首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phage T4-induced anticodon nuclease triggers cleavage-ligation of the host tRNA(Lys). The enzyme is encoded in latent form by the optional Escherichia coli locus prr and is activated by the product of the phage stp gene. Anticodon nuclease latency is attributed to the masking of the core function prrC by flanking elements homologous with type I restriction-modification genes (prrA-hsdM and prrD-hsdR). Activation of anticodon nuclease in extracts of uninfected prr+ cells required synthetic Stp, ATP and GTP and appeared to depend on endogenous DNA. Stp could be substituted by a small, heat-stable E. coli factor, hinting that anticodon nuclease may be mobilized in cellular situations other than T4 infection. Hsd antibodies recognized the anticodon nuclease holoenzyme but not the prrC-encoded core. Taken together, these data indicate that Hsd proteins partake in the latent ACNase complex where they mask the core factor PrrC. Presumably, this masking interaction is disrupted by Stp in conjunction with Hsd ligands. The Hsd-PrrC interaction may signify coupling and mutual enhancement of two prokaryotic restriction systems operating at the DNA and tRNA levels.  相似文献   

2.
M Amitsur  I Morad    G Kaufmann 《The EMBO journal》1989,8(8):2411-2415
During phage T4 infection of Escherichia coli strains containing the prr locus the host tRNALys undergoes cleavage-ligation in reactions catalyzed by anticodon nuclease, polynucleotide kinase and RNA ligase. Known genetic determinants of anticodon nuclease are prr, which restricts T4 mutants lacking polynucleotide kinase or RNA ligase, and stp, the T4 suppressor of prr encoded restriction. The present communication describes an in vitro anticodon nuclease assay in which the specific cleavage of tRNALys is driven by an extract from E. coli prrr (restrictive) cells infected by phage T4. The in vitro anticodon nuclease reaction requires factor(s) encoded by prr, is stimulated by a synthetic Stp polypeptide and appears to require additional T4 induced factor(s) distinct from Stp.  相似文献   

3.
Anticodon loop cleavages of two host tRNA species occur in bacteriophage T4-infected Escherichia coli CTr5X, a host strain restricting phage mutants deficient in polynucleotide kinase (pnk) or RNA ligase (rli). The cleavage products accumulate with the mutants but are further processed in wt infection through polynucleotide kinase and RNA ligase reactions. Inactivating mutations in stp suppress pnk- or rli- mutations in E. coli CTr5X and, as shown here, also abolish the anticodon nuclease, implicating the stp product with this activity. We show also that there exist other suppressing mutations of a pnk- (pseT2) mutation that appear not to affect the anticodon nuclease and are not in stp. It has been shown that a single locus in E. coli CTr5X, termed prr, determines the restriction of pnk- or rli- mutants. A transductant carrying prr featured upon infection the anticodon nuclease reaction products, suggesting that prr determines the specific manifestation of this activity. However, prr does not encode the tRNA species that are vulnerable to the anticodon nuclease.  相似文献   

4.
Pre-existing host tRNAs are reprocessed during bacteriophage T4 infection of certain Escherichia coli strains. In this pathway, tRNALys is cleaved 5' to the wobble base by anticodon nuclease and is later restored in polynucleotide kinase and RNA ligase reactions. Anticodon nuclease depends on prr, a locus found only in host strains that restrict T4 mutants lacking polynucleotide kinase and RNA ligase; and on stp, the T4 suppressor of prr restriction. stp was cloned and the nucleotide sequences of its wild-type and mutant alleles determined. Their comparison defined an stp open reading frame of 29 codons at 162.8 to 9 kb of T4 DNA (1 kb = 10(3) base-pairs). We suggest that stp encodes a subunit of anticodon nuclease, perhaps one that harbors the catalytic site; while additional subunits, such as a putative prr gene product, impart protein folding environment and tRNA substrate recognition.  相似文献   

5.
The tRNALys-specific anticodon nuclease exists in latent form in Escherichia coli strains containing the optional prr locus. The latency is a result of a masking interaction between the anticodon nuclease core-polypeptide PrrC and the Type IC DNA restriction-modification enzyme EcoprrI. Activation of the latent enzyme by phage T4-infection elicits cleavage of tRNALys 5' to the wobble base, yielding 5'-OH and 2', 3'-cyclic phosphate termini. The N-proximal half of PrrC has been implicated with (A/G) TPase and EcoprrI interfacing activities. Therefore, residues involved in recognition and cleavage of tRNALys were searched for at the C-half. Random mutagenesis of the low-G+C portion encoding PrrC residues 200-313 was performed, followed by selection for loss of anticodon nuclease-dependent lethality and production of full-sized PrrC-like protein. This process yielded a cluster of missense mutations mapping to a region highly conserved between PrrC and two putative Neisseria meningitidis MC58 homologues. This cluster included two adjacent members that relaxed the inherent enzyme's cleavage specificity. We also describe another mode of relaxed specificity, due to mere overexpression of PrrC. This mode was shared by wild-type PrrC and the other mutant alleles. The additional substrates recognised under the promiscuous conditions had, in general, anticodons resembling that of tRNALys. Taken together, the data suggest that the anticodon of tRNALys harbours anticodon nuclease identity elements and implicates a conserved region in PrrC in their recognition.  相似文献   

