首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(hydroxyalkanoates) (PHAs) are bacterial storage polyesters, currently receiving much attention because of their potential as biodegradable and renewable plastics. Well known are poly(hydroxybutyrate) and its copolymers with hydroxyvalerate, which have been commercialised under the trademark Biopol. In addition to these rigid materials, the elastomeric medium-chain-length PHAs (mcl-PHAs) from fluorescent Pseudomonads are now emerging. Here we describe the development of a non-solvent based process for the recovery of mcl-PHAs from the biomass. This first paper addresses a procedure to solubilize the biomass, so that it can be separated from the particulate mcl-PHA. The solubilization procedure, involving heat, protease and detergent, leaves the peptidoglycan intact, which facilitates the separation. The purity of the resulting mcl-PHA exceeds 95%. In a subsequent paper, we utilize the solubilization procedure in a downstream process and we discuss the economics of the corresponding mcl-PHA production.  相似文献   

2.
Medium chainlength (mcl) polyhydroxyalkanoates (PHAs) are a class of polymers receiving attention because of their potential as renewable, biodegradable and high tech properties. Unlike most short chain PHAs, mcl-PHAs are low crystallinity and elastomeric in character. In this paper we wish to point out that in their broad properties mcl-PHAs might be classified as thermotropic liquid crystals with dynamic conformational disorder and long range orientational order. As the characterization of mcl-PHAs progresses, their similarities to liquid crystalline elastomers are noteworthy. Wunderlich coined the acronym CONDIS from the words "conformational disorder" to categorize this type of liquid crystal. Thermal analysis reveals a T(g) of -40 to -45°C with several T(m) peaks. The chemistry of the elastomer from (13)C NMR confirms the poly(3-hydroxynonanoate), PHN, composition of the starting material along with two other samples containing double bonds: PHNU-18 and PHNU-31 where the numeral stands for the percent of double bonds.  相似文献   

3.
Medium-chain-length poly-3-(R)-hydroxyalkanoates (mcl-PHAs) belong to the group of microbial polyesters. The minimum gene-set for the accumulation of mcl-PHAs from de novo fatty acid biosynthesis has been identified in prokaryotes [B. Rehm et al. (1998) J. Biol Chem 273:24044–24051] as consisting of the Pha-C1 polymerase and the ACP-CoA-transacylase. In this paper, the synthesis of mcl-PHAs has been attempted in transgenic potato (Solanum tuberosum L.) using the same set of genes that were introduced into potato by particle bombardment. Polymer contents of transgenic lines were analysed by gas chromatography and by a new simple method employing a size-exclusion filter column. The expression of the Pha-C1 polymerase and the ACP-CoA-transacylase in the plastids of transgenic potato led to the synthesis of a hydrophobic polymer composed of mcl-hydroxy-fatty acids with carbon chain lengths ranging from C-6 to C-12 in leaves of the selected transgenic lines. We strongly suggest that the polymer observed consists of mcl-PHAs and that this report establishes for the first time a possible route for the production of mcl-PHAs from de novo fatty acid biosynthesis in plants.  相似文献   

4.
Pseudomonas putida KT2442 is able to accumulate medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHAs) as intracellular inclusions on a variety of fatty acids and many other carbon sources. Some of these substrates, such as octanoic acid, alkenoic acids, and halogenated derivatives, are toxic when present in excess. Efficient production of mcl-PHAs on such toxic substrates therefore requires control of the carbon source concentration in the supernatant. In this study, we develop a closed-loop control system based on on-line gas chromatography to maintain continuously fed substrates at desired levels. We used the graphical programming environment LABVIEW to set up a flexible process control system that allows users to perform supervisory process control and permits remote access to the fermentation system over the Internet. Single-substrate supernatant concentration in a high-cell-density fed-batch fermentation process was controlled by a proportional (P) controller (P = 50%) acting on the substrate pump feed rate. Na-octanoate concentrations oscillated around the setpoint of 10 mM and could be maintained between 0 and 25 mM at substrate uptake rates as high as 90 mmol L(-1) h(-1). Under cofeeding conditions Na-10-undecenoate and Na-octanoate could be individually controlled at 2.5 mM and 9 mM, respectively, by applying a proportional integral (PI) controller for each substrate. The resulting copolymer contained 43.5 mol% unsaturated monomers and reflected the ratio of 10-undecenoate in the feed. It was suggested that both substrates were consumed at similar rates. These results show that this control system is suitable for avoiding substrate toxicity and supplying carbon substrates for growth and mcl-PHA accumulation.  相似文献   

