首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ten new beta-D-ribofuranosyl and 2'-beta-C-methyl-beta-D-ribofuranosyl triciribine derivatives 4-13 with various N4 and 6-N substituents on the tricyclic ring were synthesized from the corresponding toyocamycin and new 2'-beta-C-methyl toyocamycin derivatives. The inhibitory studies of these compounds in the HCV replicon assay reveal that some of them possess interesting anti-HCV properties with low cytotoxicity.  相似文献   

2.
The synthesis of model 7 deazapurine derivatives related to tubercidin and toyocamycin has been performed. Tubercidin derivatives were obtained by simple conversion of the amino group of the heterocyclic moiety of the starting 7-deazadenosine compounds, into a hydroxyl group. Preparation of toyocamycin derivatives was accomplished by treatment of the silylated 6-bromo-5-cyanopyrrolo[2,3-d]pyrimidin-4-one with 1-O-acetyl-2,3,5-tri-O-benzoyl-beta-d-ribofuranose. The glycosylation reaction afforded a mixture of 8-bromo 7-cyano 2',3',5' tri-O-benzoyl 7-deazainosine and 6-bromo-5-cyano-3-(2',3',5'-tri-O-benzoyl-beta-d-ribofuranosyl)pyrrolo[2,3-d]-pyrimidin-4-one isomers: The structures were assigned on the basis of NMR spectroscopy studies. Next deprotection treatment gave the novel 7-deazainosine ribonucleosides.  相似文献   

3.
Abstract

A series of 5′-substituted analogs of toyocamycin were prepared by condensation of silylated 4-amino-6-bromo-5-cyanopyrrolo[2,3-d]pyrimidine with protected 5-azido-5-deoxy- or 5-fluoro-5-deoxyribofuranose followed by debromination and deblocking. Alternatively, 5′-azido-5′-deoxytoyocamycin was prepared by azidation of toyocamycin. Conversion of the 5-nitrile function of the toyocamycin derivatives into a carboxamide or a thiocarboxamide gave the corresponding analogs of sangivamycin or thiosangivamycin while reduction of the 5′-azido-5′-deoxy nucleosides provided 5′-amino-5′-deoxy derivatives.  相似文献   

4.
目的初步探讨低浓度丰加霉素对人白血病K562细胞集落形成抑制作用的机制。方法甲基纤维素集落形成实验检测低浓度丰加霉素对人白血病K562细胞集落形成能力的影响;CCK-8法检测低浓度丰加霉素对K562细胞的生长抑制率;AnnexinV/PI双染流式细胞仪检测低浓度丰加霉素作用下的K562细胞凋亡率;PI单染流式细胞仪检测药物作用后细胞的周期分布改变;Western免疫印迹和实时定量PCR检测周期相关分子表达水平变化。结果低浓度丰加霉素对人白血病K562细胞具有较强的集落形成抑制作用;可明显抑制K562细胞的生长,呈时间一剂量依赖性;尽管短时间(48h)的药物处理仅出现轻度的细胞凋亡和周期阻滞,但10nmol/L和30nmol/L的丰加霉素长时间(7d)作用后,K562细胞G0/G1期比例分别是(62.3±1.7)%和(76.9±0.7)%,与对照组(38.9±1.1)%相比差异具有高度统计学意义(P〈0.01);低浓度丰加霉素长时间作用后诱导K562细胞周期相关分子P16蛋白水平和转录水平的高表达。结论丰加霉素在低浓度,长时间作用于人白血病K562细胞后,具有较强的集落形成抑制和生长抑制作用,此作用可能与诱导细胞周期相关分子p16高表达,导致细胞G0/G1期阻滞有关。  相似文献   

5.
The pyrrolopyrimidine nucleosides, toyocamycin, sangivamycin, and tubercidin are isolated from the culture filtrates of 14 species of the Streptomyces. Although earlier experiments showed that the biosynthesis of the pyrrolopyrimidine nucleosides require GTP as the common precursor, there was no experimental evidence to demonstrate the interconversion of these naturally occurring nucleoside analogs. The data presented here describe two types of experiments to prove that toyocamycin is the precursor for sangivamycin. First, in vivo experiments show that radioactive toyocamycin is converted to sangivamycin. Second, the enzyme, toyocamycin nitrile hydrolase, that catalyzes the conversion of toyocamycin to sangivamycin has been isolated and partially purified from the soluble fraction of S. rimosus. The nitrile hydrolase is not present in cell-free extracts of the Streptomyces that synthesize tubercidin or toyocamycin. Activity can be assayed by measuring the formation of radioactive sangivamycin from toyocamycin. The enzyme has been purified 24-fold with an over-all yield of 5%. The pH optimum is 6.5 and the Km is 0.5 mm. Most nitriles tested are competitive inhibitors but they are not substrates. The activity of the hydrolase is limited to the conversion of the nitrile group to the carboxamide group. Hydrolase activity is observed in cell-frre estracts of S. rimosus before toyocamycin production begins. The in vivo and in vitro studies demonstrate that toyocamycin is not a precursor for tubercidin. The experimental evidence strongly suggests that there must be a branch point in the biosynthesis of the pyrrolopyrimidine nucleoside antibiotics.  相似文献   

