not an artifact of the protein purification procedure, and indicate that recombinant BioB is over-expressed in an inactive form during aerobic growth.  相似文献   

12.
The human ribosomal protein S3 (rpS3) functions as a component of the 40S subunit and as a UV DNA repair endonuclease. This enzyme has an endonuclease activity for UV-irradiated and oxidatively damaged DNAs. DNA repair endonucleases recognize a variety of UV and oxidative base damages in DNA from E. coli to human cells. E. coli endonuclease III is especially known to have an iron-sulfur cluster as a co-factor. Here, we tried an electron paramagnetic resonance (EPR) method for the first time to observe a known iron-sulfur cluster signal from E. coli endonuclease III that was previously reported. We compared it to the human rpS3 in order to find out whether or not the human protein contains an iron-sulfur cluster. As a result, we succeeded in observing a Fe EPR signal that is apparently from an iron-sulfur cluster in the human rpS3 endonuclease. The EPR signal from the human enzyme, consisting of three major parts, is similar to that from the E. coli enzyme, but it has a distinct extra peak.  相似文献   

13.
Adenosine 5'-phosphosulfate reductase (APR) catalyzes the two-electron reduction of adenosine 5'-phosphosulfate to sulfite and AMP, which represents the key step of sulfate assimilation in higher plants. Recombinant APRs from both Lemna minor and Arabidopsis thaliana were overexpressed in Escherichia coli and isolated as yellow-brown proteins. UV-visible spectra of these recombinant proteins indicated the presence of iron-sulfur centers, whereas flavin was absent. This result was confirmed by quantitative analysis of iron and acid-labile sulfide, suggesting a [4Fe-4S] cluster as the cofactor. EPR spectroscopy of freshly purified enzyme showed, however, only a minor signal at g = 2.01. Therefore, M?ssbauer spectra of (57)Fe-enriched APR were obtained at 4.2 K in magnetic fields of up to 7 tesla, which were assigned to a diamagnetic [4Fe-4S](2+) cluster. This cluster was unusual because only three of the iron sites exhibited the same M?ssbauer parameters. The fourth iron site gave, because of the bistability of the fit, a significantly smaller isomer shift or larger quadrupole splitting than the other three sites. Thus, plant assimilatory APR represents a novel type of adenosine 5'-phosphosulfate reductase with a [4Fe-4S] center as the sole cofactor, which is clearly different from the dissimilatory adenosine 5'-phosphosulfate reductases found in sulfate reducing bacteria.  相似文献   

14.
We have employed electron-nuclear double resonance (ENDOR) spectroscopy to study the 57Fe hyperfine interactions in the bridged-siroheme [4Fe-4S] cluster that forms the catalytically active center of the two-electron-reduced hemoprotein subunit of Escherichia coli NADPH-sulfite reductase (SiR2-). Previous electron paramagnetic resonance (EPR) and M?ssbauer studies have shown that this enzyme oxidation state can exist in three distinct spectroscopic forms: (1) a "g = 2.29" EPR species that predominates in unligated SiR2-, in which the siroheme Fe2+ is believed to be in an S = 1 state; (2) a "g = 4.88" type of EPR species that predominates in SiR2- in the presence of small amounts of guanidinium sulfate, in which the siroheme Fe2+ is in an S = 2 state; and (3) a classical "g = 1.94" type of EPR species that is seen in SiR2- ligated with CO, in which the siroheme Fe2+ is in an S = 0 state. In all three species, the cluster is in the [4Fe-4S]1+ state, and two distinct types of Fe site are seen in M?ssbauer spectroscopy. ENDOR studies confirm the M?ssbauer assignments for the cluster 57Fe in the g = 1.94 state, with A values of 37, 37, and 32 MHz for site I and ca. 19 MHz for site II. The hyperfine interactions are not too different on the g = 2.29 state, with site I Fe showing more anisotropic A values of 32, 24, and 20 MHz (site II was not detected).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We have purified to homogeneity the 88-kDa corrinoid protein from Clostridium thermoaceticum which acts as a methyl carrier in the synthesis of acetyl-CoA. As shown here, this protein contains a [4Fe-4S]1+/2+ cluster in addition to a corrinoid. The corrinoid is 5-methoxybenzimidazolylcobamide, with an OH- group probably present as the upper axial ligand. Co+ is present in the reduced form, Co2+ in the as-isolated form, and Co3+ in the methylated form of the protein. The as-isolated corrinoid/Fe-S protein exhibits a Co2+ EPR signal lacking nitrogen superhyperfine splittings, indicating that the benzimidazole base is uncoordinated ("base-off") in the Co2+ state. Optical studies suggest that the Co3+-CH3 corrinoid is also base-off. In the as-isolated and methylated forms, the iron-sulfur cluster is diamagnetic, with quadrupole splittings and isomer shifts characteristic of [4Fe-4S]2+ clusters. The protein can be reduced by CO and CO dehydrogenase in the absence of ferredoxin. The EPR spectra of the reduced cluster exhibit two components: one with principal g-values at 2.07, 1.93, and 1.82 and the other at 2.02, 1.94, and 1.86. The M?ssbauer data show that these signals result from [4Fe-4S]1+ clusters. Chemical analysis shows that the iron:cobalt atomic ratio is close to 4:1, suggesting that a single [4Fe-4S]1+ cluster occurs in two distinct S = 1/2 spin states in the reduced state. Treatment with 1-2.5 M urea converts the two cluster forms into a single one, with EPR and M?ssbauer spectra of typical [4Fe-4S]1+ clusters. A 27-kDa corrinoid protein (Ljungdahl, L.G., LeGall, J., and Lee, J.P. (1973) Biochemistry 12, 1802-1808) also was purified and found to be inactive in the synthesis of acetyl-CoA, contrary to the suggestion of Ljungdahl et al. (1973).  相似文献   