5.
A cotransport system for Na+, K+ and Cl? in Ehrlich cells is described. It is insensitive towards ouabain but specifically inhibited by furosemide and other ‘high ceiling’ diuretics at concentrations which do not affect other pathways of the ions concerned. As the furosemide-sensitive fluxes of these ions are not affected by changes in membrane potential, and as their complete inhibition by furosemide does not appreciably alter the membrane potential, they appear to be electrically silent. Application of the pulse-response methods in terms of irreversible thermodynamics reveals tight coupling between the furosemide-sensitive flows of Na+, K+ and Cl? (q close to unity for all three combinations) at a stoichiometry of 1 : 1 : 2. The site for each of the ions appears to be rather specific: K+ can be replaced by Rb+ but not by other cations tested whereas Cl? can be poorly replaced by Br? but not by NO3?, in contradistinction to the Cl?-OH? exchange system. The cotransport system appears to function in cell volume regulation as it tends to make the cell swell, thus counteracting the shrinking effect of the ouabain-sensitive (Na+, K+) pump.The experiments presented could not clarify whether the cotransport process is a primary or secondary active one; while incongruence between transport and conjugated driving force seems to indicate primary active transport, it is very unlikely that hydrolysis of ATP supplies energy for the transport process, since there is no stimulation of ATP turnover observable under operation of the cotransport system.  相似文献   

6.
Polyhydroxyalkanoates that contain the medium-chain-length monomers (mcl-PHAs) have a wide range of applications owing to their superior physical and mechanical properties. A challenge to synthesize such mcl-PHAs from unrelated and renewable sources is exploiting the efficient metabolic pathways that lead to the formation of precursor (R)-3-hydroxyacyl-CoA. Here, by engineering the reversed fatty acid β-oxidation cycle, we were able to synthesize mcl-PHAs in Escherichia coli directly from glucose. After deletion of the major thioesterases, the engineered E. coli produced 6.62 wt% of cell dry weight mcl-PHA heteropolymers. Furthermore, when a low-substrate-specificity PHA synthase from Pseudomonas stutzeri 1317 was employed, recombinant E. coli synthesized 12.10 wt% of cell dry weight scl–mcl PHA copolymers, of which 21.18 mol% was 3-hydroxybutyrate and 78.82 mol% was medium-chain-length monomers. The reversed fatty acid β-oxidation cycle offered an efficient metabolic pathway for mcl-PHA biosynthesis in E. coli and can be further optimized.  相似文献   

7.
In a previous publication (Faelen et al., 1975), it was predicted that the temperate phage Mu-1 would mediate transposition of bacterial genes. Here we show that this is indeed the case. By mating either induced F′ strains (which carry a thermoinducible Mu prophage in the bacterial chromosome), or sensitive F′ infected with Mu, with appropriate recipients, we were able to isolate new F′ episomes which carry various lengths of bacterial DNA. The frequency of transposition of a given marker can be as high as 10?4. The episomes which carry the transposed DNA always carry Mu as well. When this is coupled with the fact that induction or infection with Mu is necessary for transposition to occur, it is probable that both Mu enzymes and Mu DNA are required by the transposition process. Episomes selected for the presence of a given marker were analyzed for the presence of unselected markers. It was found that: (1) only markers linked to the selected marker can be cotransposed with it; (2) when two markers are simultaneously transposed, all markers lying between them on the chromosome are also transposed; (3) the frequency at which an unselected marker is cotransposed is in some way related to the distance between that marker and the selected marker; (4) the transposition process occurs in both Rec+ and Rec? strains. Mu-mediated transposition offers a new way to isolate F′ episomes and to localize and order bacterial genes as far apart as three minutes.  相似文献   