6.
A tRNALys-specific anticodon nuclease is kept in a latent form in a rare Escherichia coli strain, complexed with a DNA restriction enzyme. A phage T4 inhibitor of DNA restriction activates anticodon nuclease, but other T4 proteins restore tRNALys. Detection of a homologous system in Neisseria and a different anticodon nuclease in colicin E5 suggest ubiquity and diversity of such tRNA toxins. Analysis of these systems could reveal novel RNA recognition and cleavage mechanisms.  相似文献   

7.
M Amitsur  R Levitz    G Kaufmann 《The EMBO journal》1987,6(8):2499-2503
Host tRNAs cleaved near the anticodon occur specifically in T4-infected Escherichia coli prr strains which restrict polynucleotide kinase (pnk) or RNA ligase (rli) phage mutants. The cleavage products are transient with wt but accumulate in pnk- or rli- infections, implicating the affected enzymes in repair of the damaged tRNAs. Their roles in the pathway were elucidated by comparing the mutant infection intermediates with intact tRNA counterparts before or late in wt infection. Thus, the T4-induced anticodon nuclease cleaves lysine tRNA 5' to the wobble position, yielding 2':3'-P greater than and 5'-OH termini. Polynucleotide kinase converts them into a 3'-OH and 5' P pair joined in turn by RNA ligase. Presumably, lysine tRNA depletion, in the absence of polynucleotide kinase and RNA ligase mediated repair, underlies prr restriction. However, the nuclease, kinase and ligase may benefit T4 directly, by adapting levels or decoding specificities of host tRNAs to T4 codon usage.  相似文献   

8.
The bacterial tRNALys-specific anticodon nuclease is known as a phage T4 exclusion system. In the uninfected host cell anticodon nuclease is kept latent due to the association of its core protein PrrC with the DNA restriction-modification endonuclease EcoprrI. Stp, the T4-encoded peptide inhibitor of EcoprrI activates the latent enzyme. Previous in vitro work indicated that the activation by Stp is sensitive to DNase and requires added nucleotides. Biochemical and mutational data reported here suggest that Stp activates the latent holoenzyme when its EcoprrI component is tethered to a cognate DNA substrate. Moreover, the activation is driven by GTP hydrolysis, possibly mediated by the NTPase domain of PrrC. The data also reveal that Stp can be replaced as the activator of latent anticodon nuclease by certain pyrimidine nucleotides, the most potent of which is dTTP. The activation by dTTP likewise requires an EcoprrI DNA substrate and GTP hydrolysis but involves a different form of the latent holoenzyme/DNA complex. Moreover, whereas Stp relays its activating effect through EcoprrI, dTTP targets PrrC. The activation of the latent enzyme by a normal cell constituent hints that anticodon nuclease plays additional roles, other than warding off phage T4 infection.  相似文献   

9.
We describe the use of an enzymic probe of RNA structure, T2 ribonuclease, to detect alterations of RNA conformation induced by changes in Mg2+ ion concentration and pH. T2 RNase is shown to possess single-strand specificity similar to S1 nuclease. In contrast to S1 nuclease, T2 RNase does not require divalent cations for activity. We have used this enzyme to investigate the role of Mg2+ ions in the stabilization of RNA conformation. We find that, at neutral pH, drastic reduction of the available divalent metal ions results in a decrease in the ability of T2 RNase to cleave the anticodon loop of tRNAPhe. This change accompanies an increase in the cleavage of the molecule in the T psi C and in the dihydrouracil loops. Similar treatment of Tetrahymena thermophila 5S ribosomal RNA shows that changes in magnesium ion concentration does not have a pronounced effect on the cleavage pattern produced by T2 RNase. T2 RNase activity has a broader pH range than S1 nuclease and can be used to study pH induced conformational shifts in RNA structure. We find that upon lowering the pH from 7.0 to 4.5, nucleotide D16 in the dihydrouracil loop of tRNAPhe becomes highly sensitive to T2 RNase hydrolysis. This change accompanies a decrease in the relative sensitivity of the anticodon loop to the enzyme. The role of metal ion and proton concentrations in maintenance of the functional conformation of tRNAPhe is discussed.  相似文献   