6.
[目的]丰加霉素(Toyocamycin)是核苷类抗生素家族的重要成员,其在农业植物病害防治领域具有巨大的应用价值.为改善丰加霉素生产菌淀粉酶产色链霉菌(Streptomyces diastatochromogenes 1628)发酵过程溶氧限制,旨在实现vgb在S.diastatochromogenes 1628中的表达以促进丰加霉素的生物合成.[方法]首先以gfp为报告基因检测红霉素抗性基因启动子Perm*在S.diastatochromogenes 1628中的转录活性,再利用PermE*实现vgb的异源表达.[结果]在荧光显微镜下,重组菌1628-GFP菌丝可发出稳定明亮的绿色荧光,表明启动子PermE*在菌株1628中可有效启动外源基因的表达;通过一氧化碳结合差光谱分析显示VHb具有生物学活性;摇瓶实验表明:与原始菌株相比,重组菌可促进丰加霉素产量的提高,在中度和高度限氧条件下促进效果尤为明显,提高幅度分别为48.9%和104.5%. PCR和发酵效价检测显示重组菌具有良好的遗传稳定性.[结论]成功实现了vgb在S.diastatochromogenes 1628中的表达,有效提高了其丰加霉素的合成水平,为丰加霉素的工业化生产提供了基础条件.  相似文献   

7.
A number of 7-alkyl 4-aminopyrrolo[2,3- pyrimidine derivatives related to toyocamycin, sangivamycin and thiosangivamycin have been prepared and tested for their activity against human cytomegalovirus (HCMV). Only the thioamide substituted derivatives demonstrated biological activity.  相似文献   

8.
The presence of the nucleoside antitumor antibiotic toyocamycin in the fermentation broth was determined by a combination of negative and positive ion fast atom bombardment (FAB) mass spectrometry, high resolution FAB mass spectrometry and mass-analysed ion kinetic energy spectrometry (MIKES). A reasonable limit of detection for toyocamycin in the whole broth was obtained by combining the specificity of mass spectrometry/mass spectrometry (also called tandem mass spectrometry) to FAB. The role played by the fermentation matrix upon the production and the observation of characteristic ions by FAB using xenon atoms was examined. High-performance liquid chromatography (HPLC) and FAB mass spectrometry were used to monitor toyocamycin at all stages of strain development, fermentation and recovery.  相似文献   

9.
Rio1 kinase is an essential ribosome-processing factor required for proper maturation of 40 S ribosomal subunit. Although its structure is known, several questions regarding its functional remain to be addressed. We report that both Archaeoglobus fulgidus and human Rio1 bind more tightly to an adenosine analog, toyocamycin, than to ATP. Toyocamycin has antibiotic, antiviral and cytotoxic properties, and is known to inhibit ribosome biogenesis, specifically the maturation of 40 S. We determined the X-ray crystal structure of toyocamycin bound to Rio1 at 2.0 ? and demonstrated that toyocamycin binds in the ATP binding pocket of the protein. Despite this, measured steady state kinetics were inconsistent with strict competitive inhibition by toyocamycin. In analyzing this interaction, we discovered that Rio1 is capable of accessing multiple distinct oligomeric states and that toyocamycin may inhibit Rio1 by stabilizing a less catalytically active oligomer. We also present evidence of substrate inhibition by high concentrations of ATP for both archaeal and human Rio1. Oligomeric state studies show both proteins access a higher order oligomeric state in the presence of ATP. The study revealed that autophosphorylation by Rio1 reduces oligomer formation and promotes monomerization, resulting in the most active species. Taken together, these results suggest the activity of Rio1 may be modulated by regulating its oligomerization properties in a conserved mechanism, identifies the first ribosome processing target of toyocamycin and presents the first small molecule inhibitor of Rio1 kinase activity.  相似文献   