8.
The progenitor cells of neutrophil granulocytes and macrophages which are able to proliferate and differentiate in vitro (CFU-c) form a heterogeneous population. By the use of specific colony stimulating activities and cell separation by equilibrium density centrifugation, three subpopulations of CFU-c can be detected. These three CFU-c are characterized by buoyant densities of 1.070, 1.075 and 1.080 g.cm?3 and by their proliferative response to 18 h postendotoxin serum, colony stimulating factor from extracts of mouse embryos and uteri (CSF-pmue) and erythrocyte lysate, respectively. The three CFU-c are compared with respect to their differentiation potential, the maturation rate of their progeny cells and their proliferation capacity. It is shown that with increasing density of the CFU-c the maturation rate increases (sequential maturation of colonies derived from CFU-c with densities of 1.080, 1.075, 1.070 g.cm?3) and the proliferation capacity decreases (colony size decreases in the sequence of CFU-c with densities 1.070, 1.075, 1.080 g.cm?3). Concerning the differentiation potential it is shown that all three CFU-c detected have the capacity to form granulocytes as well as macrophages. On the basis of these results it is concluded that the CFU-c with densities of 1.070, 1.075 and 1.080 g.cm?3 represent a maturation sequence.  相似文献   

9.
《Free radical research》2013,47(2):73-82
Recent investigations have indicated the presence of a fatty acid binding protein (FABP) in mammalian heart. This protein binds free fatty acids and their esters with high affinity, however, its physiological role remains unknown. Since FABP constitutes a significant amount of cystolic protein, it is likely that it would be a target for free radical attack. To test this hypothesis, FABP was examined for scavenging against free radicals such as the superoxide anion (O?2,). hydroxyl radical (OH') and hypochlorite radical (OCl') which may be present in an ischemic reperfused heart. Our results suggest that FABP scavenges O?2, OH' and OCl' as indicated by the FABP inhibition of O?2-dependent reduction of cytochrome c, OH'-dependent hydroxybenzoic acid formation and OCl'-mediated chemiluminescence response. FABP was found to be a more potent scavenger of these free radicals compared to bovine serum albumin. Furthermore, FABP was more effective in scavenging OH' than O?2, and inhibited OH' mediated lipid peroxidation process. These results indicate that FABP can scavenge free radicals which may be present in an ischemic/reperfused heart and, thus, may play a significant physiological role in the heart during ischemia and reperfusion.  相似文献   

10.
11.
12.
Six bacteria that synthesize medium-chain-length polyhydroxyalkanoates (mcl-PHAs) were isolated from sewage sludge and hog barn wash and identified as strains of Pseudomonas and Comamonas by 16S rDNA gene sequencing. One isolate, Pseudomonas putida LS46, showed good PHA production (22% of cell dry mass) in glucose medium, and it was selected for further studies. While it is closely related to other P.?putida strains (F1, KT2440, BIRD-1, GB-1, S16, and W619), P.?putida LS46 was genetically distinct from these other strains on the basis of nucleotide sequence analysis of the cpn60 gene hypervariable region. PHA production was detected as early as 12?h in both nitrogen-limited and nitrogen-excess conditions. The increase in PHA production after 48?h was higher in nitrogen-limited cultures than in nitrogen-excess cultures. Pseudomonas?putida LS46 produced mcl-PHAs when cultured with glucose, glycerol, or C(6)-C(14) saturated fatty acids as carbon sources, and mcl-PHAs accounted for 56% of the cell dry mass when cells were batch cultured in medium containing 20?mmol/L octanoate. Although 3-hydroxydecanoate was the major mcl-PHA monomer (58.1-68.8?mol%) in P.?putida LS46 cultured in glucose medium, 3-hydroxyoctanoate was the major monomer produced in octanoate medium (88?mol%).  相似文献   

13.
Layered transition metal sulfides (LTMSs) have tremendous commercial potential in anode materials for sodium‐ion batteries (SIBs) in large‐scale energy storage application. However, it is a great challenge for most LTMS electrodes to have long cycling life and high‐rate capability due to their larger volume expansion and the formation of soluble polysulfide intermediates caused by the conversion reaction. Herein, layered CuS microspheres with tunable interlayer space and pore volumes are reported through a cost‐effective interaction method using a cationic surfactant of cetyltrimethyl ammonium bromide (CTAB). The CuS–CTAB microsphere as an anode for SIBs reveals a high reversible capacity of 684.6 mAh g?1 at 0.1 A g?1, and 312.5 mAh g?1 at 10 A g?1 after 1000 cycles with high capacity retention of 90.6%. The excellent electrochemical performance is attributed to the unique structure of this material, and a high pseudocapacitive contribution ensures its high‐rate performance. Moreover, in situ X‐ray diffraction is applied to investigate their sodium storage mechanism. It is found that the long chain CTAB in the CuS provides buffer space, traps polysulfides, and restrains the further growth of Cu particles during the conversion reaction process that ensure the long cycling stability and high reversibility of the electrode material.  相似文献   