16.
MutY and endonuclease III, two DNA glycosylases from Escherichia coli, and AfUDG, a uracil DNA glycosylase from Archeoglobus fulgidus, are all base excision repair enzymes that contain the [4Fe-4S](2+) cofactor. Here we demonstrate that, when bound to DNA, these repair enzymes become redox-active; binding to DNA shifts the redox potential of the [4Fe-4S](3+/2+) couple to the range characteristic of high-potential iron proteins and activates the proteins toward oxidation. Electrochemistry on DNA-modified electrodes reveals potentials for Endo III and AfUDG of 58 and 95 mV versus NHE, respectively, comparable to 90 mV for MutY bound to DNA. In the absence of DNA modification of the electrode, no redox activity can be detected, and on electrodes modified with DNA containing an abasic site, the redox signals are dramatically attenuated; these observations show that the DNA base pair stack mediates electron transfer to the protein, and the potentials determined are for the DNA-bound protein. In EPR experiments at 10 K, redox activation upon DNA binding is also evident to yield the oxidized [4Fe-4S](3+) cluster and the partially degraded [3Fe-4S](1+) cluster. EPR signals at g = 2.02 and 1.99 for MutY and g = 2.03 and 2.01 for Endo III are seen upon oxidation of these proteins by Co(phen)(3)(3+) in the presence of DNA and are characteristic of [3Fe-4S](1+) clusters, while oxidation of AfUDG bound to DNA yields EPR signals at g = 2.13, 2.04, and 2.02, indicative of both [4Fe-4S](3+) and [3Fe-4S](1+) clusters. On the basis of this DNA-dependent redox activity, we propose a model for the rapid detection of DNA lesions using DNA-mediated electron transfer among these repair enzymes; redox activation upon DNA binding and charge transfer through well-matched DNA to an alternate bound repair protein can lead to the rapid redistribution of proteins onto genome sites in the vicinity of DNA lesions. This redox activation furthermore establishes a functional role for the ubiquitous [4Fe-4S] clusters in DNA repair enzymes that involves redox chemistry and provides a means to consider DNA-mediated signaling within the cell.  相似文献   

17.
The properties of the [4Fe-4S] cluster in glutamine phosphoribosylpyrophosphate amidotransferase from Bacillus subtilis have been investigated using low temperature magnetic circular dichroism, electron paramagnetic resonance (EPR), and resonance Raman spectroscopies. The Raman spectra of the native enzyme in the Fe-S stretching region show a [4Fe-4S]2+ cluster that is structurally very similar to those in simple redox proteins. Photochemical reduction mediated by 5-deazaflavin with oxalate as the electron donor resulted in [4Fe-4S]+ clusters with a mixture of ground state spin multiplicities. Magnetic circular dichroism and EPR studies of samples ranging in concentration from 0.15 to 0.4 mM concur in finding S = 3/2 [4Fe-4S]+ clusters with predominantly axial and positive zero field splitting as the dominant species. The EPR studies also revealed minor contributions from S = 1/2 [4Fe-4S]+ centers and an S = 5/2 species. The latter becomes the dominant component in more concentrated samples (approximately 2 mM), and arguments are presented in favor of assignment to S = 5/2 [4Fe-4S]+ clusters rather than adventitiously bound high spin Fe(III) ions. The concentration-dependent spin state heterogeneity of the [4Fe-4S]+ cluster in glutamine phosphoribosylpyrophosphate amidotransferase is discussed in light of the magnetic and electronic properties of the [4Fe-4S]+ centers in other enzymes and proteins.  相似文献   