10.
T W Dreher  C H Tsai  C Florentz  R Giegé 《Biochemistry》1992,31(38):9183-9189
The valylation by wheat germ valyl-tRNA synthetase of anticodon loop mutants of turnip yellow mosaic virus RNA has been studied. RNA substrates 264 nucleotides long were made by T7 RNA polymerase from cDNA encompassing the 3' tRNA-like region of genomic RNA. Substitution singly, or in combination, of three nucleotides in the anticodon loop resulted in very poor valylation (Vmax/KM less than 10(-3) relative to wild type). These nucleotides thus represent the major valine identity determinants recognized by wheat germ valyl-tRNA synthetase; their relative contribution to valine identity, in descending order, was as follows: the middle nucleotide of the anticodon (A56 in TYMV RNA), the 3' anticodon nucleotide (C55), and the 3'-most anticodon loop nucleotide (C53). Substitutions in the wobble position (C57) had no significant effect on valylation kinetics, while substitutions of the discriminator base (A4) resulted in small decreases in Vmax/Km. Mutations in the major identity nucleotides resulted in large increases in KM, suggesting that wheat germ valyl-tRNA synthetase has a lowered affinity for variant substrates with low valine identity. Comparison with other studies using valyl-tRNA synthetases from Escherichia coli and yeast indicates that the anticodon has been phylogenetically conserved as the dominant valine identity region, while the identity contribution of the discriminator base has been less conserved. The mechanism by which anticodon mutations are discriminated also appears to vary, being affinity-based for the wheat germ enzyme, and kinetically-based for the yeast enzyme [Florentz et al. (1991) Eur. J. Biochem. 195, 229-234].  相似文献   

11.
Breakage of tRNA(Lys(UUU)) by the Escherichia coli anticodon nuclease PrrC (EcoPrrC) underlies a host antiviral response to phage T4 infection that is ultimately thwarted by a virus-encoded RNA repair system. PrrC homologs are prevalent in other bacteria, but their activities and substrates are not defined. We find that induced expression of EcoPrrC is toxic in Saccharomyces cerevisiae and E. coli, whereas the Neisseria meningitidis PrrC (NmePrrC) is not. PrrCs consist of an N-terminal NTPase module and a C-terminal nuclease module. Domain swaps identified the EcoPrrC nuclease domain as decisive for toxicity when linked to either the Eco or Nme NTPase. Indeed, a single arginine-to-tryptophan change in the NmePrrC nuclease domain (R316W) educed a gain-of-function and rendered NmePrrC toxic to yeast, with genetic evidence for tRNA(Lys(UUU)) being the relevant target. The reciprocal Trp-to-Arg change in EcoPrrC (W335R) abolished its toxicity. Further mutagenesis of the EcoPrrC nuclease domain highlighted an ensemble of 15 essential residues and distinguished between hypomorphic alleles and potential nuclease-nulls. We report that the RNA repair phase of the bacterial virus-host dynamic is also portable to yeast, where coexpression of the T4 enzymes Pnkp and Rnl1 ameliorated the toxicity of NmePrrC-R316W. Plant tRNA ligase AtRNL also countered NmePrrC-R316W toxicity, in a manner that depended on AtRNL's 5'-kinase and ligase functions.  相似文献   

12.
The conformation of the anticodon loop of Escherichia coli tRNAArg was investigated. It is shown that the structure of the anticodon loop is influenced by the base composition of the anticodon stem, and the natural modification of the nucleoside residue 32 in the anticodon loop. The structural effects detected by analysis of the accessibility of the anticodon loop to nuclease S1 could be correlated with the ability of different Arg-tRNAArg species to suppress frame-shifting during translation of MS2 RNA.  相似文献   

13.
The RNA ligase and polynucleotide kinase of bacteriophage T4 are nonessential enzymes in most laboratory Escherichia coli strains. However, T4 mutants which do not induce the enzymes are severely restricted in E. coli CTr5X, a strain derived from a clinical E. coli isolate. We have mapped the restricting locus in E. coli CTr5X and have transduced it into other E. coli strains. The restrictive locus seems to be a gene, or genes, unique to CTr5X or to be an altered form of a nonessential gene, since deleting the locus seems to cause loss of the phenotypes. In addition to restricting RNA ligase- and polynucleotide kinase-deficient T4, the locus also restricts bacteriophages lambda and T4 with cytosine DNA. When lambda or T4 with cytosine DNA infect strains with the prr locus, the phage DNA is injected, but phage genes are not expressed and the host cells survive. These phenotypes are unlike anything yet described for a phage-host interaction.  相似文献   