14.
In Saccharomyces cerevisiae the uptake of cytosine, uracil and uridine is mediated by three permeases. Using mutants blocked in the metabolic utilization of these three compounds we were able to study their specific uptake. Cytosine and uridine show simple saturation kinetics, whereas uracil uptake is a biphasic process. A comparison of the effects of several inhibitors of energy metabolism on these uptake systems was made. Striking differences were found. 2,4-Dinitrophenol (10?3 M) and NaN3 (10?2 M) inhibit the entry of the three compounds to similar extent, but chlorhexidine (10?5 M) and Dio 9 (50 μg/ml) which are ATPase inhibitors in vitro strongly impaired cytosine and uridine entry and remained without effect on uracil uptake.We provisionally conclude that these systems may be energized by different mechanisms. In the case of cytosine and uridine permease, a membrane ATPase is possibly involved in the process of energetic coupling whereas this does not seem to be so for uracil.  相似文献   

15.
Abstract

In an attempt to improve our understanding of the transfer process of organic mercury (mainly methyl mercury) from the prey to the consumer, the uptake of mercury in edible muscle of shrimps, Pandalus borealis, from contaminated mussels used as food supplies was studied. Shrimps bioaccumulated rapidly mercury in their abdominal muscle when submitted to a highly contaminated diet (6 μg Hg g?1) but biomagnification was not observed and Hg concentration in shrimps never exceeded 1.8 μg g?1. The assimilation efficiency during the uptake period was estimated to about 42% When shrimps received moderately contaminated diet (2.5–2.9 μg Hg g?1), a two-stage bioaccumulation process was observed in which mercury concentration began to increase in shrimp muscle after 15 days of contaminated diet and at the end of the experiment it seemed to level off. This process can be represented by a two-compartment conceptual model in which mercury rs first eliminated and/or accumulated in the compartment 1 (digestive organs) and then transferred to the compartment 2 (abdominal muscle) following a mechanism and under conditions not yet clearly understood. The use of selenium biologically incorporated into the diet had no apparent effect on the uptake of mercury  相似文献   

16.
The kinetics of complex formation between fluorescein mercuric acetate and heat-denatured DNA were studied by measuring the fluorescence quenching of this reagent. This quenching process involved no immeasurably rapid phase and it was shown that this reaction follows simple second-order kinetics. The rate constant at 25°C was estimated to be 2.9 × 104M?1 sec?1 for calf-thymus DNA (42% G + C) and 1.1 × 104M?1 sec?1 for Micrococcus lysodeikticus DNA (72% G + C). Activation parameters for this reaction were calculated from the temperature dependence of the reaction rate, and the activation entropy was found to be highly negative (?27.5 cal/mol deg for calf-thymus DNA and ?25.5 cal/mol deg for M. lysodeikticus DNA). The binding of fluorescein mercuric acetate to native DNA, which requires the opening of the double-helical structure, was also followed by measuring the absorbance change of this reagent. There was a lag phase in this binding process, and the enthalpy change for the opening step corresponded roughly to that for the opening of one base pair. These findings are discussed in relation to the results of a similar study with formaldehyde.  相似文献   

17.
Sodium ion battery (SIB) as a next‐generation battery has been drawing much attention due to the abundance and even distribution of sodium source. Metal sulfides with high theoretical capacity and good electrical conductivity are promising anode candidates for SIB, however, the structural collapse caused by severe volume change during the de/sodiation process typically results in a fast capacity decay, limited rate capability, and cycling stability. In this work, by careful composition and structure design, polydopamine coated Prussian blue analogs derived carbon coated bimetallic sulfide hollow nanocubes (PBCS) are prepared with distinguished morphology, higher surface area, smaller charge transfer resistance, and higher sodium diffusion coefficient than the uncoated bimetallic sulfides. An optimum carbon coated bimetallic sulfide hollow nanocube anode delivers a specific capacity of ≈500 mA h g?1 at 50 mA g?1 with ethylene carbonate/dimethyl carbonate (1:1, vol%) electrolyte in the presence of fluoroethylene carbonate additives. A capacity of 122.3 mA h g?1 can be realized at 5000 mA g?1, showing good rate performance. In addition the carbon coated bimetallic sulfide hollow nanocubes can maintain capacity of 87 mA h g?1 after being cycled at 500 mA g?1 for 150 times, indicating its good cycling stability. The structure integrity, high specific capacity, good rate performance, and cycling stability of PBCS render it a promising anode material for advanced SIB.  相似文献   