18.
The reversible dehydration of (R)-2-hydroxyglutaryl-CoA to (E)-glutaconyl-CoA is catalysed by the combined action of two oxygen-sensitive enzymes from Acidaminococcus fermentans, the homodimeric component A (2 x 27 kDa) and the heterodimeric component D (45 and 50 kDa). Component A was purified to homogeneity (specific activity 25-30 s-1) using streptavidin-tag affinity chromatography. In the presence of 5 mM MgCl2 and 1 mM ADP or ATP, component A could be stabilized and stored for 4-5 days at 4 degrees C without loss of activity. The purification of component D from A. fermentans was also improved as indicated by the 1.5-fold higher specific activity (15 s-1). The content of 1.0 riboflavin 5'-phosphate (FMN) per heterodimer could be confirmed, whereas in contrast to an earlier report only trace amounts of riboflavin (< 0.1) could be detected. Each active component contains an oxygen sensitive diamagnetic [4Fe-4S]2+ cluster as revealed by UV-visible, EPR and M?ssbauer spectroscopy. Reduction of the [4Fe-4S]2+ cluster in component A with dithionite yields a paramagnetic [4Fe-4S]1+ cluster with the unusual electron spin ground state S = 3/2 as indicated by strong absorption type EPR signals at high g values, g = 4-6. Spin-Hamiltonian simulations of the EPR spectra and of magnetic M?ssbauer spectra were performed to determine the zero field splitting (ZFS) parameters of the cluster and the 57Fe hyperfine interaction parameters. The electronic properties of the [4Fe-4S]2+, 1+ clusters of component A are similar to those of the nitrogenase iron protein in which a [4Fe-4S]2+ cluster bridges the two subunits of the homodimeric protein. Under air component A looses its activity within seconds due to irreversible degradation of its [4Fe-4S]2+ cluster to a [2Fe-2S]2+ cluster. The [4Fe-4S]2+ cluster of component D could not be reduced to a [4Fe-4S]1+ cluster, even with excess of Ti(III)citrate or dithionite. Exposure to oxic conditions slowly converts the diamagnetic [4Fe-4S]2+ cluster of component D to a paramagnetic [3Fe-4S]+ cluster concomitant with loss of activity (30% within 24 h at 4 degrees C).  相似文献   

19.
The electronic and magnetic properties of the selenium-substituted 2[4Fe-4Se]2+/+ ferredoxin (Fd) from Clostridium pasteurianum have been investigated by EPR and M?ssbauer spectroscopy. The [4Fe-4Se]2+ clusters of oxidized Fd are diamagnetic and the M?ssbauer spectra are nearly identical to those of oxidized 2[4Fe-4S]2+ Fd. The addition of 2e- per molecule of Se-substituted Fd causes the simultaneous appearance of three EPR signals: one (g1,2,3 = 2.103, 1.940, 1.888) is reminiscent of [4Fe-4S]+ EPR spectra and accounts for 0.7 to 0.8 spin/molecule. The two others consist of a broad signal with g = 4.5, 3.5, and approximately 2 (0.7 to 0.8 spin/molecule) and of a narrow peak at g = 5.172 which is observed up to 60 K. Peculiar features are also present in the M?ssbauer spectra of 2[4Fe-4Se]+ Fd below 20 K: a subcomponent with lines near to +/- 4 mm/s and accounting for 20% of the total iron corresponds to two antiferromagnetically coupled sites in approximately a 3:1 ratio and displays fully developed paramagnetic hyperfine interactions at 4.2 K without any applied field. At 77 K, however, the reduced Se-substituted Fd yields a M?ssbauer spectrum similar to that of 2[4Fe-4S]+ Fd. The new EPR and M?ssbauer spectroscopic features of the 2[4Fe-4Se]+ Fd are attributed to S = 3/2 and S = 7/2 spin states which accompany the classical S = 1/2 state of [4Fe-4X]+ (X = S, Se) structures.  相似文献   

20.
Beef heart aconitase, as isolated under aerobic conditions, is inactive and contains a [3Fe-4S]1+ cluster. On incubation at pH greater than 9.5 (or treatment with 4-8 M urea) the color of the protein changes from brown to purple. This purple form is stable and can be converted back in good yield to the active [4Fe-4S]2+ form by reduction in the presence of iron. Active aconitase is converted to the purple form at alkaline pH only after oxidative inactivation. The Fe/S2- ratio of purple aconitase is 0.8, indicating the presence of [3Fe-4S] clusters. The number of SH groups readily reacting with 5,5'-dithiobis(2-nitrobenzoic acid) is increased from approximately 1 in the enzyme as isolated to 7-8 in the purple form, indicating a partial unfolding of the protein. On conversion of inactive aconitase to the purple form, the EPR signal at g = 2.01 (S = 1/2) is replaced by signals at g = 4.3 and 9.6 (S = 5/2). M?ssbauer spectroscopy shows that purple aconitase has high-spin ferric ions, each residing in a tetrahedral environment of sulfur atoms. The three iron sites are exchange-coupled to yield a ground state with S = 5/2. Analysis of the data within a spin coupling model shows that J13 congruent to J23 and 2 J12 less than J13, where the Jik describe the antiferromagnetic (J greater than 0) exchange interactions among the three iron pairs. Comparison of our data with those reported for synthetic Fe-S clusters (Hagen, K. S., Watson, A. D., and Holm, R. H., (1983) J. Am. Chem. Soc. 105, 3905-3913) shows that purple aconitase contains a linear [3Fe-4S]1+ cluster, a structural isomer of the S = 1/2 cluster of inactive aconitase. Our studies also show that protein-bound [2Fe-2S] clusters can be generated under conditions where partial unfolding of the protein occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号