10.
Abstract

The nucleoside antibiotic toyocamycin was synthesized by condensation of the silylated 4-amino-6-bromo-5-cyanopyrrolo[2,3-d]pyrimidine with 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose, followed by debromination and deblocking.  相似文献   

11.
12.
Toyocamycin and some analogues have shown potent antitumor activities; however, none of them could be used clinically primarily owing to their cytotoxicity to normal human cells. In order to overcome the weakness of these nucleoside analogues, substitution of a variety of modified sugars for the ribofuranose was explored in our laboratories with expectation that certain sugar-modified toyocamycin analogues may be selectively cytotoxic to cancer cells. In this article, we report synthesis and cytotoxicity of 4'-C- and 5'-C-substituted toyocamycins, which were prepared via the condensations of 4-C- and 5-C-substituted ribofuranose derivatives 11, 12, 13, 20, 21, and 26 with the silylated form of 4-amino-6-bromo-5-cyanopyrrolo[2,3-]pyrimidine (27) and subsequent debromination and debenzoylation. When compared to the parent toyocamycin, all these analogues showed much lower cytotoxicity to human prostate cancer cells (HTB-81), mouse melanoma cancer cells (B16) as well as normal human fibroblasts. Compound 1e showed a significant cytotoxicity to the prostate cancer cells and a moderate selectivity. The results suggested that sugar modifications, especially those that may affect phosphorylation of nucleosides, could alter cytotoxicity profile significantly.  相似文献   

13.
The auxins, plant hormones, play a crucial role in many aspects of plant development by regulating cell division, elongation and differentiation. Toyocamycin, a nucleoside-type antibiotic, was identified as auxin signaling inhibitor in a screen of microbial extracts for inhibition of the auxin-inducible reporter gene assay. Toyocamycin specifically inhibited auxin-responsive gene expression, but did not affect other hormone-inducible gene expression. Toyocamycin also blocked auxin-enhanced degradation of the Aux/IAA repressor modulated by the SCF(TIR1) ubiquitin-proteasome pathway without inhibiting proteolytic activity of proteasome. Furthermore, toyocamycin inhibited auxin-induced lateral root formation and epinastic growth of cotyledon in the Arabidopsis thaliana plant. This evidence suggested that toyocamycin would act on the ubiquitination process regulated by SCF(TIR1) machineries. To address the structural requirements for the specific activity of toyocamycin on auxin signaling, the structure-activity relationships of nine toyocamycin-related compounds, including sangivamycin and tubercidin, were investigated.  相似文献   

14.
Abstract

Novel l-sangivamycin and toyocamycin analogues were synthesized and evaluated for Cdc2 protein kinase activity. Among the compounds tested, l-xylose derivative and l-arabinose derivative exhibited potent inhibitory activity against Cdc2 protein kinase with IC50 values of 3.7 and 1.6 μM, respectively.  相似文献   

15.
We have recently described an RNA-only gene regulation system for mammalian cells in which inhibition of self-cleavage of an mRNA carrying ribozyme sequences provides the basis for control of gene expression. An important proof of principle for that system was provided by demonstrating the ability of one specific small molecule inhibitor of RNA self-cleavage, toyocamycin, to control gene expression in vitro and vivo. Here, we describe the development of the high-throughput screening (HTS) assay that led to the identification of toyocamycin and other molecules capable of inhibiting RNA self-cleavage in mammalian cells. To identify small molecules that can serve as inhibitors of ribozyme self-cleavage, we established a cell-based assay in which expression of a luciferase (luc) reporter is controlled by ribozyme sequences, and screened 58,076 compounds for their ability to induce luciferase expression. Fifteen compounds able to inhibit ribozyme self-cleavage in cells were identified through this screen. The most potent of the inhibitors identified were toyocamycin and 5-fluorouridine (FUR), nucleoside analogs carrying modifications of the 7-position and 5-position of the purine or pyrimidine bases. Individually, these two compounds were able to induce gene expression of the ribozyme-controlled reporter approximately 365-fold and 110-fold, respectively. Studies of the mechanism of action of the ribozyme inhibitors indicate that the compounds must be incorporated into RNA in order to inhibit RNA self-cleavage.  相似文献   

16.
Starting with commercially available tetracyanoethylene, we describe a more efficient and higher yielding synthesis of toyocamycin with regards to convenience, overall yield, and total reaction time than those syntheses previously reported.  相似文献   