18.
Dermal exposure to cumene hydroperoxide (CumOOH) during manufacturing processes is a toxicological issue for the industry. Its genotoxicity, mutagenic action, ability to promote skin tumour, capacity to induce epidermal hyperplasia, and aptitude to induce allergic and irritant skin contact dermatitis are well known. These toxic effects appear to be mediated through the activation to free radical species such as hydroxyl, alkoxyl, and alkyl radicals characterised basically by electron paramagnetic resonance (EPR) and spin-trapping (ST) techniques. To be a skin sensitiser CumOOH needs to covalently bind to skin proteins in the epidermis to form the antigenic entity triggering the immunotoxic reaction. Cleavage of the O–O bond allows formation of unstable CumO?/CumOO? radicals rearranging to longer half-life specific carbon-centred radicals R? proposed to be at the origin of the antigen formation. Nevertheless, it is not still clear which R? is precisely formed in the epidermis and thus involved in the sensitisation process. The aim of this work was to elucidate in conditions closer to real-life sensitisation which specific R? are formed in a 3D reconstructed human epidermis (RHE) model by using 13C-substituted CumOOH at carbon positions precursors of potentially reactive radicals and EPR-ST. We demonstrated that most probably methyl radicals derived from β-scission of CumO? radicals occur in RHE through a one-electron reductive pathway suggesting that these could be involved in the antigen formation inducing skin sensitisation. We also describe a coupling between nitroxide radicals and β position 13C atoms that could be of an added value to the very few examples existing for the coupling of radicals with 13C atoms.  相似文献   

19.
In recent years considerable effort has been made in the Netherlands toward the development of a more sophisticated anaerobic treatment process, suitable for treating low a strength wastes and for applications at liquid detention times of 3–4 hr. The efforts have resulted in new type of upflow anaerobic sludge blanket (UASB) process, which in recent 6 m3 pilot-plant experiments has shown to be capable of handling organic space loads of 15–40 kg chemical oxygen demand (COD)·m?3/day at 3–8 hr liquid detention times. In the first 200 m3 full-scale plant of the UASB concept, organic space loadings of up to 16 kg COD·m?3/day could be treated satisfactorily at a detention times of 4 hr, using sugar beet waste as feed. The main results obtained with the process in the laboratory as well as in 6 m3 pilot plant and 200 m3 full-scale experiments are presented and evaluated in this paper. Special attention is given to the main operating characteristics of the UASB reactor concept. Moreover, some preliminary results are presented of laboratory experiments concerning the use of the USB reactor concept for denitrification as well as for the acid formation step in anaerobic treatment. For both purposes the process looks feasible because very satisfactory results with respect to denitrification and acid formation can be achieved at very high hydraulic loads (12 day?1) and high organic loading rates, i.e., 20 kg COD·m?3/day in the denitrification and 60–80 kg COD·m?3/day in the acid formation experiments.  相似文献   

20.
Under conditions of oxidative stress it is well known that the bioavailability of nitric oxide (NO) is known to be significantly reduced. This process is in part due to the combination of NO with superoxide radicals to form peroxynitrite (ONOO?). While this process inactivates NO per se, it is not certain to which extent this process may also further impair ongoing NO production. Given the pivotal role of arginine availability for NO synthesis we determined the impact of ONOO? on endothelial arginine transport and intracellular arginine metabolism. Peroxynitrite reduced endothelial [3H]-l-arginine transport and increased the rate of arginine efflux in a concentration-dependent manner (both p < 0.05). In conjunction, exposure to ONOO? significantly reduced the intracellular concentration of l-arginine, NG-hydroxy-l-arginine (an intermediate of NO biosynthesis) and citrulline by 46%, 45% and 60% respectively (all p < 0.05), while asymmetric dimethyl arginine (ADMA) levels rose by 180% (p < 0.05). ONOO? exposure did not alter the cellular distribution of the principal l-arginine transporter, CAT1, rather the effect on CAT1 activity appeared to be mediated by protein nitrosation. Conclusion Peroxynitrite negatively influences NO production by combined effects on arginine uptake and efflux, most likely due to a nitrosative action of ONOO? on CAT-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号