14.
15.
Initiator tRNAs have an anticodon loop conformation distinct from that of elongation tRNAs as detected by susceptibility to S1 nuclease. We now find the anticodon loop conformation of E. coli tRNAfMet to be stable under different salt conditions as detected by using S1 nuclease as a structural probe. In contrast, a conformational change is observed in the T- and D- loop of this tRNA in the absence of added Mg2+. This change can be suppressed by spermine. Even under those conditions effecting a change in T- and D- loop conformation, the anticodon loop does not change. This suggests that the conformational shift is controlled by Mg2+ and restricted to the D- and T- loop region only without affecting the anticodon domain. The use of S1 nuclease as a conformational probe requires the use of kinetic studies to determine the initial cleavage sites. Thus, the use of a strong inhibitor which immediately stops the action of this nuclease is necessary. ATP is shown to be such an inhibitor.  相似文献   

16.
Anticodon nuclease is a bacterial restriction enzyme directed against tRNA(Lys). We report that anticodon nuclease also cleaves mammalian tRNA(Lys) molecules, with preference and site specificity shown towards the natural substrate. Expression of the anticodon nuclease core polypeptide PrrC in HeLa cells from a recombinant vaccinia virus elicited cleavage of intracellular tRNA(Lys),3. The data justify an inquiry into the possible application of anticodon nuclease as an inhibitor of tRNA(Lys),3-primed HIV replication. They also indicate that the anticodon region of tRNA(Lys) is a substrate recognition site and suggest that PrrC harbors the enzymatic activity.  相似文献   

17.
The nucleotide sequence of a low molecular weight RNA coded by bacteriophage T4 (and previously identified as species alpha) has been determined. The molecule is of particular biological interest for its associated biosynthetic properties. This RNA is 76 nucleotides in length, contains eight modified bases, and can be arranged in a cloverleaf configuration common to tRNAs. The anticodon sequence is UGU, which corresponds to the threonine-specific codons ACA G. The nucleotide sequence was determined primarily by nearest-neighbor analysis of RNA synthesized in vitro using [alpha-32P]nucleoside triphosphates. Using the single-strand specific nuclease S1, two in vivo labeled half-molecules were generated and analysed. This information together with restrictions imposed by nearest-neighbor data, provided a unique linear sequence of nucleotides with the features of secondary structure common to tRNA molecules.  相似文献   

18.
19.
Derivatives of E. coli tRNAfMet containing single base substitutions at the wobble position of the anticodon have been enzymatically synthesized in vitro. The procedure involves excision of the normal anticodon, CAU, by limited digestion of intact tRNAfMet with RNase A. RNA ligase is then used to join each of four trinucleotides, NAU, to the 5' half molecule and to subsequently link the 3' and modified 5' fragments to regenerate the anticodon loop. Synthesis of intact tRNAfMet containing the anticodon CAU by this procedure yields a product which is indistinguishable from native tRNAfMet with respect to its ability to be aminoacylated by E. coli methionyl-tRNA synthetase. Substitution of any other nucleotide at the wobble position of tRNAfMet drastically impairs the ability of the synthetase to recognize the tRNA. Measurement of methionine acceptance in the presence of high concentrations of pure enzyme has established that the rate of aminoacylation of the AAU, GAU and UAU anticodon derivatives of tRNAfMet is four to five orders of magnitude slower than that of the native or synthesized tRNA containing C as the wobble base. In addition, the inactive tRNA derivatives fail to inhibit aminoacylation of normal tRNAfMet, indicating that they bind poorly to the enzyme. These results support a model involving direct interaction between Met-tRNA synthetase and the C in the wobble position during aminoacylation of tRNAfMet.  相似文献   

20.
Temperature-sensitive mutants of E. coli have been isolated which restrict the growth of strains of bacteriophage T4 which are dependent upon the function of a T4-coded amber or ochre suppressor transfer RNA. One such mutant restricts the growth of certain ochre but not amber suppressor-requiring phage. Analysis of the T4 tRNAs synthesized in this host revealed that many nucleotide modifications are significantly reduced. The modifications most strongly affected are located in the anticodon regions of the tRNAs. The T4 ochre suppressor tRNAs normally contain a modified U residue in the wobble position of the anticodon; it has been possible to correlate the absence of this specific modification in the mutant host with the restriction of suppressor activity. Furthermore, the extent of this restriction varies dramatically with the site of the nonsense codon, indicating that the modification requirement is strongly influenced by the local context of the mRNA. An analysis of spontaneous revertants of the E. coli ts mutant indicates that temperature sensitivity, restriction of phage suppressor function, and undermodification of tRNA are the consequences of a single genetic lesion. The isolation of a class of partial revertants to temperature insensitivity which have simultaneously become sensitive to streptomycin suggests that the translational requirement for the anticodon modification can be partially overcome by a change in the structure of the ribosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号