17.
Some cytotoxic drugs cause translocation of nucleophosmin/B23 and other nucleolar proteins to the nucleoplasm. The present study shows that these drugs caused a similar translocation of RH-II/Gu, a nucleolar RNA helicase. Other nucleolar proteins including p120, UBF, RNA polymerase I large subunit, fibrillarin, p40, and Ren-1 did not translocate. A 2-h treatment of MCF-7 breast cancer cells with 0.008 or 0.16 μMactinomycin D resulted in translocation of RH-II/Gu to the nucleoplasm; these effects were not reversed by 100 μMguanosine. The effects of 0.008 μMactinomycin D, but not 0.16 μMactinomycin D, on the translocation of RH-II/Gu were reversed when the drug was removed. However, the effects of 0.008 or 0.16 μMactinomycin D on the translocation of nucleophosmin/B23 were not reversible. The translocation effects of 50 μMtoyocamycin on RH-II/Gu were reversed when the drug was replaced with fresh medium. RH-II/Gu mostly relocalized to the nucleoli within 15 min after toyocamycin was withdrawn; only partial relocalization of nucleophosmin/B23 occurred 40 h after removal of the drug. The effects of toyocamycin were not blocked by 100 μMguanosine. Mycophenolic acid (50 μM,2-h treatment) caused partial translocation of RH-II/Gu; this effect was slowly reversed upon drug removal and was inhibited by 100 μMguanosine, in a manner similar to the effects of mycophenolic acid on the localization of nucleophosmin/B23. This study shows similarities and differences in the drug-induced translocation and relocalization of RH-II/Gu and nucleophosmin/B23. Analysis of translocation of specific nucleolar proteins may offer a quantitative approach to assessment of potency and duration of effects of cytotoxic agents.  相似文献   

18.
Abstract

A number of 6-substituted 7-[(2-hydroxyethoxy)methyl]pyrrolo[2,3-d]pyrimidine and 7-[(1,3-dihydroxy-2-propoxy)methyl]pyrrolo[2,3-d]pyrimidine derivatives related to the nucleoside antibiotics toyocamycin and sangivamycin were prepared and tested for their biological activity. Treatment of 2-amino-5-bromo-3,4-dicyanopyrrole (2) with triethylorthoformate, followed by alkylation via the sodium salt method with either 2-(acetoxyethoxy)methyl bromide or (1,3-diacetoxy-2-propoxy)methyl bromide, furnished the corresponding N-substituted pyrroles 3a and 3b. These compounds were then smoothly converted to the requisite deprotected 4-amino-6-bromopyrrolo[2,3-d]-pyrimidine-5-carbonitriles 5a and 5b (toyocamycin analogs) by methanolic ammonia. The 6-amino-derivatives were obtained by a displacement of the bromo group with liquid ammonia. Conventional functional group transformations involving the 5-cyano group furnished the 5-carboxamide (sangivamycin) and 5-thioamide analogs. Compounds substituted at the 7-position with a ribosyl moiety were active against human cytomegalovirus (HCMV) at micromolar concentrations, but the apparent activity was not selective. The 7-ribosyl compounds also had no activity against human immunodeficiency virus (HIV), though they were all cytotoxic. The new compounds were also evaluated against HCMV, herpes simplex virus type I (HSV-1), HIV, and also for their ability to inhibit the growth of L1210 murine leukemic cells in vitro. None of these compounds with (2-hydroxyethoxy)methyl substituents or 7-(1,3-dihydroxy-2-propoxy)methyl substituent at N-7 showed significant cytotoxicity toward L1210, or toward uninfected human foreskin fibroblasts (HFF cells), and KB cells. Nor were they cytotoxic in human lines CEM or MT2. Only compound 4a was found to be active against HCMV, having an IC50 of 32 μM.  相似文献   

19.
Biosynthesis of the modified nucleoside Q in transfer RNA.   总被引:9,自引:4,他引:5  
During biosynthesis of the modified nucleoside Q, 7-(4,5-DIHYDROXYL-1-1-CYCLOPENTEN-3-YL-AMINOMETHYL)-7-DEAZAGUANOSINE, IN TRNA, the carbon atom at position 8 in precursor molecule guanine was expelled together with the nitrogen atom N-7 in a fashion similar to that in the biosynthesis of the nucleoside antibiotic toyocamycin.  相似文献   

20.
Abstract

Application of previously described methodologies, for the synthesis of 2′,3′-dideoxy-2′,3′-didehydro nucleosides from the parent ribonucleosides, to the antibiotics tubercidin (1), toyocamycin (6) and sangivamycin (10) has provided the corresponding 2′,3′-unsaturated nucleosides 4, 9, and 13. A reduction of the 2′,3′-unsaturated moiety has afforded the 2′,3′-dideoxynucleoside antibiotics 5, 14, and 15.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号